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Abstract—Pulse loads, like solid-state pulse modulators, gener-
ate short pulses with a high peak power that exceeds the average
power by 100–1000 times depending on the pulse repetition rate.
There, the peak power usually is drawn from an energy buffer
such as a capacitor bank. The pulse discharges the energy buffer,
and it is fully recharged in the time between the pulses by a
power supply, which is usually connected to the mains. Due to
the worldwide variation in mains voltages and the desired ability
to adapt to the capacitor voltage of the modulator, the power
supply has to support a wide input and output voltage range.
Additionally, the supply should draw a sinusoidal current from
the mains while providing energy to the pulse modulator due
to electromagnetic interference regulations. Therefore, a general
control concept for pulse load applications, which guarantees
continuous power consumption from the mains and power factor
correction, is described in this paper. Furthermore, measurements
of the control principle, which is independent from the converter
topology, are presented for a three-phase buck–boost rectifier.

Index Terms—Buck–boost rectifier, capacitor charging, con-
stant input power, power factor correction, pulse modulator.

I. INTRODUCTION

SOLID-STATE pulsed power systems containing insulated
gate bipolar transistors are often operated with input volt-

ages between 100 V and 6.5 kV due to the maximum al-
lowable blocking voltage of the switches. Nevertheless, high
output voltages of several kilovolts (e.g., ∼100–200 kV) can be
achieved, for example, by the use of pulse transformers, adder
topologies or Marx generator configurations [1], [2].

Generally, the pulse power (e.g., 20 MW for the case consid-
ered in this paper) is provided from a capacitor bank, whereas
the average power (20 kW) is supplied by a converter [3]
connected to the mains, as shown in Fig. 1. There, the three-
phase line-to-line voltage can vary from 177 to 528 V to enable
worldwide operation.

Additionally, a variation of the capacitor voltage vC0 of
the modulator is often desired for adapting the pulse voltage.
Therefore, a wide input and output voltage range of the rectifier
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Fig. 1. Pulse modulator supplied by an ac–dc power converter for unity power
factor and sinusoidal mains currents.

Fig. 2. Schematic of the considered buck–boost converter. There, the input
filter is not shown for the reason of simplicity.

is needed. These requirements can be fulfilled with a three-
phase buck–boost rectifier [4] (cf. Fig. 2), which operates either
in the buck or the boost mode, depending on the ratio of
the mains voltage to the capacitor bank voltage vC0. In case
of the assumed high pulse repetition rate of 500–1000 Hz,
the capacitor bank has to be recharged before the next pulse
is generated, which would demand, particularly during load
changes, a high dynamic voltage control. There, the voltage
should be regulated within ±1% of the reference voltage after
five pulses for a load step from zero to full load (25 kW). This,
for example, corresponds to a settling time of 5 ms for a pulse
repetition frequency of 1000 Hz.

To enable unity power factor operation of the three-phase
buck–boost rectifier, a constant inductor current iL0 is required
[4]–[6]. The pulse load in combination with a conventional
high dynamic voltage control, however, would result in peri-
odic peak currents in the buck–boost inductor and also in the
input/mains currents iN,i. These current distortions make unity
power factor operation of the converter impossible. Hence, a
control strategy for pulse load applications, which achieves
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Fig. 3. Photograph of the three-phase buck–boost rectifier with unity power
factor and a wide input and output range.

TABLE I
SPECIFICATIONS OF THE CONSIDERED BUCK–BOOST RECTIFIER

unity power factor as well as accurate regulation of the output
voltage, must be applied.

In Section II, the operating principle, including the basic
structure of the controller [4]–[6], is described. Conventional
control of the converter is then explained, and its draw-
backs, which result in distorted mains, are highlighted in
Section III. Following this, the proposed control method is
described, which enables approximately constant power con-
sumption with unity power factor. Finally, the control approach
is validated with measurement results of the input and output
current/voltage waveforms, which are presented in Section IV.

II. BUCK–BOOST RECTIFIER

As shown in Fig. 2, the input stage of the buck–boost
converter consists of six switches S1–S6 with series connected
diodes, which are connected to either a common negative or
positive voltage terminal. The following boost stage consists of
switch Sb, diode Db, and the inductance L0. The buck input
stage operates as power factor correction input stage, which
produces sinusoidal mains currents.

In case the output voltage vC0 is lower than the peak line-
to-line mains voltage, only the input stage is used, and the
converter operates in the buck mode.

For higher output voltages, the boost switch Sb must be
activated. The prototype, which has been used for validating
the control scheme, is shown in Fig. 3, and the specifications
are given in Table I.

In order to limit the current ripple ΔIL0, the converter is
operated in continuous conduction mode with an average value
IL0 of the inductor current iL0. At high switching frequencies
and with a large inductance L0, the ripple current is neglected
for simplification. Assuming a constant current iL0 = IL0, the

Fig. 4. Single-phase dc–dc equivalent circuit of the three-phase buck–boost
converter with cascaded current and voltage control structure.

duty cycles of the buck stage switches can directly be calculated
to achieve unity power factor operation, which is described in
detail in [4]–[6].

In order to obtain a constant output voltage, the duty cycles
of the switches must be adapted to the input voltage and the
load by a controller. For a symmetrical three-phase supply, the
control behavior of the three-phase buck–boost rectifier can be
modeled by a single-phase dc–dc converter with constant input
voltage [6], as shown in Fig. 4. There, also, the proposed and
implemented cascaded control structure of the converter with
an outer voltage control and an inner current control loop is
depicted.

For the control of the output voltage, the voltage vC0 is
measured and compared to the reference voltage vC0,ref . The
voltage difference, which is equal to the voltage error ve, is the
input of the voltage controller. This controller is implemented
as a PI-controller, and its output is the reference current iL0,ref

for the inner current control loop. The current error ie, which
is feed into the current control block, is obtained by subtracting
the measured inductance current iL0 from the current reference
iL0,ref . With the error signal ie, the duty cycles m and d of the
buck and boost stage are calculated in the current controller. In
order to achieve a higher dynamic response, an initial current
iinit can be added to the reference current iL0,ref .

III. CONTROL CONCEPT FOR PULSE LOAD APPLICATIONS

The control structure in Fig. 4 is usually designed for
continuous loads, where the output voltage is controlled to a
constant value. With a constant voltage and a constant load at
the output also, continuous energy consumption from the mains
and sinusoidal mains currents are obtained.

In case of a solid-state modulator the power consumption of
the load is discontinuous (only a few microseconds) and has
a high peak value (20 MW) compared to the average power
(20 kW). The energy for the pulses is usually provided from
capacitor banks (cf. C0 in Fig. 1) [1], [2]. Due to the large peak
power, the capacitor voltage vC0 drops (here: 1%/10 V) below
its reference values v0,ref during the pulse (cf. Fig. 5). Con-
sequently, the voltage error ve rapidly increases. Assuming a
controller with high dynamic, the “step like” increase of the er-
ror signal results in a rapidly increasing inductor current iL0 for
recharging the capacitor bank up to the reference value v0,ref .

As soon as the reference value is reached, the controller must
decrease the inductor current down to zero again, since the load
current is zero in between two consecutive pulses. This control
behavior could be observed after every pulse, what would result
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Fig. 5. Schematic waveforms of the capacitor voltage vC0 and the load
current iL0 with conventional control and pulse load. For example, the pulse
repetition frequency was selected to 1000 Hz.

in a highly distorted pulsating/discontinuous mains current with
a low power factor.

A. Control Based on Reference Signal Modulation

In order to achieve sinusoidal currents with high power
factor and a continuous power flow from the mains for pulse
load applications, a control principle with modulated reference
signal is derived in the following. There, two conditions must
be fulfilled for proper system operation.

1) For constant pulse amplitude, a constant capacitor voltage
vC0 at the beginning of the pulse is required.

2) To achieve a unity power factor, the converter modulation
described in [4], [5], and [6], a constant input power is re-
quired. There are two cases, which can be distinguished.
Case A) The ripple of the capacitor voltage ΔvC0 is

small and could be neglected. Consequently,
constant input power demands, due to the
approximately constant capacitor voltage vC0

and pout = vC0 · iL0, a constant inductor
current iL0.

Case B) The voltage ripple ΔvC0 is large. Therefore, the
inductor current iL0 is, due to pout = vC0 · iL0,
not constant any more. Consequently, the ripple
current must be calculated as time function of
the voltage vC0.

In both cases, the first condition only has to be satisfied at the
time steps n · trep when the pulses are generated. Therefore

v0(n · trep) = const. (1)

In case A), which is considered first, the second condition
must be always fulfilled, i.e.,

iL0 = const. (2)

For the pulse modulator with a capacitive storage bank C0, the
current iL0, respectively, the capacitor voltage vC0 has to satisfy

iL0(t) =
C0

(1 − d)
dvC0(t)

dt
= IL0 = const. (3)

Fig. 6. Schematic waveforms of the reference voltage vC0,ref , the pulse
voltage vpulse, and the inductor current iL0 for the proposed control method
with unity power factor for case A) (pulse repetition frequency of 1000 Hz).

Generally, the load current can be expressed as a function of
arbitrary complex load impedance ZLoad

iL0 = f(ZLoad). (4)

Integrating (3) for vC0(t) and assuming a constant inductor
current iL0 results in

vC0(t) =
(1 − d)

C0

t∫
0

IL0dt = vC0(0) +
(1 − d)IL0

C0
· t. (5)

Consequently, the capacitor voltage vC0 must change linearly in
order to achieve a constant current iL0 for unity power factor.
There, also, (1) has to be fulfilled.

Thus, a linear increasing reference voltage vC0,ref instead
of a constant reference voltage VC0 is used for the proposed
control method. The slew rate of the reference voltage vC0,ref

could be determined with the pulse repetition time trep and
the voltage drop ΔvC0 during the pulse since also (1) must be
satisfied.

The initial reference voltage vC0,ref at the end of the pulse is
set to the minimum actual capacitor voltage vdrop (= vC0(0))
resulting in

vC0,ref(t) = vdrop +
ΔvC0

trep
t = (VC0 − ΔvC0) +

Δv0

trep
· t,

for t =0, . . . , trep. (6)

The waveform of the reference voltage vC0,ref(t) to achieve
a constant current iL0 and a unity power factor for pulse loads
is shown in Fig. 6.

For case B), where the ripple voltage ΔvC0 is large, the
inductor current iL0(t) is no longer constant (Fig. 7). The
power consumption of the converter with capacitive load can
be written as

P (t) = vC0(t)iL0(t) = C0vC0(t)
dvC0(t)

dt
= const. (7)

which has to be constant.
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Fig. 7. Schematic waveforms of the reference voltage vC0,ref , the pulse
voltage vpulse, and the inductor current iL0 for the proposed control method
with unity power factor for case B) (pulse repetition frequency of 1000 Hz).

Solving (7) leads to the capacitor voltage

vC0(t) =

√
v2
0 − vC0(0)2

trep
t + v2

0 (8)

which is the reference voltage for large voltage ripples. Based
on the capacitor voltage, the current in the inductor is given by

iL0(t) = Pavg

(√
v2
0 − vC0(0)2

trep
t + v2

0

)−1

. (9)

B. Beginning of Pulse Sequence and Load Steps

The reference voltage in (6) is derived for steady state
conditions with a constant load and pulse repetition rate. At
the beginning of a pulse sequence, the storage capacitor C0

is charged up to VC0, and the buck–boost converter transfers
no power to the modulator. After the first pulse is detected,
the controller of the buck–boost converter resets the reference
voltage vC0,ref to vdrop and ramps vC0,ref linearly up to VC0 to
recharge the capacitor C0 with a constant current iL0. There,
the pulse repetition rate trep must be given by the control of the
modulator.

Since the current iL0 in the buck–boost inductor starts from
zero and has a limited slew rate, the current iL0 is too small so
that the capacitor voltage vC0(t) cannot follow the reference
value, and it does not reach its nominal value VC0 until the
second pulse (cf. Fig. 8). Therefore, the error voltage ve(t) is
increasing over time, and the capacitor voltage vC0(t) is below
the nominal value VC0 at the beginning of the second pulse.

After the second pulse, the voltage reference vC0,ref would
be reset again to the actual capacitor voltage vC0(2trep) as
described for steady state operation. This reset of vC0,ref also
would lead to a reset of the voltage error ve(2trep) = 0 and,
therefore, to a sawtooth-shaped waveform of ve(t) (cf. Fig. 8).
Because of the cascaded and highly dynamic control
(cf. Fig. 4), the voltage error ve would lead to a reference
current iref , which has a similar shape as the error voltage ve.
Consequently, the waveform of the current iL0 in the buck–

Fig. 8. Discontinuous inductance current iL0 at the beginning of a pulse
sequence and after a load change due to the reset of the reference voltage
vC0,ref after each pulse (pulse repetition frequency of 1000 Hz).

boost inductor L0 also would be sawtoothlike, and the mains
currents would be distorted at the beginning of a pulse
sequence.

In order to avoid the discontinuities of the error voltage ve

and the current iL0, the initial value of the reference voltage
vC0,ref after the pulse has to be reset in such a way that the
error voltage ve is continuous. Therefore, the error voltage ve

before and after the pulse must be equal

ve(n · trep) = ve(n · trep + tpulse). (10)

This can be achieved by adding the last error voltage ve

(cf. Fig. 10) before the pulse to the voltage vdrop. Therefore

v0,ref(n · trep) = vdrop + ve(n · trep − tpulse). (11)

Additionally, the slew rate of the voltage reference vC0,ref must
be adjusted because of the shifted initial voltage vC0,ref(0).
Therefore, (6) is modified to

v0,ref(t) = (vdrop + ve(ntrep − tpulse))

+
(Δv0 − ve(ntrep − tpulse))

trep
t (12)

which results in a continuous waveform of ve and iL0

(cf. Fig. 9). The described procedure also leads to a continuous
error signal ve and inductor current after a load step.

C. Disabling the Control During the Pulse

For correct calculation of the reference voltage vC0,ref ,
the converter is synchronized with the trigger signal of the
modulator. Additionally, the minimum capacitor voltage vdrop

has to be detected after receiving the synchronization signal.
Consequently, the reference voltage vC0,ref cannot be updated
during the pulse until the minimum capacitor voltage vdrop has
been detected and is, therefore, fixed at VC0 during the pulse, as
shown in Fig. 10.

Moreover, the voltage error ve rapidly increases during the
pulse, and the cascaded control would increase the inductor
current iL0. In order to prevent the controller from increasing
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Fig. 9. Schematic waveforms of the continuous error voltage ve and the
inductance current iL0 at the beginning of a pulse sequence or after a load
step (pulse repetition frequency of 1000 Hz).

Fig. 10. Spike in the inductance current iL0 due to the constant reference
voltage vC0,ref during the pulse. Disabling the control during the pulse
prevents from a current spike.

the current iL0 during the pulse, the voltage controller is dis-
abled, i.e., the current reference iL0,ref and, therefore, also the
current iL0 is kept constant, until the voltage reference vC0,ref

is updated again.

IV. MEASUREMENT RESULTS

In Fig. 11(a), the reference voltage vC0,ref and the capacitor
voltage vC0 for a sequence of 20 pulses with a pulse repetition
frequency of 720 Hz and an average output power of 10 kW
are shown. At the beginning of the pulse sequence, a voltage
error, due to the start-up behavior as described before, can be
noticed. The corresponding inductance current iL0 is depicted
in Fig. 11(b). As can be recognized, the current iL0 converges
to a constant value as soon as the voltage reaches the value V0.

In Fig. 12(a), the inductor current iL0 for the same pulse
sequence with a pulse repetition frequency of 440 Hz and an
average output power of 8 kW is shown. The corresponding
sinusoidal mains current iN and voltage vN of one phase are
shown in Fig. 12(b). The measured phase shift is caused by
the input filter capacitors and is reduced when the converter
operates at the nominal output power of 25 kW.

Fig. 11. (a) Reference voltage vC0,ref and capacitor voltage vC0 for a
pulse sequence with 20 pulses and 10-kW average power. (b) Corresponding
inductance current iL0.

Fig. 12. (a) Measured inductance current iL0 and (b) corresponding mains
current iN and voltage vN of one phase.

V. SUMMARY

In this paper, a control scheme for ac–dc converters with
pulsating loads, such as pulse modulators, is explained in
detail. This method modulates the reference signal such that
continuous power flows from the mains and sinusoidal mains
currents are drawn although the load power consumption is
discontinuous. To validate the theoretical concepts, the control,
which is basically independent of the converter topology, has
been successfully implemented with a three-phase buck–boost
converter and measurement results are presented in this paper.
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The concept has been derived for pulse modulators with
relatively small variations of the dc link voltage. In case of large
variations, modified reference values, as presented in this paper,
for the capacitor voltage must be applied in order to obtain
constant power consumption.
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