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State-of-the-Art
Future Requirements

3-Φ Variable Speed Drive 
Inverter Systems



► Variable Speed Drive (VSD) Systems  
■ Industry Automation / Robotics
■ Material Machining / Processing – Drilling, Milling, etc. 
■ Pumps / Fans / Compressors
■ Transportation
■ etc., etc.                                    …. Everywhere ! Source:

● 60% of  El. Energy Used in Industry Consumed by VSDs 
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► VSD State-of-the-Art

● High Performance @ High Level of Complexity / High Costs (!)  
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■ Mains Interface / 3-Φ PWM Inverter / Cable / Motor  — All Separated 
 Large Installation Space                  / $$$
 Complicated / Expert Installation   / $$$

Source: ABB

Source:  FLUKE

■ Conducted EMI / Radiated EMI / Bearing Currents / Reflections on Long Motor Cables
 Shielded Motor Cables                      / $$$
 Inverter Output Filters (Add. Vol.) / $$$



■ “Non-Expert” Install. / Low-Cost Motors  “Sinus-Inverter” OR  Integrated Inv.
■ Wide Applicability / Wide Voltage & Speed Range   Matching of Supply & Motor Voltage
■ High Availability

● Single-Stage Energy Conversion   No Add. Converter for Voltage Adaption
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Source: magazine.fev.com

► Future Requirements (1) 



► Future Requirements (2)  
■ Red. Inverter Volume / Weight        Matching of Low Volume of High-Speed Motors
■ Lower Cooling Requirement             Low Inverter Losses  &  Low HF Motor Losses
■ High-Speed Machines  High Output Frequencies

 Main “Enablers”  — SiC/GaN Power Semiconductors  & Adv. Inverter Topologies 
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Source:



WBG Semiconductors
Advanced Inverter Topologies

Enabling Technologies & Challenges

Source:  
www.terencemauri.com



► SiC/GaN

 Challenges in Packaging / Thermal Management / Gate Drive / PCB Layout
 Extremely High Sw. Speed (dv/dt)  Motor Insul. Stress / Reflections / Bearing Curr. / EMI  

■ Very Low On-State Resistance    Low (Partial Load) Conduction Losses 
■ Very Low Switching Losses   High Switching Frequencies
■ Small Chip Area       Compact Realization  
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► Si vs. SiC
■ Si-IGBT / Diode       Turn-Off Tail Current  &  Diode Reverse Recovery Current  
■ SiC-MOSFET    Massive Loss Reduction @ Part Load   BUT  Higher Rth

1200V  100A
Die Size:  25.6mm2

1200V  100A
Die Size: 98.8mm2 + 39.4mm2

 Space Saving of  >30% on Module Level (!)   

6x Si-IGBT 
6x Si-Diode 

Source:  CreeSource:  Infineon

Source:  
ATZ elektronik

6x SiC-MOSFET 
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4.0mm x 6.4mm
(37%)

9.5mm x 10.4mm 
2x 3.4mm x 5.8mm
(100%)
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► Si vs. SiC

 Extremely High dv/dt  Motor Insul. Stress / Reflections / Bearing Curr. / EMI  

■ Si-IGBT       dv/dt = 2…6 kV/us   (Inverter for Var. Speed Drives / IEC 61800-3) 
■ SiC-MOSFETs   dv/dt = 20…60 kV/us

Source:  M. Bakran / ECPE 2019



► SiC System in Package
■ Integrated SiC Switching Cell  — Bridge Leg + Intellig. Gate Drivers (Bootstrap HS Supply)
■ 1200V / 35mΩ, 31mm x 29.5mm

Source:  A. Bhalla / PSD 2019

Turn On: 85V/ns Turn Off: 140V/ns
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 Extremely High dv/dt  Motor Insul. Stress / Reflections / Bearing Curr. / EMI  



GaN/SiC
VSD Application 

Challenges

Idea: F.C. Lee



■ High dv/dt  Uneven Wdg. Voltage Distribution / Reflections — High Voltage Peaks 
■ Voltage Peaks     Local Insul. Breakdown e.g. in Air-Filled Voids = Partial Discharge (PD)
■ PD                       Grad. Destroys Insul. (Impinging Electrons, Ozone Chem. Attack)

● Preventing PD         Ampl. of Voltage Peaks  <  PD Inception Voltage (PDIV)
● PDIV Parameters    Temp. / Humidity / Pressure / Insul. Thick. / Type / Wire Diameter etc.

Source:  
Kaufhold et al. 

2000

Source:  Bakran / ECPE 2019

► PD Motor Insulation Destruction (1)

Inverter Motor Voltages
(a) Line-to-Line
(b) Line-to-Earth
(c) Across First Coil    
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10 kV/us

● Ensuring the Limits   dv/dt-Filtering  OR  Full-Sinewave Filtering  
● Relevance of dv/dt-Limits, e.g. for Single-Tooth Windings Under Discussion

■ dv/dt-Limits Specified by Standards

■ National Electrical Manufact. Association (NEMA, Motors Manufact. in USA)
■ Intern. Electrotechn. Commission (IEC)

IEC 60034-17 - Cage Induction Motors
IEC 60034-25 - 500V (A) & 690V (B)
IEC 60034-27 - PD Measurements
…

NEMA MG1 Part 31  - 400V & 600V

► PD Motor Insulation Destruction (2)
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► Surge Voltage Reflections
■ Short Rise Time of Inverter Output Voltage   
■ Impedance Mismatch of Cable & Motor   Reflect. @ Motor Terminals / High Insul. Stress
■ Long Motor Cable lc ≥ ½ tr v

Source:  Bakran / ECPE 2019

 dv/dt-Filtering  OR  Sinewave Filtering / Termination & Matching Networks etc. 
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

SiC



■ Switching Frequency CM Inverter Output Voltage  Motor Shaft Voltage
■ Electrical Discharge in the Bearing (“EDM”)

 Cond. Grease / Ceram. Bearings / Shaft Grndg Brushes / dv/dt- OR  Full-Sinewave Filters

Source: 
BOSCH

► Motor Bearing Currents

Source: www.est-aegis.com
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Source: 
Switchcraft



► SiC vs. Si Inverter EMI Spectrum 
■ SiC Enables Higher dv/dt  Factor 10
■ SiC Enables Higher Switching Frequencies     Factor 10   
■ EMI  Envelope Shifted to Higher Frequencies  

 Higher Influence of Filter Component Parasitics and Couplings
 dv/dt-Filtering  OR Full Sinewave Filtering, Shielded Motor Cables

fS= 10kHz    &    5 kV/us for (Si IGBT)
fS= 100kHz  &  50 kV/us for (SiC MOSFET)

VDC = 800V
DC/DC @ D= 50%

Source/Idea: M. Schutten / GE
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● EMI Standards (Cond. & Rad.)   Shielded Motor Cables  OR  Full-Sinewave Filtering   

► DM & CM Conducted / Radiated EMI  
■ DM Conducted EMI Pathway

Source:  J. Luszcz / WILEY 2018

■ CM Conducted EMI Pathway (Motor Side) Source:  J. Luszcz / WILEY 2018
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Motor Current Control
DM/CM Equivalent Circuit 

CM/DM Filtering

3-Φ Pulse-Width Modulated 
Inverter Basics



► Impression of Sinusoidal Motor Current

■ Pulse-Width Modulation of Inverter Output Voltage  
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● Difference of Inverter Voltage 
and Inner Motor Voltage
Defines Phase Current



► Equivalent Circuit (1)
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■ Active Voltage Component 
■ Inactive CM Zero Sequence Voltage 
■ Low-Frequ. & Sw.-Frequ. Components 




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► Equivalent Circuit (2)


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■ Sw.-Frequ. Active / DM Voltage  
■ Sw.-Frequ. Inactive / CM Voltage

► Equivalent Circuit (3)

 

   

   

   

   
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► DM / CM Filtering 

 DM Inductor / CM Inductor / Phase Inductors

■ DM & CM Equivalent Circuit
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■ Filter Inductor Types 



dv/dt-Filters
Motor Cable Termination

Staggered Switching
Active CM-Filtering

Inverter Output Filters



► Passive dv/dt-Filter & Cable Termination

● Limited Applicability @ High Output / Sw. Frequencies (Losses)  Sinewave Filter 

■ fC > fS Reduction of High dv/dt of Inverter Output Voltage to  3…5kV/us

■ Termination of Cable with Characteristic Impedance & Damping
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► Active dv/dt-Filtering 

● Ideally No Damping Resistors 
● Increase of Sw. Losses   Low Sw. Frequ.   OR    High Sw. Speed Semiconductors 

■ Active Control of the dv/dt-Filter Transient Behavior  2-Step Transition
■ Influence of Motor Current  Adaption of Sw. Scheme
■ Connection to DC- Optional

►

Source: PhD Thesis, J.P. Ström
Lappeenranta Univ., 2009 / VACON 
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► Staggered/Resonant Switching 

● Adv. for High Power / Output Curr. Syst. Employing Parallel Bridge-Legs & Local Comm. Cap.  

■ 2-Step Switching / Resonant Transition (cf. Active dv/dt-Filter)

■ Staggered Sw. Parallel Bridge-Legs  Non-Resonant Multi-Step Transistion

Source: J. Ertl et al.
PCIM Europe 2017

Source: J. Ertl et al.
PCIM Europe 2018
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►



■ Output Voltage Waveforms – VDC = 800V, Pout = 10kW 

► Comparison of dv/dt-Filtering Techniques (1) 
■ Active Concepts ■ Passive Concepts ■ Hybrid Concepts
1.  Miller Capacitor
2.  Gate Curr. Control

1.  LCR-Filter
2.  Clamped LC-Filter

1.  LC-Filter
2.  Multi-Step Switching

L = 6.2uH
C = 1.3nF

CM = 100pF L = 5.8uH
C = 1.8nF 
R = 28Ω
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■ Losses – VDC = 800V, Pout = 10kW, fsw = 20kHz, 1200V SiC-MOSFETs (16mΩ)

■ Active Concepts ■ Passive Concepts ■ Hybrid Concepts
1.  Miller Capacitor
2.  Gate Curr. Control

1.  LCR-Filter
2.  Clamped LC-Filter

1.  LC-Filter
2.  Multi-Step Switching

► Comparison of dv/dt-Filtering Techniques (2) 
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► Active CM Voltage Filters (1) 

● Residual CM-Volt. Due to CM-Transf. & Sw. Imperfections / Complexity & Missing Zero State 

■ Series Compensation of CM-Voltage  &  DM dv/dt-Filtering 

■ Aux. Bridge-Leg  Zero CM-Voltage for Active Inv. Sw. States  &  DM dv/dt-Filtering 

Source: X. Chen et al., 2007

Source: T.A. Lipo et al., 1999 
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► Active CM Voltage Filters (2)

Source: X. Chen et al., 2007

Source: T.A. Lipo et al., 1999 

■ Series Compensation of CM-Voltage  &  DM dv/dt-Filtering 

■ Aux. Bridge-Leg  Zero CM-Voltage for Active Inv. Sw. States  &  DM dv/dt-Filtering 
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● Residual CM-Volt. Due to CM-Transf. & Sw. Imperfections / Complexity & Missing Zero State 



Filter Topology
TCM Inverter Operation

GaN vs. Si VSD Performance 
Output Filter Control

Adv. Modulation

Inverter Systems with
Full-Sinewave Output Filters



► “SineFormer” Output Filter 

● Large Weight & Volume   ≈2 kVA/dm3 (fS= 4…8 kHz, fO= 0…100 Hz)
● Filter Cap. Starpoint Connected to PE Not to DC- (Allows Retrofitting) 

■ fC << fS DM and CM (!) Output Filter Stage  Sin. Output Voltage / No Sw. Frequ. CM Voltage
■ No Shielded Motor Cables Required
■ Reduction of Mains-Side EMI

Source:

▲
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Full-Sinewave Filtering 



► Full-Sinewave Filtering @ ZVS/TCM Operation 

● Widely Varying Switching Frequency  Voltage Headroom and/or Multiple Bridge-Legs
● Rel. High Current Stress on the Power Transistors

■ ZVS of Inverter Bridge-Legs (No Use of the Intrinsic Diodes of Si MOSFETs)
■ High Sw. Frequency & TCM  Low Filter Inductor Volume 

Source: Joensson

Source:  

1988 !

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Full-Sinewave Filtering 



● Factor 10 Lower On/Off Delay & Sw. Times Comp. to IGBTs
● Extremely Low Sw. Losses   Inverter Sw. Frequency  fS= 100kHz

■ Transphorm 650V GaN HEMT/30V Si-MOSFET Cascode Switching Devices 
■ Measurement of Sw. Properties   Turn-On/Off  10A/400V

► 3-Φ 650V GaN Inverter System (1) Source: 
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► 3-Φ 650V GaN Inverter System (2) 

 Very Low Filter Volume Compared to Si-IGBT Drive Systems (fC= 0.8kHz @ fS ≈ 3kHz)

Source: 

■ Transphorm 650V Normally-On GaN HEMT/30V Si-MOSFET Cascode 6-in-1 Power Module
■ Sinewave LC Output Filter — Corner Frequency  fC= 34kHz (fS= 100kHz)
■ No Freewheeling Diodes

600V/14A  
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s
s

Source: ► 3-Φ 650V GaN Inverter System (3) 

 Very Low Filter Volume Compared to Si-IGBT Drive Systems (fC= 0.8kHz @ fS ≈ 3kHz)
 Lower Size of  DC Input Capacitor (-75% vs. IGBT)  &  -8dB Audible Noise @ 6krpm

LF=220uH Iron 
Powder Core Filter 
Inductors, 
CF=0.1uF

fC ≈ 1/5 fS


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■ Transphorm 650V Normally-On GaN HEMT/30V Si-MOSFET Cascode 6-in-1 Power Module
■ Sinewave LC Output Filter — Corner Frequency  fC= 34kHz (fS= 100kHz)
■ No Freewheeling Diodes 

GaN
IGBT



 2% Higher Efficiency of GaN System Despite LC-Filter (Saving in Motor Losses) !  

■ Comparison of GaN Inverter with LC-Filter to Si-IGBT System (No Filter, fS=15kHz)
■ Measurement of Inverter Stage &  Overall Drive Losses @ 60Hz

► 3-Φ 650V GaN Inverter System (4) Source: 

80% 

98% 
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Cabinet

► 3-Φ 650V GaN Inverter System (5) Source: 

■ Sigma-7F Servo Drive — Motor Integration of DC/AC Stage (TO-220 GaN) 
■ Distributed DC-Link System — Single AC/DC Converter / Smaller Cabinet  
■ 0.1 – 0.4kW  / 270…324V Nominal DC-Link Voltage

Inverter
Stage

DC Power
Network

 Small Size (0.4 kW  @ 70 x 70x 170mm)
 Massive Saving in Cabling Effort / Simplified Installation  
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Full-Sinewave Filtering 



► 2-Stage Full-Sinewave Output Filter (1)  

 Evaluation of Optimized Inductors  — Soft Sat. Toroidal Iron Powder Cores
 L1=200uH (OD57S) / C1=2.5uF / L2=25uH (OD20S) / C2=2.5uF / Ld=33uH / Rd=5.6Ω

■ Sinewave Output &  IEC/EN 55011 Class-A 
■ Low-Loss Active Damping of 1st Filter Stage  — Neg. Cap. Current Feedback
■ 2kW / 400V DC-Link 3-Φ 650V GaN Inverter (IM=5A), fout,max = 500Hz 
■ Sw. Frequency  fS= 100kHz 

Outer Diameter OD=35…65mm
S=Single/D=Two Stacked Cores

Solid Copper Wire AWG 13…20
Sendust, MPP, High-Flux, etc.

H. Ertl et al.
(2018)

fC,1=7kHz
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fC,2=20kHz



► 2-Stage Full-Sinewave Output Filter (2)   

 Transfer Functions &  Step Response 

■ Neg. Cap. Current Feedback Emulates “Loss-Free” Damping Resistor
■ Passive Damping of 2nd Filter Stage 
■ PI-Type Current Control

Index „0“… No Active Damping
Try … Closed Loop with  PI-Controller 
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► 2-Stage Full-Sinewave Output Filter (3) 

● Impedances of Filter Components & DC-Link Capacitor (CDC =120uF)  

■ Nonlinearity of MMLC Caps (X7R, 330nF/500V)  Effect on iC -Feedback
■ Symmetric Connection of Filter Capacitors to +/-DC Reduces Nonlinearity 
■ 1st Resonance of Filter Components @ ≈5MHz
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► 2-Stage Full-Sinewave Output Filter (4) 

● Stationary Motor Phase Curr. /Voltage @ 2.5Nm & fout=250Hz
● Speed Increase from Standstill to n = 3000rpm in 60ms

■ Exp. Verification  — 650V E-Mode GaN Systems Transistors (50mΩ)
■ Sw. Frequency  fS= 100kHz, Efficiency  ≈98%
■ 200mm x 250mm

iC Measurement
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





► 2-Stage Full-Sinewave Output Filter (5) 

● Modified Filter  Compliance to EMI Standard EN55011 Class-A 

■ Modification of Output Filter Structure 
■ Elimination of Direct Cap. Coupling Between Output and Noisy (!) DC+ (Due to RDC) 
■ For Opt. iC -Feedback C1 Realized Using ≈Linear Kemet KC-Link 

Symmetric Filter

Modified Filter

modified

symmetric

!
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Full-Sinewave Filtering 



iL
uS

uS

iL

100V/div
2A/div

► 3-Φ 900V GaN Inverter System (1) Source: 

● Filter Corner Frequency  fC = 8kHz (L=320uH, ∆iL,max=50% @ 3kW)

■ 900V Normally-Off GaN in TO-220 Package (165mΩ)
■ 650V DC-Link Voltage (!) / Sinewave Output Filter
■ Filter Corner Frequ. fC — Geom. Mean of  fS & 10fout,max
■ Sw. Frequency  fS= 128kHz
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● GaN Inverter & Filter  1% Higher Efficiency Comp. to Si-IGBT System (fS= 16kHz, No Filter)

► 3-Φ 900V GaN Inverter System (2) Source: 

iL uout

iL

uout

■ 900V Normally-Off GaN in TO-220 Package (165mΩ)
■ 650V DC-Link Voltage (!) / Sinewave Output Filter
■ Filter Corner Frequ. fC — Geom. Mean of fS & 10fout,max
■ Sw. Frequency  fS= 128kHz
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+1%  



Multi-Objective 
Optimization

Full-Sinewave Filtering 



► Modulation Methods — CCM / TCM

► TCM

■ Constant (CCM) vs. ZVS Variable (TCM) Sw. Frequency
■ 7.5kW 3-Φ 800Vdc PWM Inverter w/ LC Output Filter

► CCM
fsw = 46 kHz

fsw,min = 64 kHz
fsw,max = 886 kHz
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► Modulation Methods — CCM / B-TCM

► B-TCM

■ Constant (CCM) vs. Bounded Var. Sw. Frequency (B-TCM)
■ 7.5kW 3-Φ 800Vdc PWM Inverter w/ LC Output Filter

► CCM
fsw = 46 kHz

fsw,min = 70 kHz
fsw,max = 400 kHz
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► Pareto-Optimization of  CCM/TCM/B-TCM (1)
■ 7.5kW 3-Φ 800Vdc PWM Inverter w/ LC Output Filter
■ Loss Breakdown @ Efficiency = 99.0%

■ +40% Power Density of B-TCM & TCM

CCMB-TCM

L1 = 170uHL1 = 20uH

44/107



► CCM

► Pareto-Optimization of  CCM/TCM/B-TCM (2)
■ 7.5kW 3-Φ 800Vdc PWM Inverter w/ LC Output Filter
■ Req. 2nd Filter Stage Attenuation 

► B-TCM
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■ DC- Ref. LC-Filter   Max. Ind. Current Ripple @ d=0.5
■ DCCMM — Max. DC-Offset M0 Shifting Phase Voltages Towards  d=0  OR  d=1
■ GTHM   — Max. 3rd Harm. M3 for Red. of Sw. Frequ. Harmonic Power     

■ DCCMM ■ GTHM
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● GTHM    Add. Cap. Reactive Power — Critical @ High fout
● DCCMM  Unequal Stress on the Power Semiconductors — Critical @ Low fout

Remark — Advanced 3rd Harmonic Injection (1)



■ Massive Red. of Current Ripple @ Lower Modulation Index
■ DCCMM — Adv.  for M = 0…0.5   
■ GTHM   — Adv. for  M = 0.5…1.0
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● GTHM    Add. Cap. Reactive Power — Critical @ High fout
● DCCMM  Unequal Stress on the Power Semiconductors — Critical @ Low fout

Remark — Advanced 3rd Harmonic Injection (2)



Z-Source Inverter etc.
VSI & DC/DC Front-End

Double-Bridge VSI
Phase-Modular Buck+Boost Inverter

CSI & DC/DC Front-End

Buck+Boost Inverter



● Integration Typ. Results in Higher Comp. Stresses & Complexity / Lower Performance

■ Z-Source Inverter  Shoot-Through States Utilized for Boost Function
■ Higher Component Stress Eff. Limits Boost Operation to ≈120% Uin

► “Outside-the-Box” Topologies

■ 3-Φ Back-End DC/AC Cuk-Converter 

Source: F.Z. Peng / 2003
J. Rabkowski / 2007 

Source: T.A. Lipo 
et al. /2002  &
K.D.T Ngo / 1984
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 Analyze Coupling of the Control of Both Converter Stages  “Synergetic Control”

► Boost Converter DC-Link Voltage Adaption

Source: www.rick-gerber.com

■ Inverter-Integr. DC/DC Boost Conv.  Higher DC-Link Voltage / Lower Motor Current
■ Access to Motor Star-Point  &  Specific Motor Design Required
■ No Add. Components 

■ Explicit Front-End DC/DC Boost Stage 

Source: J. Pforr et al. / 2009 

Source: R.W. Erickson et al. / 1986 
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● Preferable for Low-Dynamics Drive Systems 





■ DC/DC Boost Converter Used for 6-Pulse Shaping of DC-Link Voltage
■ 2 (!) Inverter Phases Clamped (1/3 PWM)  Low Switching Losses / High Efficiency
■ Conv. PWM Inverter / Clamped Boost-Stage Operation @ Low Speed

► “Synergetic Control” of Boost-Buck Inverter (1)
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■ Control Structure &  Simulation Results 

► “Synergetic Control” of Boost-Buck Inverter (2) 

● Seamless Transition — Clamped Boost-Stage  Temporary  Full Boost-Stage Operation 
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 Comparison to Conv. UDC=const. Operation (PWM of 2/3 Phases or 3/3 Phases)  

■ Experimental  Verification 

► “Synergetic Control” of Boost-Buck Inverter (3)

Ub = 40…60V
P   = 500W
fS = 300kHz (200V EPC GaN, 2 per Switch)
fO = 5kHz (max.)
M   = 0…2 (for Ub=40V)

185cm3 / 11.3in3
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■ Experimental  Verification

► “Synergetic Control” of Boost-Buck Inverter (4)

— Const. DC-Link Voltage & PWM of 3/3 Phases or 2/3 Phases
— Synergetic Control  =  PWM of 1/3 Phases  Substantial Loss Saving (!)

3/3

1/3

2/3
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Double-Bridge Inverter



► Double-Bridge Inverter (1) 

● Requires Open Winding Motor  & Higher Number of Gate Drives 

■ Alternative to Front-End DC/DC Converter 
■ Effectively Doubles the DC-Link Voltage (!)

185cm3

(11.3in3)

187cm3

(11.5in3)
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► Double-Bridge Inverter (2) 
■ 2nd Bridge Switching with Output Frequ.   “Unfolder” Operation
■ Avoids Volume and Losses of Boost Stage  Eff. Single-Stage Conversion

185cm3

(11.3in3)

● Only Three Inductive Components
● Requires Open Winding Motor  & Higher Number of Gate Drives 

85cm3

(5.2in3)
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► Double-Bridge Inverter (3) 
■ 2nd Bridge Switching with Output Frequ.   “Unfolder” Operation
■ Avoids Volume and Losses of Boost Stage  Eff. Single-Stage Conversion

● 6-Pulse Operation of the 2nd Bridge  Motor CM Voltage (Bearing Currents)
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■ Hardware Demonstrator

Voltages Phase a
Motor Phase Currents

► Double-Bridge Inverter (4) 

Ub = 40V
P   = 1.0kW
fS = 350kHz (200V EPC GaN, 2 per Switch)
fO = 5kHz

● 6 Winding Terminals   No Problem for Future Motor-Integrated Inverters  
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190 W/in3

■ Hardware Demonstrator

► Double-Bridge Inverter (5) 

Specification

● Single Sw. Stage         No Boost-Stage Losses 
● 6 Winding Terminals   No Problem for Future Motor-Integrated Inverters

Ub = 40V
P   = 1.0kW
fS = 350kHz (200V EPC GaN, 2 per Switch)
fO = 5kHz
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Boost+Buck Modules
Buck+Boost Modules

Phase-Modular Topologies 



 Realization of 3-Φ Inverter Using 3 x DC/DC Converter (Phase) Modules ─ S. Cuk/1982

■ Usually DC-Link Voltage Midpoint Considered as AC Output Ref. Point 
■ Open Machine Starpoint  Introduce CM Voltage Shift  Neg. DC-Rail as Reference

► General Remarks

►

Source: Cuk (1982)

►
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■ Wide Voltage Conv. Range   Battery or Fuel-Cell Supply  & Adaption to Motor Voltage
■ Continuous Output Voltage  Explicit or Integr. LC Output Filter

 Preference for Low Number of Ind. Components  Buck+Boost Concept ─ “Y-Inverter”

► Phase-Modular Boost+Buck / Buck+Boost Inverter 

60/107



■ Project Scope  Hardware Demonstrator  /  Exp. Analysis  /  Comparative Evaluation

● 3-Φ Continuous Output / Low EMI !                   - No Shielded Cables / No Insul. Stress
● Buck+Boost Operation / Wide Input  &/or Output Range  - Industrial Drive
● Standard Bridge-Legs / Building Blocks                            - 1.2kV SiC MOSFETs
● ZVS Operation / High Power Density

Y-Inverter
Lighthouse
Project


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● Operating Behavior
► Y-Inverter (1)

■ uam < Uin  Buck Operation
■ uam > Uin  Boost Operation 
■ Output Voltage Generation Referenced to DC Minus
■ Switch-Mode Operation of Only Buck OR Boost Stage 
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■ DPWM  Min. DC-Link Voltage & Low Sw. Losses BUT  Unsymm. Curr. Stress on Transistors

● Continuous Modulation     Opt. DC-Offset of Output Phase Voltages for Low Mod. Index
● Sin. Mod. w/o 3rd Harm. Inj. OR   Phase Clamping (DPWM)  

● Modulation Scheme
► Y-Inverter (2)
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■ “Democratic Control” Seamless Transition Between Buck & Boost Operation

● Control Structure
► Y-Inverter (3)
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■ Max. Output Power   6…11 kW
■ Output Frequency Range    0…500Hz
■ Output Voltage Ripple            3.2V Peak @ Output of Add. LC-Filter 

● Wide DC Input Voltage Range   400…750VDC
● Max. Input Current              ± 15A

● Demonstrator Specifications

► Y-Inverter Prototype (1)
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■ Dimensions   160 x 110 x 42 mm3 (15kW/dm3, 245W/in3)

Control 
Board

► Y-Inverter Prototype (2)

Main 
Inductors

3Φ Output

● DC Voltage Range  400…750VDC
● Max. Input Current ± 15A
● Output Voltage        0…230Vrms (Phase)
● Output Frequency   0…500Hz
● Sw. Frequency         100kHz
● 3x SiC (75mΩ)/1200V per Switch 
● IMS Carrying Buck/Boost-Stage Transistors & Comm. Caps & 2nd Filter Ind.  

Output Filter
Inductors

DC Input
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 Line-to-Line Output Voltage Ripple < 3.2V   

► Measurement Results (1)

100V/div
10A/div

● Stationary Operation

uDC

iL

uS,a

200V/div
1V/div

uab

∆uab

UDC=   400V
UAC=   400Vrms (Motor Line-to-Line Voltage) 
fO =   50Hz
fS =   100kHz / DPWM
P  =   6.5kW
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100V/div
100V/div

6A/div
6A/div

■ Dynamic Behavior V-f Control and Load-Step

100V/div
uDC

UDC=   400V
UAC=   400Vrms (Motor Line-to-Line Voltage) 
fO =   50Hz
fS =   100kHz / DPWM
P  =   6.5kW

ucua ub

uDC

ia

iLa

ua
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► Measurement Results (2)
● Transient Operation



► EMI-Limits (VSD Product Standard)

■ EMI-Filter Design for Unshielded Cables > 2m and Resid. Applications (Cond. & Rad.) 

● IEC 61800-3  Product Standard for Variable-Speed Motor Drives
● EMI Emission Limits    Grid Interface (GI) and Power Interface (PI)
● Application  Residential (C1) or Industrial (C2)
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► Conducted EMI-Filter Design (1)

 >30dB Attenuation @ 200kHz (2fs) Needed
 Additional Single-Stage EMI-Filter for Conducted EMI Compliance

● Calculation of Conducted EMI w/o EMI-Filter (@ fout = 50Hz)

70/107



● Separate Cond. DM & CM EMI-Filter on DC-Side & DC-Minus Ref. EMI-Filter on AC-Side

Lf2

Cf2 (on the back)
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 Low Add. EMI Filter Volume — 74cm3 for Each Filter (incl. Toroid. Rad. EMI Filter) 
 Total Power Density Reduces  — 15kW/dm3 (740cm3)  12kW/dm3 (890cm3) 

► Conducted EMI-Filter Design (2)

LCM LDM CDM = C0



► Experimental Results - Conducted EMI
● Measurements of the Cond. EMI Noise on the AC-Side (QP, with 50Hz AC-LISN) 
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 Small 80uH CM-Ind. Added on AC-Side - (3cm3 of Add. Volume = 0.5% of Converter Vol.)
 Conducted EMI with Unshielded Motor Cable Fulfilled



► Measurement of Radiated EMI-Noise (1)

■ Either Open-Area Test Site (OATS) or Special Semi-Anechoic Chamber (SAC) Needed
■ Alternative Pre-Compliance Measurement Method

● Equipment Under Test (EUT) Placed on Wooden Table with Specified Arrangement
● CM Absorption Devices (CMAD) Terminate All Cables on AC- & DC-Side (Total lcable ≈ 1.5m)
● Measurement of Radiated Noise with Antenna in 3m Distance 

[IEC 61800-3]
[Schwarzbeck]
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[Electromagnetic Compatibility Engineering, H. Ott]

[Fischer FCC F-33-1]
up to 250MHz
Znom = 6.3Ω

► Measurement of Radiated EMI-Noise (2)
● CM-Currents NOT Returning IN THE CABLE are Dominant Source of Radiation
● Relation Between Radiated Electric Field and CM-Currents (!)

■ Max. Allow. El. Field Strength of 40dBuV/m  Max. CM-Current of 3.5uA (11dBuA)
■ Current Probe Impedance of 6.3Ω (F-33-1)  Max. Noise Volt. of 26dBuV @ Test Receiver 
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► Radiated EMI-Filter Design (1)

■ Assume Worst-Case CM-Noise of 74dBuV @ 30MHz  Attenuation of -29dB Needed
■ Considering Additional Attenuation Margin  Cut-Off Freq. Below 3MHz

● High Frequ. CM-Filter Needed to Limit Radiated EMI, i.e. CM-Currents < 3.5uA for f > 30MHz
● Radiated EMI @ 30MHz Still Measureable with LISN, i.e. 3.5uA @ 50Ω = 45dBµV
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► Radiated EMI-Filter Design (2)

LHF LHF

Cf2 (on the back)CY2,DC (on the back)

 Additional EMI Filter Volume Already Considered with Conducted EMI Filter
 Total Power Density Slightly Reduces — 15kW/dm3

 12kW/dm3

● Single-Stage HF CM-Filter on DC-Side and AC-Side 
● Plug-On CM-Cores (NiZn-Ferrites)  Low Parasitics & Good HF-Att. up to 1GHz
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► Experimental Results - Radiated EMI
● Y-Inverter Placed in Metallic Enclosure  Emulate Housing, but UNshielded Cables (!)
● Measurement Setup  According IEC 61800-3
● Alternative Measurement Principle  Conducted CM-Current Instead of Radiation

 Already Noticeable Noise Floor
 HF-Emissions Well Below Equivalent EMI-Limit  Next Step: Verification Using Antenna
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 Multi-Level Bridge-Leg Structure for Increase of Power Density @ Same Efficiency 

► Efficiency Measurements
● Dependency on Input Voltage  &  Output Power Level   

UDC=   400V / 600V
UAC=   230Vrms (Motor Phase-Voltage)
fS =   100kHz
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■ Single-Stage Energy Conversion
■ Lower # of Switches Comp. to Y-Inv. / Higher Comp. Stresses  Low Power Applications

● Phase Modules Based on 2-Switch Inverting Buck+Boost Topology
● Cont. Sinusoidal PWM OR  Discontinuous PWM (DPWM)

► Alternative Topology (1)
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■ Single-Stage Energy Conversion
■ Discontinuous PWM Reduced Switching Losses

► Alternative Topology (2)
● Phase Modules Based on 2-Switch Inverting Buck+Boost Topology
● Freewheeling Diodes Preventing Oscillations @ DPWM Clamping 
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Monolithic Bidir. GaN Switches
Synergetic Control 

DC/DC Buck-Stage &
Current Source Inverter



► Current Source Inverter (CSI) Topologies
■ Phase Modular Concept   Y-Inverter (Buck-Stage / Current Link / Boost-Stage)  
■ 3-Φ Integrated Concept  Buck-Stage & Current DC-Link Inverter

 Low Number of Ind. Components   &   Utilization of  Bidir. GaN Semicond. Technology 




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■ Basic Topology Proposed in 1984 (Ph.D. Thesis of K.D.T. Ngo/CPES) 
■ Bidir./Bipolar Switches  Positive DC-Side Voltage for Both Directions of Power Flow

 Monol. GaN Switches  Factor 4 Improvement in Chip Area Comp. to Discrete Realiz.
 Also Beneficial for Matrix Converter Topologies 

► 3-Φ Integrated Buck-Boost CSI  (1)

Source:
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● Conventional Control of  Inverter Stage   Switching of All 3 Phase Legs (3/3) 

■ Monolithic Bidir. Bipolar GaN Switches Featuring 2 Gates / Full Controllability  
■ Buck-Stage for Impressing Const. DC Current / PWM of CSI for Output Voltage Control

► 3-Φ Integrated Buck-Boost CSI  (2)
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► 3-Φ Integrated Buck-Boost CSI  (3)





● Conventional Control of  Inverter Stage   Rel. High CSI-Stage Sw. Losses 

■ Monolithic Bidir. Bipolar GaN Switches Featuring 2 Gates / Full Controllability  
■ Buck-Stage for Impressing Const. DC Current / PWM of CSI for Output Voltage Control
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■ “Synergetic” Control of Buck-Stage & CSI Stage 
■ 6-Pulse-Shaping of DC Current by Buck-Stage   Allows Clamping of a CSI-Phase 

► 3-Φ Integrated Buck-Boost CSI  (4)


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● Switching of Only 2 of 3 Phase Legs  Significant Reduction of Sw. Losses



► 3-Φ Integrated Buck-Boost CSI  (5)





● Switching of Only 2 of 3 Phase Legs  Significant Red. of Sw. Losses (≈ -86% for R-Load) 

■ “Synergetic” Control of Buck-Stage & CSI Stage 
■ 6-Pulse-Shaping of DC Current by Buck-Stage   Allows Clamping of a CSI-Phase 
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● Operation for 30°Phase Shift of AC-Side Voltage & Current
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► 3-Φ Integrated Buck-Boost CSI  (6)



■ “Synergetic” Control of Buck-Stage & CSI Stage 
■ 6-Pulse-Shaping of DC Current by Buck-Stage   Allows Clamping of a CSI-Phase 
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► 3-Φ Integrated Buck-Boost CSI  (7)



■ “Synergetic” Control of Buck-Stage & CSI Stage 
■ 6-Pulse-Shaping of DC Current by Buck-Stage   Allows Clamping of a CSI-Phase 

● Operation for 90°Phase Shift (±90° — Limit Case for Buck-Stage Current Control) 



3/3 Mod. (iDC=const.) 
2/3 Mod. (6-Pulse iDC) 
Partial 2/3 Mod. 
Full-Boost Operation 

● Seamless Transition from
Buck to Boost Operation

■ Implementation of “Synergetic Control”
■ DC-Link Ref. Curr. = Max. Value of AC-Side Currents 
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► 3-Φ Integrated Buck-Boost CSI  (8)



► Future Research 

● Partial Use of “Normally-On” Switches for Freewheeling in Case of Auxiliary Power Loss  

■ Advanced DC/AC Topologies  incl. CM-Filtering  
■ Extension of  2/3-PWM to Bipolar DC-Link Voltage 3-Φ AC/AC Converter
■ Multi-Objective Design & Comparative Evaluation
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Simplified NPC 3-Level Inverter
Quasi-2-Level FCC

Further Concepts



► Hybrid Simplified NPC 3-Level Inverter (1) 

 Realization of the Simplified Concept Using 650V GaN HEMTs & 1200V Si IGBTs

■ 3-Level Neutral Point Clamped (3L-NPC) Topology Proposed in 1979 (!)
■ Simplified NPC Configuration  Reduced Total # of Switches   
■ Fast/Slow  &  Low/High Voltage Semiconductors (“Hybrid”)

- Baker (1979)

+E,0,-E
+E,ed1,ed2,0
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- Rojas (1993)



Missing Sw. States Comp. to Full 3L-NPC  7 Instead of  9 Phase Voltage Levels
■ ■ ■ Diff. Sw. Schemes  E.g. Commutation of 2L-Stage @ Full DC Voltage Can be Avoided   

■ Application of Low Sw. & Cond. Loss 650V GaN Technology for 800V DC-Link
■ Redundant Voltage Vectors Allow Control of Neutral Point Voltage
■ Avg. Sw. Frequency of GaN HEMTs & Si IGBT   Factor 6

- Piepenbreier (2018)

► Hybrid Simplified NPC 3-Level Inverter (2)
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● 10kHz Sampling Frequ.  Avg. Sw. Frequencies: 20kHz (GaN) & 3.33kHz (IGBTs)

■ Demonstrator Using Top-Cooled 650V SMD  GaN Half-Bridges  & 1200V Si-IGBT Modules
■ Minimiz. of Commutation Loop by Close Placement of 2L-Inverter Stage & 3L-Source
■ Vertical Commutation Loop of 3L Input Stage 

- Piepenbreier (2018)

► Hybrid Simplified NPC 3-Level Inverter (3) 
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● Analysis for Different Modulation Depths  — M=0.49  & M=0.92

■ Experimental Results    Phase Currents & Phase Voltages 

► Hybrid Simplified NPC 3-Level Inverter (4) 
- Piepenbreier (2018)
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Quasi-2L/3L
Flying Capacitor Inverter



► Quasi-2L & Quasi-3L Inverters (1)
■ Operation of N-Level Topology in 2-Level or 3-Level Mode 
■ Intermediate Voltage Levels Only Used During Sw. Transients  
■ Applicability to All Types of Multi-Level Converters     

Q3L  Q2L  

- Schweizer (2017)

● Reduced Average dv/dt Lower EMI / Lower Reflection Overvoltages
● Clear Partitioning of Overall Blocking Voltage   &   Small Flying Capacitors  
● Low Voltage/Low RDS(on)/Low $ MOSFETs  High Efficiency / No Heatsinks / SMD Packages  
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► Quasi-2L & Quasi-3L Inverters (2)
■ Operation of 5L Bridge-Leg Topology in Quasi-3L Mode 
■ Intermediate Voltage Levels Only Used During Sw. Transients  
■ Applicability to All Types of Multi-Level Converters     

- Schweizer (2017)

● Reduced Average dv/dt Lower EMI / Refection Overvoltages
● Clear Partitioning of Overall Blocking Voltage   &   Small Flying Capacitors  
● Low Voltage/RDS(on)/$ MOSFETs  High Efficiency / No Heatsinks / SMD Packages  

SMD 
150V Si-MOSFETs

3.3kW @ 230Vrms /50Hz
Equiv. fS= 48kHz

3.5kW/dm3

Eff. ≈ 99%

96/107



► Quasi-2L & Quasi-3L Inverters (2)

- Schweizer (2017)

● Reduced Average dv/dt Lower EMI / Refection Overvoltages
● Clear Partitioning of Overall Blocking Voltage   &   Small Flying Capacitors  
● Low Voltage/RDS(on)/$ MOSFETs  High Efficiency / No Heatsinks / SMD Packages  

EMI Filter

3.5kW/dm3

Eff. ≈ 99%

3.3kW @ 230Vrms /50Hz
Equiv. fS= 48kHz
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■ Operation of 5L Bridge-Leg Topology in Quasi-3L Mode 
■ Intermediate Voltage Levels Only Used During Sw. Transients  
■ Applicability to All Types of Multi-Level Converters     



► Quasi-2L & Quasi-3L Inverters (2) - Schweizer (2017)

● Reduced Average dv/dt Lower EMI / Refection Overvoltages
● Clear Partitioning of Overall Blocking Voltage   &   Small Flying Capacitors  
● Low Voltage/RDS(on)/$ MOSFETs  High Efficiency / No Heatsinks / SMD Packages  

Operation @ 3.2kW

— Conv. Output Voltage 
— Sw. Stage Output Voltage
— Flying Cap. (FC) Voltage
— Q-FC Voltage (Uncntrl.)

— Output Current   
— Conv. Side Current

98/107

■ Operation of 5L Bridge-Leg Topology in Quasi-3L Mode 
■ Intermediate Voltage Levels Only Used During Sw. Transients  
■ Applicability to All Types of Multi-Level Converters     



Ultra-Compact
Modular Flying-Capacitor

Inverter



■ Rated Power         9.7kW
■ DC-Link Voltage   1kV
■ Output Filter  Sinusoidal Output Voltage
■ Phase-Leg Modularity /Scalability
■ Interleaving of 2 Bridge-Legs
■ 2-Side Forced-Air Cooling 

● High Effective Sw. Frequ. (9x120 = 960kHz)  Very Small Output Filter Source: R. Pilawa et al. (2018)

► 9-Level Flying Capacitor GaN Inverter (1)
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■ Rated Power         9.7kW
■ DC-Link Voltage   1kV
■ Peak Efficiency > 98.6%
■ Specific Power      35kW/dm3

■ 200x100x16mm3 
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17kW/kg 

● High Effective Sw. Frequency (960kHz)  Very Small Output Filter Source: R. Pilawa et al. (2018)

► 9-Level Flying Capacitor GaN Inverter (2)



650V GaN E-HEMT Technology
fS,eff= 4.8MHz
fout = 100kHz

Ultra-Compact
Power Module with
Integrated Filter



► Integrated Filter GaN Half-Bridge Module (1) 

 Target:  Best Combination of Multiple Levels (M) & Parallel Branches (N) 

■ Minimization of Filter Volume by Series & Parallel Interleaving & Extreme Sw. Frequency 
■ Handling of DC Output Requires Flying Capacitor Approach for Series Interleaving

fS,eff= (M-1) ∙ fS

fS,eff= N ∙ fS

M=5

N=4
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 Lfilt= 1.26uH Fixed in Order to Limit Branch Current Ripple for High N 
 Selection of  M=3 / N=3 Considering Efficiency / Filter Volume Trade-Off  

■ Analysis of Best Combination of Levels (M)  &  Parallel Branches (N) 
■ Application of GaN Semiconductor Technology 
■ UDC=800V,   P=10kW,  ∆uout,pp= 1%,  fS,eff= 4.8MHz

► Integrated Filter GaN Half-Bridge Module (2) 

@ Cfilt= 90nF =const.
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● Design for Max. Output Frequency of  fout = 100kHz (!) @ Full-Scale Voltage Swing 

■ Selection of  M=3 / N=3  Considering Efficiency / Filter Volume Trade-Off 
■ N ∙ Lfilt=3.3uH  of Branch Inductance  / Cfilt = 90nF
■ 650V GaN E-HEMT Technology
■ fS,eff= 4.8MHz

► Integrated Filter GaN Half-Bridge Module (3) 

fS,eff= N ∙ (M-1) ∙ fS

VL < 15%
IC <30%
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● Operation @ fout=100kHz  (fS,eff= 4.8MHz)  

■ Demonstrator System 

— 650V GaN Power Semiconductors
— Volume of ≈180cm3 (incl. Control etc.)
— H2O Cooling Through Baseplate

► Integrated Filter GaN Half-Bridge Module (4) 

≈ 50kW/dm3
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Motor-Integrated 
Modular Inverter



► Motor-Integrated Modular Inverter

■ Machine/Inverter Fault-Tolerant VSD
■ Motor-Integr. Low-Voltage Inverter Modules
■ Very-High Power Density / Efficiency
■ Supply of 3-Φ Winding Sets / Low C Buffer Cap.

■ Rated Power         45kW  / fout = 2kHz
■ DC-Link Voltage    1 kV 

 Evaluate Machine Concept (PMSM vs. SRM etc.) / Wdg Topologies /  Filter Requ. / etc.
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► Motor-Integrated Inverter Demonstrator

 Main Challenge — Thermal Coupling/Decoupling of Motor & Inverter

■ Rated Power         9kW @ 3700rpm
■ DC-Link Voltage   650V…720V
■ 3-Φ Power Cells   5+1
■ Outer Diameter    220mm

— Axial Stator Mount
— 200V GaN e-FETs
— Low-Capacitance DC-Links  
— 45mm x 58mm / Cell

Source: 
Oak Ridge

Nat. Lab
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Conclusions



■ System Level  Integration of Storage, Distributed DC Bus Systems, etc.

► Conclusions

■ Enabling Technologies 

─ SiC / GaN
─ Adv. (Multi-Level) Topologies  incl. PFC Rectifier
─ “Synergetic” Control
─ Monolithic Bidirectional GaN
─ Intelligent Power Modules
─ Integration of Switch / Gate Drive / Sensing / Monitoring 
─ Adv. Modeling / Simulation / Optimization 

■ Future Need for „SWISS Knife“-Type Systems

─ Wide Input / Output Voltage Range
─ Continuous / Sinusoidal Output Voltage
─ Electromagnetically „Quiet“ - No Shielded Cables
─ On-Line Monitoring / Industry 4.0
─ “Plug & Play“ / Non-Expert Installation
─ SMART Motors

Source: 
UK Outdoor

Store
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On-State Voltage 
Switching Losses

Accurate Measurement of SiC/GaN
Power Semiconductor Characteristics



A1/5

■ Device / Load Current / Gate Voltage / Junction Temp.  On State-Resistance RDS(on)

► On-State Voltage Measurement (1)

● Decoupling High Blocking Voltage and (Very) Low On-State Voltage (≈1V << BVDS)

RDS(on) = vDS(on) / iL



A2/5

■ High Accuracy  Compensation of Decoupling Diode Forward Voltage
■ Fast Dyn. Response    Valid Measurement 50ns After Turn-On 

● Example — Dyn. RDS(on) of GaN HEMTs   2x RDS(on) @ 100kHz - 0.6BVDS

► On-State Voltage Measurement (2)



A3/5

■ Hard-Switching                                                      ■ Soft-Switching (ZVS)

► Hard- & Soft-Switching Losses  

 Esw = QossUDC + k1 Isw + k2 Isw
2

 Esw ≈ 0

● High Sw. Speeds   Overvoltage & Ringing / Probe Intrusiveness / etc.
● Low ZVS Losses    High Accuracy Only for Calorimetric / Direct Loss Measurement 



A4/5

■ Heat-Sink Temp.-Based Transient Calorim. Method  15 min / Measurement

► Switching Loss Measurement

■ Case Temp.-Based Ultra-Fast Method  15 sec / Measurement



► Example Measurement Results

■ 200V Si vs. GaN (Hard-Sw. & ZVS)■ 650V GaN (ZVS)

■ 1.2kV SiC (Hard-Sw.)
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3-Φ DM/CM 
Conducted EMI Separation



► 3-Φ DM/CM EMI Measurement & Separation
■ EMI Measurement @ Inverter Output  
■ DM/CM Splitting for Specific Filter Design 

● Cap. Coupled Interface Circuit as Replacement for LISN (Var. Output Frequ.)  
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