

Advanced 3- Φ SiC/GaN PWM Inverter Concepts for Future VSD Applications

J.W. Kolar, M. Guacci, M. Antivachis, D. Bortis

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

March 15th, 2020

ETH zürich

Outline

► Introduction

- SiC/GaN Application Challenges
 VSI with Output Filters
 Double-Bridge VSI Topologies

Coffee Break 4:00-4:30 p.m.

Buck+Boost VSI & CSI Topologies/Control
 Multi-Level & Quasi-Three-Level VSI

Ultra-Compact & Motor Integr. VSI

Conclusions

J. Azurza T. Guillod M. Haider F. Krismer D. Menzi S. Miric J. Miniböck P. Niklaus P. Papamanolis D. Zhang

1/107

Acknowledgement

3-Ф Variable Speed Drive Inverter Systems

State-of-the-Art Future Requirements

Variable Speed Drive (VSD) Systems

- Industry Automation / Robotics
- Material Machining / Processing Drilling, Milling, etc. Pumps / Fans / Compressors
- Transportation ■ etc., etc.

.... Everywhere !

• 60% of El. Energy Used in Industry Consumed by VSDs

VSD State-of-the-Art

- Mains Interface / 3-Ф PWM Inverter / Cable / Motor All Separated
 - → Large Installation Space
 / \$\$\$
 → Complicated / Expert Installation
 / \$\$\$
- Conducted EMI / Radiated EMI / Bearing Currents / Reflections on Long Motor Cables
 - \rightarrow Shielded Motor Cables / \$\$\$
 - \rightarrow Inverter Output Filters (Add. Vol.) / \$\$\$

High Performance @ High Level of Complexity / High Costs (!)

 \rightarrow "Sinus-Inverter" OR Integrated Inv.

Future Requirements (1)

- "Non-Expert" Install. / Low-Cost Motors
- Wide Applicability / Wide Voltage & Speed Range \rightarrow Matching of Supply & Motor Voltage
- High Availability

• Single-Stage Energy Conversion \rightarrow No Add. Converter for Voltage Adaption

Future Requirements (2)

- *Red. Inverter Volume / Weight*
- Lower Cooling Requirement High-Speed Machines

- \rightarrow Matching of Low Volume of High-Speed Motors \rightarrow Low Inverter Losses & Low HF Motor Losses
- \rightarrow High Output Frequencies

→ Main "Enablers" — SiC/GaN Power Semiconductors & Adv. Inverter Topologies

Enabling Technologies & Challenges

WBG Semiconductors Advanced Inverter Topologies —

Source: www.terencemauri.com

SiC/GaN

- Very Low On-State Resistance
- Very Low Switching Losses
- Small Chip Area

- \rightarrow Low (Partial Load) Conduction Losses
- → High Switching Frequencies
- \rightarrow Compact Realization

→ Challenges in Packaging / Thermal Management / Gate Drive / PCB Layout
 → Extremely High Sw. Speed (dv/dt) → Motor Insul. Stress / Reflections / Bearing Curr. / EMI

ETH zürich

Si vs. SiC

- Si-IGBT / Diode
 SiC-MOSFET
- \rightarrow Turn-Off Tail Current & Diode Reverse Recovery Current \rightarrow Massive Loss Reduction @ Part Load BUT Higher R_{th}

 \rightarrow Space Saving of >30% on Module Level (!)

7/107

Si vs. SiC

Si-IGBT $\rightarrow dv/dt = 2...6 kV/us$ (Inverter for Var. Speed Drives / IEC 61800-3) SiC-MOSFETs $\rightarrow dv/dt = 20...60 kV/us$

 \rightarrow Extremely High dv/dt \rightarrow Motor Insul. Stress / Reflections / Bearing Curr. / EMI

SiC System in Package

- Integrated SiC Switching Cell Bridge Leg + Intellig. Gate Drivers (Bootstrap HS Supply)
- **1200V / 35m\Omega, 31mm \times 29.5mm**

 \rightarrow Extremely High dv/dt \rightarrow Motor Insul. Stress / Reflections / Bearing Curr. / EMI

9/107

Idea: F.C. Lee

PD

PD Motor Insulation Destruction (1)

- High dv/dt
 Voltage Peaks
- → Uneven Wdg. Voltage Distribution / Reflections High Voltage Peaks
 → Local Insul. Breakdown e.g. in Air-Filled Voids = Partial Discharge (PD)
- → Grad. Destroys Insul. (Impinging Electrons, Ozone Chem. Attack)

Preventing PD → Ampl. of Voltage Peaks < PD Inception Voltage (PDIV)
 PDIV Parameters → Temp. / Humidity / Pressure / Insul. Thick. / Type / Wire Diameter etc.

ETH zürich

PD Motor Insulation Destruction (2)

- dv/dt-Limits Specified by Standards
- National Electrical Manufact. Association (NEMA, Motors Manufact. in USA)
- Intern. Electrotechn. Commission (IEC)

- Ensuring the Limits $\rightarrow dv/dt$ -Filtering OR Full-Sinewave Filtering
- Relevance of dv/dt-Limits, e.g. for Single-Tooth Windings Under Discussion

ETH zürich

12/107

Surge Voltage Reflections

- Short Rise Time of Inverter Output Voltage Impedance Mismatch of Cable & Motor \rightarrow Reflect. @ Motor Terminals / High Insul. Stress
- Long Motor Cable $l_c \ge \frac{1}{2} t_r v$

 \rightarrow dv/dt-Filtering OR Sinewave Filtering / Termination & Matching Networks etc.

Motor Bearing Currents

- Switching Frequency CM Inverter Output Voltage \rightarrow Motor Shaft Voltage Electrical Discharge in the Bearing ("EDM")

→ Cond. Grease / Ceram. Bearings / Shaft Grndg Brushes / dv/dt- OR Full-Sinewave Filters

SiC vs. Si Inverter EMI Spectrum

■ SiC Enables Higher dv/dt

- \rightarrow Factor 10
- SiC Enables Higher Switching Frequencies

 \rightarrow Factor 10

EMI Envelope Shifted to Higher Frequencies

Source/Idea: M. Schutten / GE

- → Higher Influence of Filter Component Parasitics and Couplings
- \rightarrow dv/dt-Filtering OR Full Sinewave Filtering, Shielded Motor Cables

DM Conducted EMI Pathway

CM Conducted EMI Pathway (Motor Side)

Source: J. Luszcz / WILEY 2018

● EMI Standards (Cond. & Rad.) → Shielded Motor Cables OR Full-Sinewave Filtering

15/107 -

3-Φ Pulse-Width Modulated Inverter Basics

Motor Current Control ——— DM/CM Equivalent Circuit ——— CM/DM Filtering

ETH zürich

Impression of Sinusoidal Motor Current

Pulse-Width Modulation of Inverter Output Voltage

16/107

Equivalent Circuit (1)

$$u_{a} = \overline{u}_{a} + u_{a^{-}}$$

$$u_{b} = \overline{u}_{b} + u_{b^{-}}$$

$$u_{c} = \overline{u}_{c} + u_{c^{-}}$$

$$u_{a} = \frac{u'_{a}}{u_{c}} + u_{0}$$

$$u_{b} = \frac{u'_{b}}{u_{b}} + u_{0}$$

$$u_{c} = \frac{u'_{c}}{u_{c}} + u_{0}$$

$$u_{0} = \frac{1}{3}(u_{a} + u_{b} + u_{c})$$

$$u_{a} = \overline{u}_{a} + u_{a^{-}}$$

$$u_{0} = \overline{u}_{0} + u_{0^{-}}$$

- Active Voltage Component U[']_a
 Inactive CM Zero Sequence Voltage U₀
 Low-Frequ. & Sw.-Frequ. Components

17/107 -

Equivalent Circuit (2)

ETH zürich

Equivalent Circuit (3)

- Sw.-Frequ. Active / DM Voltage
- Sw.-Frequ. Inactive / CM Voltage

$$u_{0} = u_{n0} \rightarrow u_{\bar{n}0} \equiv 0$$

$$u_{0} + u'_{a} = L \frac{di_{a}}{dt} + u_{a} + u_{0n}$$

$$u_{0} + u'_{b} = L \frac{di_{b}}{dt} + u_{b} + u_{0n}$$

$$u_{0} + u'_{c} = L \frac{di_{c}}{dt} + u_{c} + u_{0n}$$

$$3u_{0} + 0 = 0 + 0 + 3u_{0n}$$

DM / CM Filtering

DM & CM Equivalent Circuit

→ DM Inductor / CM Inductor / Phase Inductors

20/107

ETH zürich

Inverter Output Filters

dv/dt-Filters — Motor Cable Termination —— Staggered Switching Active CM-Filtering

Passive dv/dt-Filter & Cable Termination

• $f_c > f_s \rightarrow$ Reduction of High dv/dt of Inverter Output Voltage to 3...5kV/us

Termination of Cable with Characteristic Impedance & Damping

• Limited Applicability @ High Output / Sw. Frequencies (Losses) → Sinewave Filter

Active dv/dt-Filtering

- Active Control of the dv/dt-Filter Transient Behavior \rightarrow 2-Step Transition
- **Influence of Motor Current** \rightarrow Adaption of Sw. Scheme
- Connection to DC- Optional

- Ideally No Damping Resistors
- Increase of Sw. Losses \rightarrow Low Sw. Frequ. OR High Sw. Speed Semiconductors

Staggered/Resonant Switching

■ Staggered Sw. Parallel Bridge-Legs → Non-Resonant Multi-Step Transistion

Source: J. Ertl et al. PCIM Europe 2017

2-Step Switching / Resonant Transition (cf. Active dv/dt-Filter)

• Adv. for High Power / Output Curr. Syst. Employing Parallel Bridge-Legs & Local Comm. Cap.

ETH zürich

Comparison of dv/dt-Filtering Techniques (1)

- **Active Concepts**
- *Miller Capacitor Gate Curr. Control* 1.
- 2.

- **Passive Concepts**
- 1. LCR-Filter
- 2. Clamped LC-Filter

- Hybrid Concepts
- 1. LC-Filter
- 2. Multi-Step Switching

■ Output Voltage Waveforms - V_{DC} = 800V, P_{out} = 10kW

 $L = 6.2 \mu H$ C = 1.3 nF

24/107

ETH zürich

Comparison of dv/dt-Filtering Techniques (2)

- **Active Concepts**
- *Miller Capacitor Gate Curr. Control* 1.
- 2.

- **Passive Concepts**
- 1. LCR-Filter
- 2. Clamped LC-Filter

- Hybrid Concepts
- 1. LC-Filter
- 2. Multi-Step Switching

• Losses – V_{DC} = 800V, P_{out} = 10kW, f_{sw} = 20kHz, 1200V SiC-MOSFETs (16m Ω)

25/107

Active CM Voltage Filters (1)

Series Compensation of CM-Voltage & DM dv/dt-Filtering

Source: X. Chen et al., 2007

■ Aux. Bridge-Leg → Zero CM-Voltage for Active Inv. Sw. States & DM dv/dt-Filtering

Source: T.A. Lipo et al., 1999

• Residual CM-Volt. Due to CM-Transf. & Sw. Imperfections / Complexity & Missing Zero State

Active CM Voltage Filters (2)

Series Compensation of CM-Voltage & DM dv/dt-Filtering

Source: X. Chen et al., 2007

■ Aux. Bridge-Leg → Zero CM-Voltage for Active Inv. Sw. States & DM dv/dt-Filtering

Source: T.A. Lipo et al., 1999

• Residual CM-Volt. Due to CM-Transf. & Sw. Imperfections / Complexity & Missing Zero State

Inverter Systems with Full-Sinewave Output Filters

Filter Topology TCM Inverter Operation — GaN vs. Si VSD Performance — Output Filter Control Adv. Modulation

Source: **ATDK**

"SineFormer" Output Filter

- $f_c \ll f_s$ DM and CM (!) Output Filter Stage \rightarrow Sin. Output Voltage / No Sw. Frequ. CM Voltage No Shielded Motor Cables Required
- **Reduction of Mains-Side EMI**

- Large Weight & Volume → ≈2 kVA/dm³ (f_s= 4...8 kHz, f_o= 0...100 Hz)
 Filter Cap. Starpoint Connected to PE Not to DC- (Allows Retrofitting)

— Full-Sinewave Filtering — Full-Sinewave Filtering — Full-Sinewave Filtering — Full-Sinus

Full-Sinewave Filtering @ ZVS/TCM Operation

- **ZVS of Inverter Bridge-Legs** (No Use of the Intrinsic Diodes of Si MOSFETs) High Sw. Frequency & TCM \rightarrow Low Filter Inductor Volume

- Widely Varying Switching Frequency \rightarrow Voltage Headroom and/or Multiple Bridge-Legs
- Rel. High Current Stress on the Power Transistors

— Full-Sinewave Filtering — YASKAWA

ETH zürich

► 3-Φ 650V GaN Inverter System (1)

Source: YASKAWA

Transphorm 650V GaN HEMT/30V Si-MOSFET Cascode Switching Devices

• Measurement of Sw. Properties \rightarrow Turn-On/Off 10A/400V

- Factor 10 Lower On/Off Delay & Sw. Times Comp. to IGBTs
- Extremely Low Sw. Losses \rightarrow Inverter Sw. Frequency f_s = 100kHz

► 3-Φ 650V GaN Inverter System (2)

Source: YASKAWA

- Transphorm 650V Normally-On GaN HEMT/30V Si-MOSFET Cascode 6-in-1 Power Module
- Sinewave LC Output Filter Corner Frequency $f_c = 34$ kHz ($f_s = 100$ kHz)
- No Freewheeling Diodes

→ Very Low Filter Volume Compared to Si-IGBT Drive Systems (f_c = 0.8kHz @ f_s ≈ 3kHz)

► 3-Φ 650V GaN Inverter System (3)

Source: YASKAWA

- Transphorm 650V Normally-On GaN HEMT/30V Si-MOSFET Cascode 6-in-1 Power Module
- Sinewave LC Output Filter Corner Frequency f_c= 34kHz (f_s= 100kHz)
- No Freewheeling Diodes

→ Very Low Filter Volume Compared to Si-IGBT Drive Systems (f_c = 0.8kHz @ f_s ≈ 3kHz) → Lower Size of DC Input Capacitor (-75% vs. IGBT) & -8dB Audible Noise @ 6krpm

► 3-Φ 650V GaN Inverter System (4)

- Comparison of GaN Inverter with LC-Filter to Si-IGBT System (No Filter, f_s =15kHz) Measurement of Inverter Stage & Overall Drive Losses @ 60Hz

 \rightarrow 2% Higher Efficiency of GaN System Despite LC-Filter (Saving in Motor Losses) !

\blacktriangleright 3- \oplus 650V GaN Inverter System (5)

Source: YASKAWA

- Sigma-7F Servo Drive Motor Integration of DC/AC Stage (TO-220 GaN)
- **Distributed DC-Link System** Single AC/DC Converter / Smaller Cabinet
- 0.1 0.4kW / 270...324V Nominal DC-Link Voltage

ETH zürich _

Power Electronic Systems Laboratory

Sinewave Output & IEC/EN 55011 Class-A

Active-Damped Filter

 $L_d R_d$

- Low-Loss Active Damping of 1st Filter Stage Neg. Cap. Current Feedback
- 2kW / 400V DC-Link 3- \oplus 650V GaN Inverter (I_M =5A), $f_{out,max}$ = 500Hz
- Sw. Frequency $f_s = 100 kHz$

GaN Power Stage

Outer Diameter OD=35...65mm S=Single/D=Two Stacked Cores Solid Copper Wire AWG 13...20 Sendust, MPP, High-Flux, etc.

99 $f_{C_1}=7kHz$

3-Phase Motor

 $R_M L_M$

Inverter efficiency η 98.6 L_1 C_{DC} L_2 C_2 · OD51S 98.4 OD57D 3x OD63D OD57S OD36D р *f_{c.2}=20kHz* 2550 0 75100 125Power density in kW/dm³ \rightarrow Evaluation of Optimized Inductors — Soft Sat. Toroidal Iron Powder Cores

 \rightarrow L₁=200uH (0D57S) / C₁=2.5uF / L₂=25uH (0D20S) / C₂=2.5uF / L_d=33uH / R_d=5.6\Omega

p

150

ETH zürich

2-Stage Full-Sinewave Output Filter (2)

- Neg. Cap. Current Feedback Emulates "Loss-Free" Damping Resistor
- Passive Damping of 2nd Filter Stage PI-Type Current Control

 \rightarrow Transfer Functions & Step Response

ETH zürich

- Nonlinearity of MMLC Caps (X7R, 330nF/500V) \rightarrow Effect on i_c -Feedback
- Symmetric Connection of Filter Capacitors to +/-DC Reduces Nonlinearity
- 1st Resonance of Filter Components @ ≈5MHz

• Impedances of Filter Components & DC-Link Capacitor (C_{DC} =120uF)

2-Stage Full-Sinewave Output Filter (4)

- **Exp.** Verification 650V E-Mode GaN Systems Transistors (50m Ω)
- Sw. Frequency $f_s = 100 \text{ kHz}$, Efficiency $\approx 98\%$
- 200mm x 250mm

CH1 2.5 A CH2 2.5 A CH3 2.5 A CH4 100 V M 1 ms

- Stationary Motor Phase Curr. /Voltage @ 2.5Nm & f_{out}=250Hz
 Speed Increase from Standstill to n = 3000rpm in 60ms

2-Stage Full-Sinewave Output Filter (5)

- Modification of Output Filter Structure
- Elimination of Direct Cap. Coupling Between Output and Noisy (!) DC+ (Due to R_{DC}) For Opt. i_c -Feedback C_1 Realized Using \approx Linear Kemet KC-Link

Modified Filter \rightarrow Compliance to EMI Standard EN55011 Class-A

—— Full-Sinewave Filtering —— SIEMENS

\blacktriangleright 3- \oplus 900V GaN Inverter System (1)

Source: **SIEMENS**

- 900V Normally-Off GaN in TO-220 Package (165m Ω) 650V DC-Link Voltage (!) / Sinewave Output Filter Filter Corner Frequ. f_c Geom. Mean of f_s & 10 $f_{out,max}$ Sw. Frequency f_s = 128kHz

US

GaN HEMT

100V/div 2A/div

• Filter Corner Frequency $f_c = 8kHz$ (L=320uH, $\Delta i_{L,max} = 50\%$ @ 3kW)

ľ

 \sim

ETH zürich

► 3-Φ 900V GaN Inverter System (2)

- 900V Normally-Off GaN in TO-220 Package (165m Ω) 650V DC-Link Voltage (!) / Sinewave Output Filter Filter Corner Frequ. f_c Geom. Mean of f_s & 10 $f_{out,max}$ Sw. Frequency f_s = 128kHz

• GaN Inverter & Filter \rightarrow 1% Higher Efficiency Comp. to Si-IGBT System (f_s = 16kHz, No Filter)

Source: **SIEMENS**

Full-Sinewave Filtering ———

Multi-Objective Optimization

ETH zürich

Modulation Methods — CCM / TCM

Constant (CCM) vs. ZVS Variable (TCM) Sw. Frequency 7.5 kW 3- Φ 800V_{dc} PWM Inverter w/ LC Output Filter

 $f_{sw} = 46 \ kHz$

42/107

ETH zürich

Modulation Methods — CCM / B-TCM

- **Constant (CCM) vs. Bounded Var. Sw. Frequency (B-TCM)** 7.5 kW 3-\$\Phi 800V_{dc}\$ PWM Inverter w/ LC Output Filter

 $f_{sw} = 46 \ kHz$

43/107

Pareto-Optimization of CCM/TCM/B-TCM (1)

- 7.5 kW 3-Φ 800V_{dc} PWM Inverter w/ LC Output Filter
 Loss Breakdown @ Efficiency = 99.0%

Pareto-Optimization of CCM/TCM/B-TCM (2)

- 7.5 kW 3-Ф 800V_{dc} PWM Inverter w/ LC Output Filter Req. 2nd Filter Stage Attenuation

Remark — Advanced 3rd Harmonic Injection (1)

- DC- Ref. LC-Filter \rightarrow Max. Ind. Current Ripple @ d=0.5
- DCCMM Max. DC-Offset M_0 Shifting Phase Voltages Towards d=0 OR d=1 GTHM Max. 3^{rd} Harm. M_3 for Red. of Sw. Frequ. Harmonic Power

- GTHM → Add. Cap. Reactive Power Critical @ High f_{out}
 DCCMM → Unequal Stress on the Power Semiconductors Critical @ Low f_{out}

ETHzürich

Remark — Advanced 3rd Harmonic Injection (2)

- Massive Red. of Current Ripple @ Lower Modulation Index
- DCCMM Adv. for M = 0...0.5
 GTHM Adv. for M = 0.5...1.0

- GTHM → Add. Cap. Reactive Power Critical @ High f_{out}
 DCCMM → Unequal Stress on the Power Semiconductors Critical @ Low f_{out}

Buck+Boost Inverter

Z-Source Inverter etc. VSI & DC/DC Front-End Double-Bridge VSI Phase-Modular Buck+Boost Inverter CSI & DC/DC Front-End

"Outside-the-Box" Topologies

Z-Source Inverter → Shoot-Through States Utilized for Boost Function
 Higher Component Stress Eff. Limits Boost Operation to ≈120% U_{in}

Source: F.Z. Peng / 2003 J. Rabkowski / 2007

■ 3-Φ Back-End DC/AC Cuk-Converter

• Integration Typ. Results in Higher Comp. Stresses & Complexity / Lower Performance

Boost Converter DC-Link Voltage Adaption

- Inverter-Integr. DC/DC Boost Conv. → Higher DC-Link Voltage / Lower Motor Current
- Access to Motor Star-Point & Specific Motor Design Required
- No Add. Components

Source: J. Pforr et al. / 2009

Explicit Front-End DC/DC Boost Stage

 \rightarrow Analyze Coupling of the Control of Both Converter Stages \rightarrow "Synergetic Control"

"Synergetic Control" of Boost-Buck Inverter (1)

- DC/DC Boost Converter Used for 6-Pulse Shaping of DC-Link Voltage 2 (!) Inverter Phases Clamped (1/3 PWM) → Low Switching Losses / High Efficiency Conv. PWM Inverter / Clamped Boost-Stage Operation @ Low Speed

• Preferable for Low-Dynamics Drive Systems

"Synergetic Control" of Boost-Buck Inverter (2)

• Seamless Transition — Clamped Boost-Stage \rightarrow Temporary \rightarrow Full Boost-Stage Operation

"Synergetic Control" of Boost-Buck Inverter (3)

Experimental Verification

 \rightarrow Comparison to Conv. U_{DC}=const. Operation (PWM of 2/3 Phases or 3/3 Phases)

"Synergetic Control" of Boost-Buck Inverter (4)

- **Experimental Verification**

- Const. DC-Link Voltage & PWM of 3/3 Phases or 2/3 Phases - Synergetic Control = PWM of 1/3 Phases \rightarrow Substantial Loss Saving (!)

— Double-Bridge Inverter — — —

ETH zürich

54/107

Requires Open Winding Motor & Higher Number of Gate Drives

Heatsink

55/107

Double-Bridge Inverter (2)

2nd Bridge Switching with Output Frequ. → "Unfolder" Operation
 Avoids Volume and Losses of Boost Stage → Eff. Single-Stage Conversion

- Only Three Inductive Components
- Requires Open Winding Motor & Higher Number of Gate Drives

56/107

Double-Bridge Inverter (3)

2nd Bridge Switching with Output Frequ. → "Unfolder" Operation
 Avoids Volume and Losses of Boost Stage → Eff. Single-Stage Conversion

• 6-Pulse Operation of the 2^{nd} Bridge \rightarrow Motor CM Voltage (Bearing Currents)

• 6 Winding Terminals \rightarrow No Problem for Future Motor-Integrated Inverters

58/107

Double-Bridge Inverter (5)

Hardware Demonstrator

- Single Sw. Stage → No Boost-Stage Losses 6 Winding Terminals → No Problem for Future Motor-Integrated Inverters

Phase-Modular Topologies

Boost+Buck Modules Buck+Boost Modules

ETH zürich

General Remarks

- Usually DC-Link Voltage Midpoint Considered as AC Output Ref. Point
- Open Machine Starpoint \rightarrow Introduce CM Voltage Shift \rightarrow Neg. DC-Rail as Reference

Three bidirectional dc-dc converters, with their own modulators, driven by a set of three-phase sine waves, constitute three phase voltages around the differential load. 8. (a) Line-to-ground and (b) line-to-line voltages generated by the new three phase power amplifier. The dc component of the line-to-ground voltages automatically disappears in line-to-line voltages which are pure ac.

 \rightarrow Realization of 3- \oplus Inverter Using 3 x DC/DC Converter (Phase) Modules — S. Cuk/1982

Phase-Modular Boost+Buck / Buck+Boost Inverter

- **Wide Voltage Conv. Range** \rightarrow Battery or Fuel-Cell Supply & Adaption to Motor Voltage Continuous Output Voltage \rightarrow Explicit or Integr. LC Output Filter

 \rightarrow Preference for Low Number of Ind. Components \rightarrow Buck+Boost Concept – "Y-Inverter"

- 3-Ф Continuous Output / Low EMI !
- Buck+Boost Operation / Wide Input &/or Output Range Industrial Drive
 Standard Bridge-Legs / Building Blocks 1.2kV SiC MOSFE
 ZVS Operation / High Power Density

- 1.2kV SiC MOSFETs

Project Scope \rightarrow Hardware Demonstrator / Exp. Analysis / Comparative Evaluation

ETH zürich

Y-Inverter (1) Operating Behavior

► Y-Inverter (2)

Modulation Scheme

• Continuous Modulation \rightarrow Opt. DC-Offset of Output Phase Voltages for Low Mod. Index • Sin. Mod. w/o 3rd Harm. Inj. OR Phase Clamping (DPWM)

DPWM \rightarrow Min. DC-Link Voltage & Low Sw. Losses BUT Unsymm. Curr. Stress on Transistors

63/107

■ "Democratic Control" → Seamless Transition Between Buck & Boost Operation

► Y-Inverter Prototype (1)

- **Demonstrator Specifications**
- Wide DC Input Voltage Range \rightarrow 400...750V_{DC}
- Max. Input Current $\rightarrow \pm 15A$

- Max. Output Power
 - Output Frequency Range
- Output Voltage Ripple
- \rightarrow 6...11 kW
- → 0...500Hz
- \rightarrow 3.2V Peak @ Output of Add. LC-Filter

Y-Inverter Prototype (2)

- DC Voltage Range 400...750V_{DC}
- Max. Input Current ± 15A
- Output Voltage
Output Frequency0...230Vrms
O...500Hz(Phase)
- Sw. Frequency 100kHz
- 3x SiC (75mΩ)/1200V per Switch
- IMS Carrying Buck/Boost-Stage Transistors & Comm. Caps & 2nd Filter Ind.

Dimensions \rightarrow 160 x 110 x 42 mm³ (15kW/dm³, 245W/in³)

- Stationary Operation
- $U_{DC} = 400V$ $U_{AC} = 400V_{rms}$ (Motor Line-to-Line Voltage) $f_0 = 50Hz$
- $f_s^o = 100 \text{ kHz} / \text{DPWM}$

600 V **u**_{ab} 400 V 200 V 0 -200 V -400 V -600 V -800 V -10 ms -8 ms -6 ms -4 ms -2 ms 2 ms 4 ms 8 ms 10 ms 6 ms 4 V 3 V Δu_{ab} 2 V 1 V 0 🗳 -1 V -2 V -3 V -4 V -10 ms -8 ms -6 ms -4 ms -2 ms 0 2 ms 4 ms 10 ms

800 V

→ Line-to-Line Output Voltage Ripple < 3.2V

2.00 ms/div Stop 50 MS/s Edge

67/107 -

200V/div 1V/div

Dynamic Behavior V-f Control and Load-Step

EMI-Limits (VSD Product Standard)

IEC 61800-3

- \rightarrow Product Standard for Variable-Speed Motor Drives
- **EMI Emission Limits** \rightarrow Grid Interface (GI) and Power Interface (PI)
- Application

EMI-Filter Design for Unshielded Cables > 2m and Resid. Applications (Cond. & Rad.)

Conducted EMI-Filter Design (1)

• Calculation of Conducted EMI w/o EMI-Filter (@ f_{out} = 50Hz)

 \rightarrow >30dB Attenuation @ 200kHz (2f_s) Needed \rightarrow Additional Single-Stage EMI-Filter for Conducted EMI Compliance

ETH zürich

Conducted EMI-Filter Design (2)

• Separate Cond. DM & CM EMI-Filter on DC-Side & DC-Minus Ref. EMI-Filter on AC-Side

→ Low Add. EMI Filter Volume — 74cm³ for Each Filter (incl. Toroid. Rad. EMI Filter) → Total Power Density Reduces — $15kW/dm^3$ (740cm³) → $12kW/dm^3$ (890cm³)

Experimental Results - Conducted EMI

• Measurements of the Cond. EMI Noise on the AC-Side (QP, with 50Hz AC-LISN)

→ Small 80uH CM-Ind. Added on AC-Side - (3cm³ of Add. Volume = 0.5% of Converter Vol.)
 → Conducted EMI with Unshielded Motor Cable Fulfilled

Measurement of Radiated EMI-Noise (1)

- Equipment Under Test (EUT) Placed on Wooden Table with Specified Arrangement CM Absorption Devices (CMAD) Terminate All Cables on AC- & DC-Side (Total $l_{cable} \approx 1.5m$) Measurement of Radiated Noise with Antenna in 3m Distance

- Either Open-Area Test Site (OATS) or Special Semi-Anechoic Chamber (SAC) Needed
- Alternative Pre-Compliance Measurement Method

Power Electronic Systems Laboratory

Measurement of Radiated EMI-Noise (2)

- CM-Currents NOT Returning IN THE CABLE are Dominant Source of Radiation
- Relation Between Radiated Electric Field and CM-Currents (!)

Max. Allow. El. Field Strength of $40dBuV/m \rightarrow Max$. CM-Current of 3.5uA (11dBuA) Current Probe Impedance of 6.3 Ω (F-33-1) \rightarrow Max. Noise Volt. of 26dBuV @ Test Receiver

ETHzürich

Radiated EMI-Filter Design (1)

- High Frequ. CM-Filter Needed to Limit Radiated EMI, i.e. CM-Currents < 3.5uA for f > 30MHz
- Radiated EMI @ 30MHz Still Measureable with LISN, i.e. 3.5uA @ $50\Omega = 45$ dBµV

Assume Worst-Case CM-Noise of 74dBuV @ 30MHz \rightarrow Attenuation of -29dB Needed Considering Additional Attenuation Margin

 \rightarrow Cut-Off Freq. Below 3MHz

75/107

Radiated EMI-Filter Design (2)

- Single-Stage HF CM-Filter on DC-Side and AC-Side
- Plug-On CM-Cores (NiZn-Ferrites) \rightarrow Low Parasitics & Good HF-Att. up to 1GHz

→ Additional EMI Filter Volume Already Considered with Conducted EMI Filter → Total Power Density Slightly Reduces — $15kW/dm^3 \rightarrow 12kW/dm^3$

76/107

Experimental Results - Radiated EMI

- Measurement Setup Alternative Measurement Principle
- Y-Inverter Placed in Metallic Enclosure \rightarrow Emulate Housing, but UNshielded Cables (!)
 - \rightarrow According IEC 61800-3
 - \rightarrow Conducted CM-Current Instead of Radiation

 \rightarrow Already Noticeable Noise Floor

 \rightarrow HF-Emissions Well Below Equivalent EMI-Limit \rightarrow Next Step: Verification Using Antenna

78/107

Efficiency Measurements

• Dependency on Input Voltage & Output Power Level

→ Multi-Level Bridge-Leg Structure for Increase of Power Density @ Same Efficiency

Power Electronic Systems Laboratory

Alternative Topology (1)

- Phase Modules Based on 2-Switch Inverting Buck+Boost Topology
- Cont. Sinusoidal PWM OR Discontinuous PWM (DPWM)

- Single-Stage Energy Conversion
- Lower # of Switches Comp. to Y-Inv. / Higher Comp. Stresses → Low Power Applications

79/107

- Phase Modules Based on 2-Switch Inverting Buck+Boost Topology
 Freewheeling Diodes Preventing Oscillations @ DPWM Clamping

- Single-Stage Energy Conversion
- **Discontinuous PWM** \rightarrow Reduced Switching Losses

DC/DC Buck-Stage & Current Source Inverter

Monolithic Bidir. GaN Switches Synergetic Control

Current Source Inverter (CSI) Topologies

- Phase Modular Concept → Y-Inverter (Buck-Stage / Current Link / Boost-Stage)
 3-Φ Integrated Concept → Buck-Stage & Current DC-Link Inverter

 \rightarrow Low Number of Ind. Components & Utilization of Bidir. GaN Semicond. Technology

► 3-Φ Integrated Buck-Boost CSI (1)

- **Basic Topology Proposed in 1984 (Ph.D. Thesis of K.D.T. Ngo/CPES)** Bidir./Bipolar Switches \rightarrow Positive DC-Side Voltage for Both Directions of Power Flow

 \rightarrow Monol. GaN Switches \rightarrow Factor 4 Improvement in Chip Area Comp. to Discrete Realiz. \rightarrow Also Beneficial for Matrix Converter Topologies

82/107

► 3-Φ Integrated Buck-Boost CSI (2)

- Monolithic Bidir. Bipolar GaN Switches Featuring 2 Gates / Full Controllability
- **Buck-Stage for Impressing Const. DC Current / PWM of CSI for Output Voltage Control**

• Conventional Control of Inverter Stage \rightarrow Switching of All 3 Phase Legs (3/3)

► 3-Φ Integrated Buck-Boost CSI (3)

- Monolithic Bidir. Bipolar GaN Switches Featuring 2 Gates / Full Controllability
- Buck-Stage for Impressing Const. DC Current / PWM of CSI for Output Voltage Control

• Conventional Control of Inverter Stage \rightarrow Rel. High CSI-Stage Sw. Losses

► 3-Φ Integrated Buck-Boost CSI (4)

- "Synergetic" Control of Buck-Stage & CSI Stage 6-Pulse-Shaping of DC Current by Buck-Stage \rightarrow Allows Clamping of a CSI-Phase

Switching of Only 2 of 3 Phase Legs \rightarrow Significant Reduction of Sw. Losses

► 3-Φ Integrated Buck-Boost CSI (5)

- "Synergetic" Control of Buck-Stage & CSI Stage 6-Pulse-Shaping of DC Current by Buck-Stage \rightarrow Allows Clamping of a CSI-Phase

Switching of Only 2 of 3 Phase Legs \rightarrow Significant Red. of Sw. Losses (\approx -86% for R-Load)

► 3-Φ Integrated Buck-Boost CSI (6)

- "Synergetic" Control of Buck-Stage & CSI Stage 6-Pulse-Shaping of DC Current by Buck-Stage \rightarrow Allows Clamping of a CSI-Phase

Operation for 30° Phase Shift of AC-Side Voltage & Current

► 3-Φ Integrated Buck-Boost CSI (7)

- "Synergetic" Control of Buck-Stage & CSI Stage 6-Pulse-Shaping of DC Current by Buck-Stage \rightarrow Allows Clamping of a CSI-Phase

Operation for **90**°*Phase Shift* (\pm 90° — *Limit Case for Buck-Stage Current Control*)

► 3-Φ Integrated Buck-Boost CSI (8)

ETH zürich —

Future Research

- Advanced DC/AC Topologies incl. CM-Filtering
 Extension of 2/3-PWM to Bipolar DC-Link Voltage 3-Φ AC/AC Converter
 Multi-Objective Design & Comparative Evaluation

• **Partial Use of "Normally-On" Switches** for Freewheeling in Case of Auxiliary Power Loss

90/107

Hybrid Simplified NPC 3-Level Inverter (1)

- 3-Level Neutral Point Clamped (3L-NPC) Topology Proposed in 1979 (!) Simplified NPC Configuration \rightarrow Reduced Total # of Switches
- Fast/Ślow & Low/High Voltage Semiconductors ("Hybrid")

→ Realization of the Simplified Concept Using 650V GaN HEMTs & 1200V Si IGBTs

Hybrid Simplified NPC 3-Level Inverter (2)

- Application of Low Sw. & Cond. Loss 650V GaN Technology for 800V DC-Link
- Redundant Voltage Vectors Allow Control of Neutral Point Voltage
- Avg. Sw. Frequency of GaN HEMTs & Si IGBT \rightarrow Factor 6

Missing Sw. States Comp. to Full 3L-NPC → 7 Instead of 9 Phase Voltage Levels
 ■ Diff. Sw. Schemes → E.g. Commutation of 2L-Stage @ Full DC Voltage Can be Avoided

- Demonstrator Using Top-Cooled 650V SMD GaN Half-Bridges & 1200V Si-IGBT Modules
- Minimiz. of Commutation Loop by Close Placement of 2L-Inverter Stage & 3L-Source
- Vertical Commutation Loop of 3L Input Stage
- Piepenbreier (2018)

 for layer for layer 1 via for layer 2 bottom layer 2 bottom layer 1 chance in the distribution of the distributichedistribution of the distributichedistributichedistributiched
- 10kHz Sampling Frequ. → Avg. Sw. Frequencies: 20kHz (GaN) & 3.33kHz (IGBTs)

Hybrid Simplified NPC 3-Level Inverter (4) FAU FRENCHALEKANDER

- Piepenbreier (2018)

• Analysis for Different Modulation Depths — M=0.49 & M=0.92

Quasi-2L/3L — Flying Capacitor Inverter

Quasi-2L & Quasi-3L Inverters (1)

- Operation of N-Level Topology in 2-Level or 3-Level Mode
- Intermediate Voltage Levels Only Used During Sw. Transients
- Applicability to All Types of Multi-Level Converters

- Reduced Average $dv/dt \rightarrow$ Lower EMI / Lower Reflection Overvoltages
- Clear Partitioning of Overall Blocking Voltage & Small Flying Capacitors
 Low Voltage/Low R_{DS(on)}/Low \$ MOSFETs → High Efficiency / No Heatsinks / SMD Packages

95/107

Quasi-2L & Quasi-3L Inverters (2)

- Operation of 5L Bridge-Leg Topology in Quasi-3L Mode
- Intermediate Voltage Levels Only Used During Sw. Transients
- Applicability to All Types of Multi-Level Converters

- Reduced Average $dv/dt \rightarrow$ Lower EMI / Refection Overvoltages
- Clear Partitioning of Overall Blocking Voltage & Small Flying Capacitors
- Low Voltage/ $R_{DS(on)}$ /\$ MOSFETs \rightarrow High Efficiency / No Heatsinks / SMD Packages

Quasi-2L & Quasi-3L Inverters (2)

- Operation of 5L Bridge-Leg Topology in Quasi-3L Mode
- Intermediate Voltage Levels Only Used During Sw. Transients
- Applicability to All Types of Multi-Level Converters

- Reduced Average $dv/dt \rightarrow$ Lower EMI / Refection Overvoltages
- Clear Partitioning of Overall Blocking Voltage & Small Flying Capacitors
- Low Voltage/ $R_{DS(on)}$ /\$ MOSFETs \rightarrow High Efficiency / No Heatsinks / SMD Packages

ETH zürich

Quasi-2L & Quasi-3L Inverters (2)

- Operation of 5L Bridge-Leg Topology in Quasi-3L Mode
- Intermediate Voltage Levels Only Used During Sw. Transients
- Applicability to All Types of Multi-Level Converters

Operation @ 3.2kW

- Conv. Output Voltage
- Sw. Stage Output Voltage
- Flying Čap. (FC) Voltage
- Q-FC Volťagè (Úncntrl.)

- Output Current
 Conv. Side Current
- Reduced Average $dv/dt \rightarrow$ Lower EMI / Refection Overvoltages
- Clear Partitioning of Overall Blocking Voltage & Small Flying Capacitors
- Low Voltage/ $R_{DS(on)}$ /\$ MOSFETs \rightarrow High Efficiency / No Heatsinks / SMD Packages

Ultra-Compact —— Modular Flying-Capacitor —— Inverter

- **Rated Power** 9.7kW
- DC-Link Voltage 1kV Output Filter → Sinusoidal Output Voltage Phase-Leg Modularity /Scalability Interleaving of 2 Bridge-Legs 2-Side Forced-Air Cooling

• High Effective Sw. Frequ. (9x120 = 960kHz) → Very Small Output Filter Source: R. Pilawa et al. (2018)

ETH zürich

• High Effective Sw. Frequency (960kHz) \rightarrow Very Small Output Filter

Source: R. Pilawa et al. (2018)

650V GaN E-HEMT Technology f_{S,eff}= 4.8MHz f_{out} = 100kHz

Minimization of Filter Volume by Series & Parallel Interleaving & Extreme Sw. Frequency
 Handling of DC Output Requires Flying Capacitor Approach for Series Interleaving

 \rightarrow Target: Best Combination of Multiple Levels (M) & Parallel Branches (N)

Power Electronic Systems

Laboratory

755

102/107 -

@ C_{filt} = 90nF =const.

Integrated Filter GaN Half-Bridge Module (2)

- Analysis of Best Combination of Levels (M) & Parallel Branches (N)
- Application of GaN Semiconductor Technology
- U_{DC} =800V, P=10kW, $\Delta u_{out,pp}$ =1%, $f_{S,eff}$ =4.8MHz

 \rightarrow L_{filt}= 1.26uH Fixed in Order to Limit Branch Current Ripple for High N \rightarrow Selection of M=3 / N=3 Considering Efficiency / Filter Volume Trade-Off

Integrated Filter GaN Half-Bridge Module (3)

- Selection of M=3 / N=3 Considering Efficiency / Filter Volume Trade-Off
- N·L_{filt}=3.3uH of Branch Inductance / C_{filt} = 90nF
- 650V GaN E-HEMT Technology
- $f_{S,eff} = 4.8MHz$

• Design for Max. Output Frequency of $f_{out} = 100 \text{ kHz}$ (!) @ Full-Scale Voltage Swing

ETH zürich

Integrated Filter GaN Half-Bridge Module (4)

- Demonstrator System
- 650V GaN Power Semiconductors
 Volume of ≈180cm³ (incl. Control etc.)
 H₂O Cooling Through Baseplate

• Operation @ f_{out} =100kHz ($f_{S,eff}$ = 4.8MHz)

Motor-Integrated Modular Inverter

Power Electronic Systems Laboratory

Motor-Integrated Modular Inverter

→ Evaluate Machine Concept (PMSM vs. SRM etc.) / Wdg Topologies / Filter Requ. / etc.

Motor-Integrated Inverter Demonstrator

- Rated Power9kW @ 3700rpmDC-Link Voltage650V...720V Rated Power
- $3-\Phi$ Power Cells 5+1
- Outer Diameter 220mm

Source:

- Axial Stator Mount
- 200V GaN e-FETs
- *Low-Capacitance DC-Links*
- 45mm x 58mm / Cell

Main Challenge — Thermal Coupling/Decoupling of Motor & Inverter \rightarrow

Conclusions

- Future Need for "SWISS Knife"-Type Systems
- Wide Input / Output Voltage Range
- Continuous / Sinusoidal Output Voltage
- Electromagnetically "Quiet" No Shielded Cables
- On-Line Monitoring / Industry 4.0
- "Plug & Play" / Non-Expert Installation
- SMART Motors
- Enabling Technologies
- SiC / GaN

ETH zürich

- Adv. (Multi-Level) Topologies incl. PFC Rectifier
- "Synergetic" Control
- Monolithic Bidirectional GaN
- Intelligent Power Modules
- Integration of Switch / Gate Drive / Sensing / Monitoring
- Adv. Modeling / Simulation / Optimization
- System Level → Integration of Storage, Distributed DC Bus Systems, etc.

Source: UK Outdoor Store

Accurate Measurement of SiC/GaN Power Semiconductor Characteristics

On-State Voltage _____ Switching Losses

On-State Voltage Measurement (1)

Device / Load Current / Gate Voltage / Junction Temp. \rightarrow On State-Resistance $R_{DS(on)}$

• Decoupling High Blocking Voltage and (Very) Low On-State Voltage (~1V << BV_{DS})

On-State Voltage Measurement (2)

High Accuracy → Compensation of Decoupling Diode Forward Voltage
 Fast Dyn. Response → Valid Measurement 50ns After Turn-On

• Example – Dyn. $R_{DS(on)}$ of GaN HEMTs $\rightarrow 2x R_{DS(on)} @ 100kHz - 0.6BV_{DS}$

Hard- & Soft-Switching Losses

Hard-Switching

- High Sw. Speeds → Overvoltage & Ringing / Probe Intrusiveness / etc.
- Low ZVS Losses → High Accuracy Only for Calorimetric / Direct Loss Measurement

A3/5

ETH zürich

Switching Loss Measurement

■ Heat-Sink Temp.-Based Transient Calorim. Method → 15 min / Measurement

■ Case Temp.-Based Ultra-Fast Method → 15 sec / Measurement

A4/5

Example Measurement Results

■ 650V GaN (ZVS)

200V Si vs. GaN (Hard-Sw. & ZVS)

■ 1.2kV SiC (Hard-Sw.)

A5/5

3-Ф DM/CM —— Conducted EMI Separation ——

► 3-Φ DM/CM EMI Measurement & Separation

• Cap. Coupled Interface Circuit as Replacement for LISN (Var. Output Frequ.)

B1/1

Biographies of the Presenters

kolar@lem.ee.ethz.ch guacci@lem.ee.ethz.ch antivachis@lem.ee.ethz.ch bortis@lem.ee.ethz.ch

Johann W. Kolar is a Fellow of the IEEE and has received his PhD degree (summa cum laude) from the Vienna University of Technology, Austria. He is currently a Full Professor and the Head of the Power Electronic Systems Laboratory at the Swiss Federal Institute of Technology (ETH) Zurich. He has proposed numerous novel PWM converter topologies, modulation and control concepts and has supervised 70+ Ph.D. students. He has published 880+ scientific papers in international journals and conference proceedings and has filed 190+ patents. He received numerous awards, incl. 29 IEEE Transactions and Conference Prize Paper Awards, the 2016 IEEE William E. Newell Power Electronics Award, and 2 ETH Zurich Golden Owl Awards for excellence in teaching. He has initiated and/or is the founder of 4 ETH Spin-off companies. The focus of his current research is on ultra-compact / ultra-efficient SiC and GaN converter systems, solid-state transformers, advanced three-phase inverter concepts for variable speed motor drives, ultra-high speed and bearingless motors / actuators, and design automation in power electronics/mechatronics.

Mattia Guacci (STM'16) received the B.Sc. degree (summa cum laude) and the M.Sc. degree (summa cum laude) in Electronic Engineering from the University of Udine, Italy in July 2013 and in October 2015, respectively. In 2014 he was with Metasystems SpA in Reggio nell'Emilia, Italy working on on-board battery chargers for electric vehicles. In November 2015 he joined the Power Electronic Systems (PES) Laboratory of the Swiss Federal Institute of Technology (ETH) Zurich, Switzerland as a scientific assistant investigating compact, high-efficiency DC/AC power converters based on wide band-gap power semiconductors. In September 2016 he started his Ph.D. at PES focusing on advanced power electronics concepts for future aircraft and electric vehicle applications. Mattia Guacci has authored 10 scientific papers in refereed journals and conference proceedings and has filed 4 patents. He has received 1 IEEE Prize Paper Award.

Michael Antivachis (SM'16) received the B.Sc. degree in electrical engineering from the National Technical University of Athens (NTUA) in 2014 and the M.Sc. degree in energy science and technology from the Swiss Federal Institute of Technology (ETH) in 2016. Since June 2016 he is with the Power Electronic Systems Laboratory (PES) of ETH Zurich as a Ph.D. candidate. His research interests include high-speed motor drive systems for commercial applications, high power density inverter topologies employing wide-bandgap power devices and low EMI emission profile inverters.

Dominik Bortis received the M.Sc. and Ph.D. degree in electrical engineering from the Swiss Federal Institute of Technology (ETH) Zurich, Switzerland, in 2005 and 2008, respectively. In May 2005, he joined the Power Electronic Systems Laboratory (PES), ETH Zurich, as a Ph.D. student. From 2008 to 2011, he has been a Postdoctoral Fellow and from 2011 to 2016 a Research Associate with PES, co-supervising Ph.D. students and leading industry research projects. Since January 2016 he is heading the research group Advanced Mechatronic Systems at PES, which concentrates on ultra-high speed motors, magnetic bearings and bearingless drives, new linear-rotary actuator and machine concepts with integrated power electronics. Targeted applications include e.g. highly dynamic and precise positioning systems, medical and pharmaceutical systems, and future mobility concepts. Dr. Bortis has published 90+ scientific papers in international journals and conference proceedings. He has filed 32 patents and has received 6 IEEE Conference Prize Paper Awards.

Thank you!

