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Climate Change



Average Increase 
0.4%/a

► Climate Change

■ CO2 Concentration  &  Temperature Development
■ Evidence from Ice Cores
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► Reduce CO2 Emissions Intensity (CO2/GDP) to Stabilize Atmospheric CO2 Concentration
► 1/3 in 2050 → less than 1/10 in 2100 (AIST, Japan @ IEA Workshop 2007)



Source: H. Nilsson
Chairman IEA DSM Program 
FourFact AB
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► Reduce CO2 Emissions Intensity (CO2/GDP) to Stabilize Atmospheric CO2 Concentration
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Medium-Voltage Power 
Collection and Connection

to On-Shore Grid

 Utilize Renewable Energy (1)

─ Higher Reliability (!)
─ Lower Costs

► Off-Shore Wind Farms
► Medium Voltage Systems
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■ Enabled by Power Electronics

Source: M. Prahm / Flickr



Source:                         2006

 Utilize Renewable Energy (2)

─ Extreme Cost Pressure (!) 
─ Higher Efficiency
─ Higher Power Density

► Photovoltaics Power Plants
► Up to Several MW Power Level
► Future Hybrid PV/Therm. Collectors  
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■ Enabled by Power Electronics



─ Electrolysis for Conversion of Excess Wind/Solar Electric Energy into      Hydrogen  
 Fuel-Cell Powered Cars
 Heating

Hydrogenics 100 kW 
H2-Generator (η=57%),
High Power @ Low 
Voltage

Source: www.r-e-a.net
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■ Enabled by Power Electronics

 Utilize Renewable Energy (3)
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► Digitalization

■ Internet of Things (IoT)  / Cognitive Computing

► Moore's Law ► Metcalfe's Law

─ Ubiquitous Computing / BIG DATA
─ Fully Automated Manufacturing / Industry 4.0
─ Autonomous Cars 
─ Etc.



– Moving form Hub-Based
to Community Concept Increases

Potential Network Value 
Exponentially (~n(n-1)  or

~n log(n) )
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Source: Intel Corp.



Server-Farms
up to 450 MW

99.9999%/<30s/a
$1.0 Mio./Shutdown

Since 2006 
Running Costs > 

Initial Costs

─ Ranging from Medium Voltage to Power-Supplies-on-Chip
─ Short Power Supply Innovation Cycles
─ Modularity / Scalability

─ Higher Power Density (!)
─ Higher Efficiency (!)
─ Lower Costs


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■ Enabled by Power Electronics 

Source: REUTERS/Sigtryggur Ari

 Green / Zero                Datacenters (1)



► Power Density Increased by
Factor 2 over 10 Years
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─ Ranging from Medium Voltage to Power-Supplies-on-Chip
─ Short Power Supply Innovation Cycles
─ Modularity / Scalability

─ Higher Power Density (!)
─ Higher Efficiency (!)
─ Lower Costs

■ Enabled by Power Electronics 

 Green / Zero                Datacenters (2)



 Fully Automated Manufacturing – Industry 4.0

Source:

─ Lower Costs (!)
─ Higher Power Density 
─ Self-Sensing etc.
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■ Enabled by Power Electronics



► ABB´s Future Subsea 
Power Grid  “Develop
All Elements for a 
Subsea Factory”
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■ Enabled by Power Electronics

 Fully Automated Raw Material Extraction

─ High Reliability (!)
─ High Power Density (!) Source: matrixengineered.com
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► Sustainable Mobility

www.theicct.org

■ EU Mandatory 2020 CO2 Emission Targets for New Cars

─ 147g CO2/km for Light-Commercial Vehicles 
─ 95g CO2/km for Passenger Cars
─ 100% Compliance in 2021

► Hybrid Vehicles
► Electric Vehicles


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FF-ZERO1
750kW / 322km/h
1 Motor per Wheel 
300+ Miles Range

Lithium-Ion Batteries along the Floor 

 Electric Vehicles (1)

─ Higher Power Density
─ Extreme Cost Pressure (!)

■ Enabled by Power Electronics - Drivetrain / Aux. / Charger 
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 Electric Vehicles (2)

─ Higher Power Density
─ Extreme Cost Pressure (!)

► Typ. 10% / a Cost Reduction
► Economy of Scale !

Source:    PCIM 2013
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■ Enabled by Power Electronics - Drivetrain / Aux. / Charger 



─ Hyperloop 
─ San Francisco  Los Angeles in 35min

► Low Pressure Tube
► Magnetic Levitation
► Linear Ind. Motor
► Air Compressor in Nose

www.spacex.com/hyperloop
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 Futuristic Mobility Concepts (1)

■ Enabled by Power Electronics



► Eff. Optim. Gas Turbine  
► 1000Wh/kg Batteries  
► Distrib. Fans (E-Thrust)
► Supercond. Motors 
► Med. Volt. Power Distrib.

Source:

 Futuristic Mobility Concepts (2)
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■ Enabled by Power Electronics

─ Cut Emissions Until 2050  
* CO2 by 75%, 
* NOx by 90%, 
* Noise Level by 65%

Future Hybrid 
Distributed Propulsion Aircraft



Source:   
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► Electric Power Distribution 
► High Flex. in Generator/Fan Placement
► Generators: 2 x 40.2MW / Fans: 14 x 5.74 MW  (1.3m Diameter)

NASA N3-X 
Vehicle Concept using 

Turboel. Distrib. Propulsion

 Futuristic Mobility Concepts (3)

■ Enabled by Power Electronics
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► Urbanization
■ 60% of World Population Exp. to Live in  Urban Cities  by 2025
■ 30 MEGA Cities Globally  by 2023

─ Smart Buildings 
─ Smart Mobility
─ Smart Energy / Grid 
─ Smart ICT, etc.

► Selected Current & Future MEGA Cities  2015  2030

Source: World Urbanization
Prospects: The 2014 Revision
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Source:

 Smart Cities / Grid (1)
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■ Enabled by Power Electronics

www.masdar.ae 

─ Masdar = “Source”
─ Fully Sustainable Energy Generation

* Zero CO2
* Zero Waste

─ EV Transport / IPT Charging
─ to be finished  2025



Source:
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www.masdar.ae 

 Smart Cities / Grid (2)

■ Enabled by Power Electronics

─ Masdar = “Source”
─ Fully Sustainable Energy Generation

* Zero CO2
* Zero Waste

─ EV Transport / IPT Charging
─ to be finished  2025
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► Urgent Need for Village-Scale Solar DC Microgrids etc. 
► 2 US$ for 2 LED Lights + Mobile-Phone Charging / Household  / Month (!)
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► Alleviate Poverty
■ 2 Billion “Bottom-of-the-Pyramid People” are Lacking Access to Clean Energy 
■ Rural Electrification in the Developing World 



… in SummarySource: whiskeybehavior.info
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► Future Extensions of Power Electronics Application Areas

■ Power Electronics Covers an Extremely Wide Power / Voltage / Frequency Range
■ Extensions for SMART xxx / Mobility Trends / Availability Requirements

─ Medium-Voltage / Medium. Frequ. Conv.
─ 3D-Integr. of Low Power Converters
─ Life-Cycle & Reliability Analysis

► Current / New Application Areas (1)
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► Cost Pressure as Common Denominator of All Applications (!)
► Key Importance of Technology Partnerships of Academia & Industry  

■ Commoditization / Standardization for High Volume Applications 
■ Extension to Microelectronics-Technology (Power Supply on Chip)
■ Extensions to  MV/MF   

► Current / New Application Areas (2)
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► Future “Big-Bang” Disruptions
■ “Catastrophic” Success of Disruptive New (Digital) Technologies
■ No Bell-Curve Technology Adoption / Technology S-Curve 
■ “Shark Fin“-Model

► Consequence:  Market Immediately   &   Be Ready to Scale Up ─ and Exit ─ Swiftly (!)

Source: www.verschuerent.wordpress.com
February 2015

See also: 
Big Bang Disruption –
Strategy in the Age of 

Devastating Innovation, 
L. Downes and P. Nunes
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► Required Power Electronics 
Performance Improvements

─ Power Density   [kW/dm3]
─ Power per Unit Weight  [kW/kg]
─ Relative Costs    [kW/$]
─ Relative Losses  [%]
─ Failure Rate    [h-1]

■ Performance  Indices

[kgFe    /kW] 
[kgCu    /kW]
[kgAl /kW]
[cm2

Si /kW]

►

►

Environmental Impact…
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► Multi-Objective Design Challenge (1)

■ Counteracting Effects of Key Design Parameters
■ Mutual Coupling of Performance Indices  Trade-Offs

 Large Number of Degrees of Freedom / Multi-Dimensional Design Space 
 Full  Utilization of Design Space only Guaranteed by  Multi-Objective Optimization
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► Multi-Objective Design Challenge (1)

 Large Number of Degrees of Freedom / Multi-Dimensional Design Space 
 Full  Utilization of Design Space only Guaranteed by  Multi-Objective Optimization

■ Counteracting Effects of Key Design Parameters
■ Mutual Coupling of Performance Indices  Trade-Offs



■ Specific Performance 
Profiles / Trade-Offs
Dependent on Application
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► Multi-Objective Design Challenge (2)



► Remark: Visualization of Multiple Performances ;-)

► H. Chernoff (Stanford): “The Use of Faces to Represent Points in K-Dimensional Space Graphically”

■ Spider Charts, etc.
■ Chernoff-Faces
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Mutual Coupling of Performances
New Integration Technologies

Power Converter 
Design Challenges 
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► Advanced Technologies / Extreme Integration

■ Industry Is Leading the Field (!)

─ Cutting Edge Converters (up to 1.5kW) 3D-Integrated (!)
─ PCB Based Demonstrators Do NOT Provide Much Information (!)

■ Future Role of Universities in Question (!)

─ Not Any More Many “Low Hanging” Fruits
─ Solution of Non-Problems  vs.  Non-Solution of Problems
─ Industry Technology Partnership for Technology Access
─ “Fab-Less” Research @ Universities?

► Research on Multi-Objective Design / Virtual Prototyping as Natural Consequence (!)



Citation:    L.H. Fink



Multi-Objective
Optimization

Abstraction of Converter Design
Design Space / Performance Space
Pareto Front
Sensitivities / Trade-Offs



 Mapping of “Design Space” into System “Performance Space”

Performance Space

Design Space

► Abstraction of Power Converter Design
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► Mathematical Modeling
of the Converter Design

 Multi-Objective Optimization  – Guarantees Best Utilization of All Degrees of Freedom (!)
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► Multi-Objective Optimization (1)

■ Ensures Optimal Mapping of the “Design Space” into the “Performance Space”
■ Identifies Absolute Performance Limits  Pareto Front / Surface

 Clarifies Sensitivity to Improvements of Technologies 
 Trade-off Analysis

/p k
rr

∆ ∆
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► Determination of the η-ρ-Pareto Front (a)

─ Core Geometry / Material
─ Single / Multiple Airgaps
─ Solid / Litz Wire, Foils
─ Winding Topology
─ Natural / Forced Conv. Cooling
─ Hard-/Soft-Switching
─ Si / SiC
─ etc.
─ etc.
─ etc.

─ Circuit Topology
─ Modulation Scheme
─ Switching Frequ.
─ etc.
─ etc.

■ System-Level Degrees of Freedom

■ Comp.-Level Degrees of Freedom of the Design

■ Only η -ρ -Pareto Front Allows Comprehensive
Comparison of Converter Concepts (!)
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■ Example:  Consider Only fP as  Design Parameter

fP =100kHz

“Pareto Front”

► Determination of the η-ρ-Pareto Front (b)

■ Only the Consideration of 
All Possible Designs / Degrees
of Freedom Clarifies the 
Absolute η-ρ-Performance 
Limit
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► Multi-Objective Optimization (2)

■ Design Space Diversity
■ Equal Performance for Largely Different Sets of Design Parameters

 E.g. Mutual Compensation  of  Volume and Loss Contributions (e.g. Cond. & Sw. Losses)
 Allows  Optimization for Further Performance Index (e.g. Costs)
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► Converter Performance Evaluation 
Based on η-ρ-σ-Pareto Surface

■ Definition of a Power Electronics “Technology Node”  (η*,ρ*,σ*,fP*)
■ Maximum σ [kW/$], Related Efficiency & Power Density 

►

 Specifying  Only a Single Performance Index is of No Value (!)
 Achievable Perform. Depends on Conv. Type / Specs (e.g. Volt. Range) / Side Cond. (e.g. Cooling)  
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►



► Remark:  Comparison to “Moores Law”

 Definition of “η*,ρ*,σ*,fP*–Node” Must Consider Conv. Type / Operating Range etc. (!)
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■ “Moores Law” Defines Consecutive Techn. Nodes Based on Min. Costs per Integr. Circuit (!)
■ Complexity for Min. Comp. Costs Increases approx. by Factor of 2 / Year

Gordon Moore: The 
Future of Integrated 
Electronics, 1965  
(Consideration of Three 
Consecutive Technology
Nodes)

Lower
Yield

Economy of
Scale

>2015: Smaller 
Transistors but Not 
any more Cheaper
►
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Example #1

Two-Level vs. Three-Level 
Dual Active Bridge

Source: SMA



► Wide Input Voltage Range  
Isolated DC/DC Converter

─ Bidirectional Power Flow
─ Galvanic Isolation
─ Wide Voltage Range
─ High Partial Load Efficiency

■ Universal Isolated DC/DC Converter

►Structure of “Smart Home“ DC Microgrid ►Universal DC/DC Converter

─ Reduced System Complexity
─ Lower Overall Development Costs
─ Economy of Scale

■ Advantages
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► Comparative Evaluation of Converter Topologies

■ Conv. 3-Level Dual Active Bridge (3L-DAB)

■ Advanced 5-Level Dual Active Bridge (5L-DAB)
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► Optimization Results - Pareto Surfaces

■ 3-Level Dual Active Bridge
■ 5-Level Dual Active Bridge
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Example #2

Performance & Life-Cycle-
Costs of Si vs. SiC 

Source: L. Lalonde / electronicdesign.com



─ Typical Residential Application
─ Single-Input/Single-MPP-Tracker Multi-String PV Inverter
─ DC/DC Boost Converter for Wide MPP Voltage Range
─ Output EMI Filter

 Exploit Excellent Hard- AND  Soft-Switching Capabilities of SiC
 Find Useful Sw. Frequency and Current Ripple Ranges
 Find Appropriate Core Material

► Multi-Objective η-ρ-σ-Comparison of Si vs. SiC

■ Three-Phase PV Inverter System
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■ Si IGBT 
3L-PWM Inverter

► Topologies  - Converter Stages

■ SiC MOSFET
Interleaved
2L-TCM Inverter

■ SiC MOSFET
2L-PWM Inverter
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► Optimization Results  - Pareto Surfaces  

─ No Pareto-Optimal Designs
for fsw,min> 60 kHz

─ No METGLAS Amorphous 
Iron Designs

─ Pareto-Optimal Designs for 
Entire Considered  fsw Range

─ No METGLAS Amorphous 
Iron Designs

─ Pareto-Optimal Designs for 
Entire Considered  fsw Range

─ METGLAS Amorphous Iron    
and  Ferrite Designs
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SiC SiC Si 



► Optimization Results – Investigations Along Pareto Surfaces

η ρ σ

•   2L-TCM

•   2L-PWM

•   3L-PWM

 Semiconductor Losses 
Clearly Dominating 
(35…70%)

■ Comparison of the
Inverter Concepts
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SiC SiC Si 



► Extension to Life-Cycle Cost (LCC) Analysis

 Which is the Best Solution  Weighting η, ρ, σ, e.g. in Form of Life-Cycle Costs (LCC)?
 How Much Better is the Best Design?
 Optimal Switching Frequency?

■ Performance Space Analysis

─ 3 Performance Measures: η, ρ, σ
─ Reveals Absolute Performance Limits /

Trade-Offs Between Performances   

■ Life-Cycle Cost Analysis

─ Post-Processing of Pareto-Optimal Designs
─ Determination of Min.-LCC Design
─ Arbitrary Cost Function Possible
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► Post-Processing

─ 22% Lower LCC  than 3L-PWM
─ 5%  Lower LCC  than 2L-TCM
─ Simplest Design
─ Probably Highest Reliability
─ Lower Vol. (Housing) Not Yet Considered!

■ Best System - 2L-PWM SiC Converter
@ 44kHz & 50% Current Ripple

■ Life-Cycle Cost Analysis

 Application of SiC Justified on “System Level”

►
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SiC SiC Si 



Inductive Power Transfer Example #3

Source: www.qualcomm.com



► Multi-Objective Optimization of 5kW Prototype

■ Design Process Taking All Performance Aspects into Account

■ System Specification
- Input Voltage          400V
- Battery Voltage       350V
- Output Power           5kW
- Air Gap                  50mm

■ Constraints / Side Conditions
- Thermal Limitations       [°C]
- Stray Field Limits          [μT]
- Max. Constr. Vol.           [m3]
- Switching Frequency    [kHz]

■ System Performance
* Efficiency             η = Pout/Pin [%]
* Power Density      α = Pout/Acoil [kW/dm2] 
* Stray Field           β = Bmax/Bnorm [%]
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► η-α-β-Pareto Coil Optimization
■ Encountered Design Trade-Offs

 Pareto-Optimization Allows to Study Influence of Key Design Parameters
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* Coil Size    vs.   Efficiency            
* Coil Size    vs.   Stray Field        
* Frequency  vs.   Stray Field



Example #4

Electrical System of an 
Airborne Wind Turbine  M. Loyd, 1980



► Airborne Wind Turbine (AWT) -

■ Power Kite  On-Board Turbine / Generator / Power Electronics
■ Power Transmitted to Ground Electrically
■ Minimum of Mechanical Support
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■ Rated Power                                 100kW
■ Operating Height               800…1000m
■ Ambient Temp.                                40°C 
■ Power Flow                Motor & Generator

 El. System Target Weight             100kg
 Efficiency (incl. Tether)                 90%
 Turbine /Motor              2000/3000rpm
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► AWT Electrical System Structure



► Overall AWT System Performance 

■ Final Step:  System Control Consideration

►
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■ Design / Build the 2kW 1-Φ Solar Inverter with the Highest Power Density in the World
■ Power Density > 3kW/dm3 (50W/in3)
■ Efficiency > 95%
■ Case Temp.  < 60°C
■ EMI  FCC Part 15 B

 Push the Forefront of New Technologies in R&D of High Power Density Inverters

!

!

!

!
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Selected Converter Topology

 ZVS of All Bridge Legs @ Turn-On/Turn-Off in Whole Operating Range (4D-TCM-Interleaving)
 Heatsinks Connected to DC Bus / Shield to Prevent Cap. Coupling to Grounded Enclosure  

■ Interleaving of 2 Bridge Legs per Phase   
■ Active DC-Side Buck-Type Power Pulsation Buffer
■ 2-Stage EMI AC Output Filter
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Little-Box 1.0 Prototype  

– 8.2 kW/dm3

– 96,3%  Efficiency @ 2kW
– Tc=58°C @ 2kW

■ Performance

 Analysis of Potential Performance Improvement for “Ideal Switches”

– 600V IFX Normally-Off GaN GIT 
– Antiparallel SiC Schottky Diodes 
– Multi-Airgap Ind. w. Multi-Layer Foil Wdg
– Triangular Curr. Mode ZVS Operation
– CeraLink Power Pulsation Buffer

■ Design Details
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 Analysis of  Improvement of  Efficiency @ Given Power Density  &  Maximum Power Density 
 The Ideal Switch is NOT Enough (!)

Little Box 1.0 @ Ideal Switches (TCM)

■ Multi-Objective Optimization of Little-Box 1.0  (X6S Power Pulsation Buffer)
■ Step-by-Step Idealization of the Power Transistors
■ Ideal Switches:  kC= 0 (Zero Cond. Losses);  kS= 0 (Zero Sw. Losses)

Zero Output 
Cap. and Zero Gate 
Drive Losses
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■ L &  fS are Independent Degrees of Freedom
■ Large Design Space Diversity (Mutual Compensation of HF and LF Loss Contributions)



ρ = 6kW/dm3

η ≈ 99.35%

L    = 50uH 
fS    = 500kHz  or  900kHz


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Little Box 1.0 @ Ideal Switches (PWM)



Conclusions
Future Power Electronics Development 
Future Virtual Prototyping

“Stairway to Heaven”



► Future Development 

 More Application Specific Solutions
 Mature Technology   – Cost Optimization @ Given Performance Level
 Design / Optimize / Verify (All in Simulation) - Faster / Cheaper / Better

■ Megatrends – Renewable Energy / Energy Saving / E-Mobility / “SMART XXX”
■ Power Electronics  will Massively Spread in Applications
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Multi-Domain 
Modeling / 

Simulation/
Optimization

Hardware
Prototyping

20%

80%

2015

2025

80%

20%

► Future “Virtual Prototyping”  

 Main Research Challenges in Modeling (EMI, Reliability, Reduced Order Models etc.)  
 Main Practical Challenge is the Implementation in  Industry & Academia ;-)

■ Offers Incredible Design Insight   – Quantifies Trade-Offs / Technology Sensitivities (!)
■ Extends Theory of Components      – “Theory of Systems”
■ Reduces Time-to-Market                – Cuts Design Time from Weeks to Hours
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Power MOSFETs & IGBTs
Microelectronics

Circuit Topologies
Modulation Concepts

Control Concepts

Super-Junct. Techn. / WBG
Digital Power

Modeling &  Simulation

2025
2015

►
►

►
►

SCRs / Diodes 
Solid-State Devices

► Extrapolation of Technology S-Curve

“Passives”
Adv. Packaging

η-ρ-σ-Design of Converters & “Systems”
Interdisciplinarity

Paradigm
Shift

■
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■ “Stairway to Heaven”

!



Future 
Paradigm

Shift



■ Design Considering Converters as “Integrated Circuits” (PEBBs)
■ Extend Analysis to Converter Clusters /  Power Supply Chains / etc.

─ “Converter”       “Systems” (Microgrid) or “Hybrid Systems” (Automation / Aircraft)
─ “Time”              “Integral over Time”
─ “Power”            “Energy”

( )p t
0

( )d
t
p t t∫

─ Power Conversion       Energy Management / Distribution 
─ Converter Analysis     System Analysis (incl. Interactions  Conv. / Conv. or Load or Mains) 
─ Converter Stability     System Stability  (Autonom. Cntrl of Distributed Converters)
─ Cap. Filtering             Energy Storage  & Demand Side Management
─ Costs  / Efficiency       Life Cycle Costs / Mission Efficiency / Supply Chain Efficiency
─ etc.

► Power Electronics 2.0
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► New Power Electronics Systems
Performance Figures/Trends

─ Power Density   [kW/m2]
─ Environm. Impact  [kWs/kW]
─ TCO                       [$/kW]
─ Mission Efficiency [%]
─ Failure Rate    [h-1]

■ Complete Set of 
New Performance  Indices

►
►

Supply Chain 
&

►
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■ End



Thank You !
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