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► Introduction   
► Basic SST Concepts 
► DAB and ZVS/ZCS of IGBTs 

Schedule / Outline 

► 3ph. AC/AC  SST Concepts for Distribution Applications 
► 1ph. AC/DC  SST Traction Applications 
► SST Design Remarks 
► Conclusions / Questions / Discussion 
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► Classical Transformer - Basics 

- Voltage Transf. Ratio      * Fixed 
- Current Transf. Ratio             * Fixed 
- Active Power Transf.       * Fixed  (P1≈P2) 
- React. Power Transf.       * Fixed  (Q1 ≈ Q2) 
- Frequency Ratio  * Fixed  (f1=f2) 

- Magnetic Core Material  * Silicon Steel / Nanocristalline / Amorphous / Ferrite  
- Winding Material       * Copper or Aluminium 
- Insulation/Cooling      * Mineral Oil or Dry-Type 
 
 
 
 
 

- Operating Frequency  * 50/60Hz  (El. Grid, Traction) or  162/3 Hz (Traction)   
- Operating Voltage   * 10kV or 20 kV (6…35kV)  - Distribution Grid MV Level  (uSC = 4…6% typ.) 
                                          * 15kV or 25kV                     - Traction (1ph., uSC = 20…25% typ.) 
                                * 400V                                         - Public LV Grid   

●  Magnetic Core  
    Cross Section 

●  Winding Window 
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► Classical Transformer - Basics 

-  Advantages 
 
•  Relatively Inexpensive 
•  Highly Robust / Reliable 
•  Highly Efficient  (98.5%...99.5% Dep. on Power Rating) 
 
-  Weaknesses  
 
•  Voltage Drop Under Load 
•  Losses at No Load 
•  Sensitivity to Harmonics 
•  Sensitivity to DC Offset Load Imbalances 
•  Provides No Overload Protection 
•  Possible Fire Hazard 
•  Environmental Concerns 

 
•  Construction Volume 

• No Controllability  
• Low Mains Frequency Results in Large Weight / Volume 

Pt  …. Rated Power 
kW …. Window Utilization Factor (Insulation) 
Bmax  ...Flux Density Amplitude 
Jrms… Winding Current Density (Cooling) 
f  .…. Frequency 

ω 
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► Classical Transformer - Basics 

●  Higher Relative Volumes (Lower kVA/m3) Allow to Achieve Higher Efficiencies 

 

 -  Scaling of Core Losses 

 

-  Scaling of Winding Losses 
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► Classical Transformer - Basics 

●  Higher Relative Volumes (Lower kVA/m3) Allow to Achieve Higher Efficiencies 
●  Higher Operating Frequency   Lower Volume & Higher Efficiency  

 

 -  Rated Power for Given 
        Construction Volume 

 

 -     Decrease of Construction 
     Volume with Increasing  
     Operating Frequency 
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Classical / Next Generation  
Locomotives  
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► Classical Locomotives 
-  Catenary Voltage     15kV  or 25kV 
-  Frequency                162/3Hz  or  50Hz 
-  Power Level             1…10MW  typ. 

●  Transformer: Efficiency              90…95% (due to Restr. Vol., 99% typ. for Distr. Transf.) 
  Current Density       6 A/mm2  (2A/mm2 typ. Distribution Transformer) 
  Power Density         2…4 kg/kVA 

! 
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► Next Generation Locomotives 
-  Trends *  Distributed Propulsion System  Weight Reduction (pot. Decreases Eff.) 
 *  Energy Efficient Rail Vehicles    Loss Reduction        (would Req. Higher Vol.) 
 *  Red. of Mech. Stress on Track    Mass Reduction        (pot. Decreases Eff.) 

●  Replace Low Frequency Transformer  by   Medium Frequ.  (MF) Power Electronics Transformer (PET) 
●  Medium Frequ. Provides Degree of Freedom   Allows Loss Reduction AND Volume Reduction 
●  El. Syst. of Next Gen. Locom. (1ph. AC/3ph. AC) represents Part of a 3ph. AC/3ph. AC SST for Grid Appl. 

ACLF  DC ACLF  ACMF  ACMF  DC   
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► Next Generation Locomotives 

●  Medium Frequ. Provides Degree of Freedom   Allows Loss Reduction AND Volume Reduction 

-  Loss Distribution of  Conventional  &  Next Generation Locomotives   

LF 
MF 
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► Next Generation Locomotives 

• Direct Matrix Converter   
• Indirect Matrix  Converter 
• DC Link AC-DC-AC Converter     

-  Basic Front End Converter Topologies 
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Future Smart  
EE Distribution   
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► Advanced (High Power Quality) Grid Concept  
-  Heinemann (2001) 

●  MV AC Distribution with DC Subsystems (LV and MV) and Large Number of Distributed Resources  
●  MF AC/AC Conv. with  DC Link Coupled to Energy Storage provide High Power Qual. for Spec. Customers 

►
 

►
 

►
 

►
 

►
 

►
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► Future Ren. Electric Energy Delivery & Management (FREEDM) Syst.  

- Huang et al. (2008) 

● SST as Enabling Technology for the “Energy Internet” 
  
 - Integr. of DER (Distr. Energy Res.)  
 - Integr. of DES (Distr. E-Storage) + Intellig. Loads 
 - Enables Distrib. Intellig. through COMM 
 - Ensure Stability & Opt. Operation 

●  Bidirectional Flow of Power & Information / High Bandw. Comm.   Distrib. / Local Autonomous Cntrl 

IFM =  Intellig. Fault 
           Management 

► 

► 
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► Smart Grid Concept 

-  Borojevic (2010) 

●  Hierarchically Interconnected Hybrid Mix of 
    AC and DC Sub-Grids 
 
  - Distr. Syst. of Contr. Conv. Interfaces 
  - Source / Load / Power Distrib. Conv. 
  - Picogrid-Nanogid-Microgrid-Grid Structure 
  - Subgrid Seen as Single Electr. Load/Source 
  - ECCs provide Dyn. Decoupling 
  - Subgrid Dispatchable by Grid Utility Operator 
  - Integr. of Ren. Energy Sources 
 

●  ECC = Energy Control Center   
  
  - Energy Routers 
  - Continuous Bidir. Power Flow Control  
  - Enable Hierarchical Distr. Grid Control 
  - Load / Source / Data Aggregation  
  - Up- and Downstream Communic. 
  - Intentional / Unintentional Islanding 
     for Up- or Downstream Protection 
  - etc. 

► 

► 



17/200 

► Future Subsea Distribution Network – O&G Processing 

- Devold (ABB 2012) 

●  Transmission Over DC, No Platforms/Floaters 
●  Longer Distances Possible 
●  Subsea O&G Processing 
 
 
 

●  Weight Optimized Power Electronics 
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► SST Functionalities 

●  Protects Load from Power System Disturbance 

-  Operates on Distribution Voltage Level (MV-LV) 
-  Integrates Energy Storage (Energy Buffer) 
-  DC Port for DER Connection  
-  Medium Frequency Isolation  Low Weight / Volume 
-  Definable Output Frequency  
-  High Efficiency 
-  No Fire Hazard / Contamination 

- Voltage Harmonics / Sag Compensation 
- Outage Compensation 
- Load Voltage Regulation (Load Transients, Harmonics)  

●  Protects Power System from Load Disturbance 
- Unity Inp. Power Factor  Under Reactive Load 
- Sinus. Inp. Curr. for Distorted / Non-Lin. Load 
- Symmetrizes Load to the Mains 
- Protection against Overload & Output Short Circ. 

●  Further Characteristics 
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► Terminology  

McMurray      Electronic Transformer (1968) 
Brooks      Solid-State Transformer (SST, 1980) 
EPRI      Intelligent Universal Transformer (IUTTM) 
ABB      Power Electronics Transformer (PET) 
Borojevic      Energy Control Center (ECC) 
Wang      Energy Router 
etc. 
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► Basic SST Structures 

●  Medium Freq.  Higher Transf. Efficiency Partly Compensates Converter Stage Losses   
 

-  Efficiency Challenge   

LF Isolation 
                        Purely Passive (a)  

  Series Voltage Comp. (b)   
  Series AC Chopper (c) 

 
MF Isolation                  

Active Input & Output Stage (d)     

LF 
MF 
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► Basic SST Structures 

●  Handling of Voltage & Power Levels 
 
- Multi-Level Converters / Single Transf. 
- Cascading / Parallel Connection of Modules 
- Series / Parallel Connection of Semicond. 
- Hybrid Combinations 
 

●  Medium Freq. Required  for Achieving Low Weight (Low Realiz. Effort) AND  High Control Dynamics  
 

-  Three-Stage Power Conversion with MV and LV  DC Link 
-  Two-Stage Concept with LV DC Link (Connection of Energy Storage) 
-  Two-Stage Concept with MV DC Link (Connection to HVDC System) 
-  Direct or Indirect Matrix-Type Topologies (No Energy Storage) 
 

●  Power Conversion 
 

-  Direct 3ph. Converter Systems 
-  Three-Phase Conn. of 1ph. Systems 
-  Hybrid Combinations 

●  Realization of 3ph. Conversion 
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► Basic SST Structures 

●  Basic SST Topologies Including also  
       Indirect Matrix Converters   
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► Basic SST Structures 

● Examples of Direct and Partial Indirect Matrix-Type Converter Topologies  
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► Basic SST Structures 

● Examples of Hybrid (Partial Matrix–Type) and DC-Link-Based Converter Topologies  
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► Basic SST Structures 

-  Partial  or Full Phase Modularity 
 
*  Modularity of Electric Circuit 
*  Modularity of Magnetic Circuit  

*  Phase Integrated SST  
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► Basic SST Structures 

● Example of Partly Phase Modular SST  
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► Basic SST Structures ► Basic SST Structures 

-  Multi-Cell and Multi-Level Approaches  

*  Single-Cell / Two-Level Topology  

* Medium Voltage Application   
   Partitioning of the Overall Voltage  
   Required Due to Limited Blocking 
   Capability of the Power 
   Semiconductors 
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► Basic SST Structures ► Basic SST Structures 

* Two-Level Topology  

-  Multi-Cell and Multi-Level Approaches  

* Medium Voltage Application   
   Partitioning of the Overall Voltage  
   Required Due to Limited Blocking 
   Capability of the Power 
   Semiconductors 
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► Basic SST Structures 

-  Classification   

●  Very Large Number of Possible Converter Topologies (!)  
 
* Partitioning of Power Conversion  Matrix & DC-Link Topologies 
* Splitting of 3ph. System into Individual Phases  Phase Modularity 
* Splitting of Medium Operating Voltage into Lower Partial Voltages  Multi-Level/Cell Approaches 
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► Basic SST Structures 

-  Classification   

●  Very Large Number of Possible Converter Topologies (!)  
 
* Partitioning of Power Conversion  Matrix & DC-Link Topologies 
* Splitting of 3ph. System into Individual Phases  Phase Modularity 
* Splitting of Medium Operating Voltage into Lower Partial Voltages  Multi-Level/Cell Approaches 
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► Challenges of Semiconductor Control of 
     Distribution-Class Devices   

-  Losses / Efficiency   
-  Reliability  
-  Insulation Coordination 
-  Cost 

●  Hybrid Approach of SST+Magnetic Transf. as Alternative to Pure SST Energy Flow Contr.  

-   Heydt (2010) 
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Remark 
   Volume / Weight Reduction & Efficiency Increase by  

Application of HT Superconductors 
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► High Temp. Superconducting (HTS) LF Transformer for Rail Vehicles 
- Specifications      1MVA, 25kV/ 2x1389V, 50Hz, uSC=25%  
- Current Density    21A/mm2 

- Cooling                 66K (Liquid Nitrogen) 

●  Power Flow of Conv. Locomotives is Fully Controlled by 4QC   No SST Required for Control 
●  99% Efficiency (Significant Loss Red.  vs.  Conv. Transf.)      Substantial Energy Saving 
●  50% Smaller than Conv. Transformer 
●  No Fire Hazard / Contamination and  Thermal Aging 

- SIEMENS / TU Darmstadt (2001) 
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► High Temp. Superconducting (HTS) LF Transformer for Grid Applications 

●  Low Losses 
●  Self Fault Current Limitation (SFCL) Function  (No Active Control) 
●  To be Installed in South. Calif. Edison Utility Substation 2013 

- Oak Ridge Nat. Lab. (ORNL) & Waukesha Electr. Systems & SuperPower (Manufacturer) 
- Target     28MVA, 69kV/12.47kV-Class 
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Basic SST Concepts 
   Matrix-Type AC/AC Converters 
Indirect Converter Topologies  
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► Electronic Transformer - McMurray 1968  

●  Electronic Transformer  =  HF Transf. Link & Input and Output Sold State Switching Circuits  
●  AC or DC  Voltage Regulation  &  Current Regulation/Limitation/Interruption 

■  Matrix-Type f1=f2 



37/200 

●  50% Duty Cycle Operation @ Primary and Secondary 
●  Output Voltage Control via Phase Shift Angle 

► Electronic Transformer - McMurray 1968  
■  Matrix-Type f1=f2 
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●  Inverse-Paralleled Pairs of Turn-off Switches 

► Electronic Transformer    
■  Matrix-Type f1=f2 
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●  Fully Bidirectional / 4Q-Operation 
●  Direct and Seamless Transition between the Quadrants   

► Electronic Transformer   
■  Matrix-Type f1=f2 
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●  Harada (1996) Based on McMurray Patent 

■  Matrix-Type f1=f2 

► Electronic Transformer   
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●  Experimental Verification (200V/3kVA) of  
         Basic Operation and Control Characteristic   

► Electronic Transformer   
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●  Targeting Traction Application  
●  Combination of Forced Commutated VSC  &   Thyristor  Cycloconverter 
●  VSC Defines Transformer Voltage & Generates Thyristor Converter Commutation Voltage 
●  Energy Flow Defined by Control Angle of Thyristor Converter ! 

-  Mennicken (1978, f = 200Hz) 
   I-Input, V-Output (McMurray) 

► Direct Matrix-Type 1ph. AC/DC Converter 
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●  Thyristor Converter  
    Control Angle α= π/3 

-  Mennicken (1978, f = 200Hz) 
   I-Input, V-Output (McMurray) 

► Direct Matrix-Type 1ph. AC/DC Converter 
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●  Thyristor Converter  
    Control Angle α= 2π/3 

-  Mennicken (1978, f = 200Hz) 
   I-Input, V-Output (McMurray) 

► Direct Matrix-Type 1ph. AC/DC Converter 
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● Experimental Verification (Switching Frequency f =200Hz, fN=162/3 Hz) 

► Direct Matrix-Type 1ph. AC/DC Converter 
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●  Targeting Traction Applications 
●  Novel AC Current Control Concept for Mennicken Syst. 
●  Several Switchings of the VSC within Cycloconv. Cycle 
●  Lower Transformer Flux Level (Size) / Requires Transformer Flux Balancing Control 

-  Östlund (1993) 
   I-Input, V-Output (McMurray, Mennicken) 

► Direct Matrix-Type 1ph. AC/DC Converter 
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●  Cascading of Primary Converters 
●  Reduction of Thyristor Blocking Voltage Stress 
●  Primary Winding Division for Sinusoidally Varying Staircase Voltage 
 

-  Östlund (1993) 
   I-Input, V-Output (McMurray, Mennicken) 

► Direct Matrix-Type 1ph. AC/DC Converter 
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●  Extension of the Topology of Mennicken -  VSC Capacitive Snubbers & Turn-off Cycloconv. Switches 
●  New Control Scheme Ensuring  ZVS for the VSC and  ZCS  for the Cycloconverter  (Matrix Conv.) 

-  Mennicken   

- Kjaer et al. (2001) 
- Norrga (2002) 

► Direct Matrix-Type 1ph. AC/DC Converter 
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● Commutation Cycle of the  ZVS/ZCS  Control Scheme Proposed by Norrga 
● Alternate Commutation of VSC and CSC   

ZVS ZVCS 

ZCS 

ZCS 

► Direct Matrix-Type 1ph. AC/DC Converter 
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●  Voltage and Current Waveforms for  iac>0 
●  Commutation of Cycloconverter Immediately after VSC Commutation  
●  Three-Level AC Output Voltage &  Very Limited Power Flow Reversal  

-  Norrga (2002) 
       I-Input, V-Output (McMurray, Mennicken) 

► Direct Matrix-Type 1ph. AC/DC Converter 
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● VSC Quasi-Resonant Commutation Ensuring ZVS for Low Load (Current Insufficient for ZVS) 
● Transformer Primary Winding Short Circuits by Cycloconverter During VSC Commutation  

! 

-  Norrga (2002) 
       I-Input, V-Output   

► Direct Matrix-Type 1ph. AC/DC Converter 
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●  Simulation Results and Extension to MV Input (Norrga, 2002)  

-  Norrga (2002) 
      I-Input, V-Output   

► Direct Matrix-Type 1ph. AC/DC Converter 



53/200 

●  Targeting Traction Applications 
●  Dual Structure Association (VSC & CSC)  &  Phase Control &  Dual Thyristor Control (ZVS) 
●  Soft Commutation of All Switches  

-  Ladoux (1998) 
      I-Input, V-Output (McMurray, Mennicken) 

► Direct Matrix-Type 1ph. AC/DC Converter 
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●  Alternate Commutation of VSC and CSC  Natural Switching of CSI Dual Thyristors / Soft-Commut. 
●  Transformer Magnetizing Current for Supporting ZVS at Light Load  or    
●  Quasi-Resonant Commutation (Short Circuit of CSI during VSC Commutation) 
●  Simplified Control Scheme – Two Level Voltage VO vs. Three-Level Contr. (Norrga) 

-  Ladoux (1998) 
      I-Input, V-Output (McMurray, Mennicken) 

► Direct Matrix-Type 1ph. AC/DC Converter 
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-  Enjeti (V-Input, V-Output, θ = 0, 1997) 
-  Krishnaswami / 2005,  Liu / 2006 (V-Input, I-Output)  
-  Kimball (V-Input, V-Output, 2009) 

●   f1 = f2 ,  
●   Input Power = Output Power (and No Reactive Power Control) 
●   Same Switching Frequency of  Primary and Secondary Side Converter 
●   Power Transfer / Outp. Volt. Contr. by Phase Shift θ of Primary &  Sec. Side Conv. (McMurray) 
●   θ= 0 (shown) Allows to Omit Output Filter Ind. (V-Output), But does Not Allow Output Control 

► Direct Matrix-Type 1ph. AC/AC Converter 

(a) 
(b) 

(c) 

(a) 

(b) 

(c) 
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-  Enjeti (V-Input, V-Output, θ = 0, 1997) 

●   Realization of Matrix Stages with Conventional IGBT Modules 
●   Cascaded Converter Input Stages for High Input Voltage Requirement 
●   Single Transformer / Split Winding Guarantees Equal Voltage Sharing 

► Direct Matrix-Type 1ph. AC/AC Converter 
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-  Kimball (V-Input, V-Output, 2009) 

●   f1 = f2 
●   Input Power = Output Power (and No Reactive Power Control) 
●   1ph. AC/AC ZVS Dual Active Bridge (DAB) Converter  (Voltage Impressed @ Inp. & Output) 
●   Power Transfer / Output Voltage Contr. by Phase Shift φ of Primary &  Sec. Bridge Operation 

► Direct Matrix-Type 1ph. AC/AC Converter 
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●  ZVS Strategy 
●  ZVS Range Dependent on Load Condition & Voltage Transfer Ratio (Stray Ind. as Design Parameter)  

► Direct Matrix-Type 1ph. AC/AC Converter 

-  Kimball (V-Input, V-Output, 2009) 
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●  Topological Variation of the Basic 1ph. AC/AC DAB Topology  
●  Three-Level Input Stage, Center-Tap Secondary Winding Rectifier Stage 

► Direct Matrix-Type 1ph. AC/AC Converter 

-  Yang (V-Input, I-Output, 2009) 
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●   Six Conduction States within a Pulse Period 

► Direct Matrix-Type 1ph. AC/AC Converter 

-  Yang (V-Input, I-Output, 2009) 
 

+U + ½U 0 

-U - ½U 0 
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●  Traction Application 
●  MF Transformer with Splitted/Cascaded Primary Windings & Single Secondary Winding  
●  DAB Topology but Higher Secondary Side Switching Frequency for Current Control   
●  Natural Balancing of the Input Filter Capacitor Voltages  
●  400Hz Multi-Step Commutation of Primary Side Matrix Conv. 
●  Conceptual Relation of Control Concept to Östlund (Prim.: 400Hz, Sek.: 2.5kHz)   

► Direct Matrix-Type 1ph. AC/DC Converter 

-  Drabek et al. (2011) 
                         V-Input, V-Output 
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VSR 

●  Output Voltage Control via Current Amplitude / Phase Shift Controller Def.  Inp. Current Phase Angle 
●  Hysteresis Contr. of VSR impresses 400Hz Ampl. Mod. Square Wave Current (def. Ampl. & Phase)  
●  Synchr. Switching (400Hz) Primary Matrix Stage Demodulates Transf. Current into Cont. Sinewave  

► Direct Matrix-Type 1ph. AC/DC Converter 
-  Drabek et al. (V-Input, V-Output , 2011) 
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●  Experimental Analysis  

► Direct Matrix-Type 1ph. AC/DC Converter 

uSC  

-  Drabek et al. (V-Input, V-Output , 2011) 
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●  AC/DC (Rectifier Bridge, No Output Capacitor) and Subsequent MF AC Voltage Generation 
●  Secondary Side Rectifier and DC/DC Boost Converter for Sinusoidal Current Shaping 
●  Switching Frequency f = 400Hz  

! 

VSI 

DC/DC Boost 
Converter 

► Indirect Matrix-Type 1ph. AC/DC Converter 

-  Weiss (I-Input, V-Output, 1985) 
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●  AC/DC (Rectifier Bridge, No Output Capacitor) and Subsequent MF AC Voltage Generation 
●  Secondary Side Rectifier and DC/DC Boost Converter for Sinusoidal Current Shaping 
●  Switching Frequency f = 400Hz  

► Indirect Matrix-Type 1ph. AC/DC Converter 

-  Weiss (I-Input, V-Output, 1985) 

! 

VSI DC/DC Boost 
Converter 
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●  AC/DC Input Stage (Bidir. Full-Wave Fundamental Frequ. GTO Rect. Bridge, No Output Capacitor)  
●  Subsequent DC/DC Conversion & DC/AC Conversion (Demodulation, f1 = f2)  
●  Output Voltage Control by Phase Shift of Primary and  Secondary Side Switches (McMurray) 
●  Lower Number of HF HV Switches  Comp. to Matrix Approach 

! 

AC Input Voltage 
Rectifier Output Voltage 

Transformer Input Voltage 
Spectrum of Transformer Voltage 

► Indirect Matrix-Type 1ph. AC/AC Converter 

-  Lipo (V-Input, I-Output, 2010) 
 

(b) 

(a) 

(c) 

(b) 

(a) 

(c) 
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●  Multi-Step Commutation of GTO Input Stage (at Mains Voltage Zero Crossings) 
●  Commutation Considers DC Link Current Direction and Input Voltage  Polarity   
●  Same Gate Signals for Diagonal Thyristors (G1,G3), (G2,G4), (G5,G7), (G6,G8)  

! 

► Indirect Matrix-Type 1ph. AC/AC Converter 

-  Lipo (V-Input, I-Output, 2010) 
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► DC-Link Type (Indirect) 1ph. AC/AC Converter  

●  Alternatives: AC//DC – DC/AC  Topologies 
  AC/DC – DC//AC  Topologies 

●  AC/DC   – DC//DC – DC/AC  Topologies 
●  Dual Act. Bridge-Based DC//DC Conv. (Phase Shift Contr. Relates Back to Thyr. Inv. / McMurray) 

(Ayyanar, 2010)  
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High-Power DC-DC 
Conversion  
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► Dual-Active-Bridge (DAB) 

- De   Doncker (1991) 

●  Two Voltage Sources Linked by an Inductor 
●  Operated at Medium/High Frequencies  
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► DAB – Common Bridge Configurations 

■  Half-Bridge Configuration 

■  Full-Bridge Configuration 

● Two Voltage Levels from Each Side 

● Three Voltage Levels from Each Side 
     (Additional Freewheeling State) 
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► DAB – Common Bridge Configurations 

■  Neutral-Point-Clamped (NPC) Configuration 

■ NPC / Full-Bridge Configuration 

● Three-Voltage Levels from Each Side 
● Voltage-Doubler Behavior 

● Suitable for Higher MV/LV Ratios 



73/200 

► DAB – Phase-Shift Modulation 

■  Power Transfer Controlled through Phase-Shift between Bridges 

● Fundamental Model suitable for 
       Calculation of Power Transfer 
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► DAB – Phase-Shift Modulation 

■  In a Certain Range, All Switching Transitions done in ZVS Conditions 

- Soft Switching Range 
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► DAB – Phase-Shift / Duty-Cycle Modulation 

■     Additional Degrees of Freedom can be 
       Utilized to Optimize Targeted Criteria 

●     E.g. Minimize RMS Currents for 
    Minimum Conduction Losses 
        (ETH, Krismer, 2012) 

●  Not Possible in Half-Bridge Configuration 
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► DAB – Triangular-Current Mode 

■  Duty-Cycles and Phase-Shift Utilized to perform ZCS Switching  

● Inductor Voltage 

ZCS on 
MV Side ZVS on 

LV Side 
ZCS on MV 

and LV Sides 

ZCS on MV Side 
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► Three-Phase DAB 

■  ZVS of All Devices within Certain Power Range 
■  ZCS Only Possible at One Operating Point 

-   De Doncker (1991) 
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► Half-Cycle Discont.-Cond.-Mode Series-Res.-Conv. (HC-DCM-SRC) 

■  Power Supplies for Robots – RWTH (Esser, 1991) 

●  Energy Transfer Through the Robot’s Arm Joints 

! ! 
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■  Operating Principle:     Resonant Frequency ≈ Switching Frequency 

●            At Resonant Frequency, the Input/Output Voltage Ratio is Unity (Steigerwald, 1988) 

► Half-Cycle Discont.-Cond.-Mode Series-Res.-Conv. (HC-DCM-SRC) 
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●      Output Voltage is VLV ≈ VMV∙n for  
       Any Output Power 

■  Equivalent Circuit for Transient Analysis (Esser, 1991) 

► Half-Cycle Discont.-Cond.-Mode Series-Res.-Conv. (HC-DCM-SRC) 
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■  LLC Structure to Reduce Switching Losses 
■  Zero-Current-Switching of All Devices 
 

► Half-Cycle Discont.-Cond.-Mode Series-Res.-Conv. (HC-DCM-SRC) 
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■  Efficiency / Power-Density 
     Optimization  Pareto Front  
 
■  Operating Frequency Used as 
     Free Parameter 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
●  HC-DCM-SRC is Suitable  
     for Reaching High Efficiency 
 
●  Optimum fS for 99% 
     Efficiency is  6…8 kHz 

► Half-Cycle Discont.-Cond.-Mode Series-Res.-Conv. (HC-DCM-SRC) 

-  ETH (Huber, 2013) 
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► Three-Phase HC-DCM-SRC 

-  RWTH (Jacobs, 2005) 

●      Possible Power Density/Efficiency Improvement + Red. DC Filtering 
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► AC/DC Converter with DAB 

-   KU-Leuven (Everts, 2012, presented for LV Applications) 

●  Direct MV-AC to LV-DC Conversion (No Constant Voltage MV-DC Link) 
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ZCS/ZVS of IGBTs 
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 NPC Bridge Leg Based on 1.7kV PT IGBTs  
Conn. to MF Transf. and LV Side Bridge 

► ZCS and ZVS of IGBTs 

 

►  Analysis of IGBT Losses under ZCS 
      Conditions for the TCM-DAB 
 

 
 
 

►  Tested on a NPC-3-Level Structure  
      Based on 1.7kV IGBTs 

 1.7kV PT IGBT Module- 
Based Testbench 
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  NPC Bridge Structure and Experimental Waveforms 

 for 166kW / 20kHz and Power from MV to LV  

► Operation 
 

►  NPC Bridge Applies Full  
      Positive Voltage 
 

 
 

►  As soon as the Current  
      Reaches Zero, the NPC  
      Bridge is Turned to 
      Freewheeling, achieving  
      ZCS on S1 
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  NPC Bridge Structure and Experimental Waveforms 

 for 166kW / 20kHz and Power from MV to LV  

► Operation 
 

►  NPC Bridge Applies Full  
      Positive Voltage 
 

 
 

►  As soon as the Current  
      Reaches Zero, the NPC  
      Bridge is Turned to 
      Freewheeling, achieving  
      ZCS on S1 
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► Standard ZCS: MVLV 

 1.7kV IGBT NPC bridge 
  

  NPC Bridge Structure and Experimental Waveforms 
 for 166kW / 20kHz and Power from MV to LV  

► Large Current Spike  
         Even at Zero Current 
 
 
 
 

► Large Turn-on Losses on 
              Turning-on Device 
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 Experiment used to Study Stored Charge Dynamics 
(Ortiz, 2012) 

 

► Measurement of IGBT 
     Stored Charge Behavior 

 1.7kV IGBT Test Circuit for  
Charge Behavior Analysis 

► Exp. Measurement of Internal Charge 
► Dynamic Behavior of Stored Charge 
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 Experimental Stored Charge Dynamic Analysis 
 on 1.7kV FS IGBT 

       Charge Control Equation to 
Estimate Charge Behavior 

► Field-Stop 1.7kV IGBT 
► 62mm Package 

► Measurement of IGBT 
     Stored Charge Behavior 
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  Experimental Stored Charge Dynamic Analysis 
 on 1.7kV FS IGBT and Resonant Sine Pulse 

       Charge Control Equation to 
Estimate Charge Behavior 

► Field-Stop 1.7kV IGBT 
► 62mm Package 

► Measurement of IGBT 
     Stored Charge Behavior 
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 Summary of IGBTs’ Parameters 
 

 

► Non-Punch-Through 1.7kV IGBT 
► SOT-227B Package 

 Experimental Stored Charge Dynamic Analysis 
 on 1.7kV NPT IGBT 

► Measurement of IGBT 
     Stored Charge Behavior 
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► Quasi ZCS and ZVS:  MV  LV 

 1.7kV IGBT NPC Bridge  NPC Bridge Exp. Waveforms for QZCS/ZVS @ 166kW / 
                    20kHz / 120°C and Power from MV to LV Side  

► Low Turn-on Losses due to 
           Low Switched Current  
 

 
 
 

► Virtual Elimination of  
                  Turn-on Losses 
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► Quasi ZCS and ZVS:   Switched Current Sweep 

 ZCS Losses for Both Power Flow Directions and  
25°C & 120°C @ 166kW Transferred Power 

► Minimum Losses around 
      40A @120°C and MV  LV 
 

 
 
 

► Minimum Losses around  
      70A @120°C and LV  MV 
 

 
 
 
 

► Total Reduction of ≈37%@120°C 
           for  MV  LV 
 

 
 
 

► Total Reduction of ≈50%@120°C  
          for  LV  MV 
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Three-Phase SST Distribution 
System Applications 

   Phase Modular / Direct 3ph. Concepts 
Matrix / DC-Link Based Concepts 

ISOP Converter Topologies 
Example SST Projects 

SST Concepts Employing LF Transformers 
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► 3ph. SST Concepts 

●  Frequently     1ph. AC/3ph. AC Converter Topologies Analyzed Instead of Full 3ph. Systems 
●  Frequently     Unidir. (MVLV) Topologies Proposed/Analyzed Instead of Bidir. Systems 
 
●  1ph. AC/3ph. AC Conv. Topologies are Directly Applicable for Traction Applications 

■  Direct or Indirect Matrix Type Topologies  or             ■  Phase-Modular (3ph. Comb. of 1ph. Units)  or  
■  DC-Link Based Topologies                                             ■    (Integrated) Direct 3ph. Topologies 
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●  Only Interesting for Low-Voltage / Low-Power Applications    

-  Venkataramanan (2000) 
 

► Phase-Modular Direct Matrix-Type 3ph. SST Concepts 
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► Partly Phase-Modular Direct Matrix-Type 3ph. SST Concepts 
   -  Enjeti (1997)           -  Steimel et al. (2002) 
 

●  Thyristor Cycloconv. Commut. Voltage  Impressed by MV VSI (Mennicken, 1978) 
●  Thyristor Recovery Time Limits Switching Frequency to fP≈200Hz (α=150°) 
●  Reactive Power Demand of  the Thyristor Cycloconverter  
●  Implementation of Cycloconv. with (Turn-Off) RB IGCTs (6.5kV) allows fP≈500Hz 
 
●        Three-Limb Core could be Employed for Realiz. of MF D-y-Transformer  (Enjeti, 1997)     -  Enjeti: 

-  Steimel: 
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► Direct 3ph. Direct Matrix-Type 3ph. SST Concepts 

-  Venkataramanan (2000) 

●   No Energy Storage / DC Port 
●   Large Number of Power Semiconductors (24) 
●   Limited  IGBT Blocking Capability does Not Allow MV Application of Basic Conv. Topology  
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-  Mohan (2009) 

► Direct 3ph. Direct Matrix-Type 3ph. SST Concepts 

●  Reduced HV Switch Count (Only 2 HV Switches @  50% Duty Cycle / No PWM) 
●  LV Matrix Converter  Demodulates MF  Voltage to Desired Ampl. / Frequency 
●  Switching CM Voltage Eliminated at Generator Terminals by Proper MC Control 
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●  Equivalent Circuit of the Transformer for SWp-on and SWn-off  and  Input Phase a Voltage of MC 
●  Clamp Circuit Sinks Energy Stored in the Leakage Inductance  
●  Clamp Voltage = 2 x Grid Line-to-Line Voltage 

-  Mohan (2009) 

► Direct 3ph. Direct Matrix-Type 3ph. SST Concepts 
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●  Modification of Direct MC Topology Proposed by Venkataramanan (2000) 
 
●  Formation of Transf. Voltage Involving all Phases a,b,c and  Ensuring Balanced Flux 
●  Transformer Sec. Voltage Rectified into Fluctuating DC Link Voltage Vdc 
●  Vdc Converted into VA, VB, VC by Space Vector PWM  for Mains Current Control   

► Indirect Matrix-Type Direct 3ph. SST Concepts 
-  Enjeti  (2003) 
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●   Lower Number of Switches (20) Comp. to Matrix Approach (24) 
●   Three-Stage Power Conversion (3ph.AC/DC – DC//DC – DC/3ph.AC)  Eff. Red. 
●   Limited  IGBT Blocking Capability does Not Allow MV Application of Basic Conv. Topology  

► DC-Link Based Direct 3ph. SST Topologies  
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●   M-Level Topology  & HV IGBTs for Incr. Input Voltage Capability (Front-End and DC/DC Conv.) 
●   Current Doubler Rectifier for Increasing Output Current Capability / Low Output Current Ripple 
●   Bidirectional Extension by Switches Antiparallel to Rectifier Diodes Possible (Snubber) 

► DC-Link Based Direct 3ph. SST Topologies  
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► DC-Link Based Direct 3ph. SST Topologies  

-  EATON (Patent Appl. WO 2008/018802, Inv.: M.J. Harrison, 1997) 
 

●  Only Interesting for Low-Voltage / Low-Power Applications    
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► DC-Link Based Direct 3ph. SST Topologies  

- Proposed for Energy Storage Systems (Enjeti, 2012) 
 

●  MV Side Series Direct Matrix Structure with Single 3ph. MF Transformer Core  
●  Single LV Side 2-Level 3ph. Inverter  
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●   Application for MV Motor Drives Replacing the 50/60 Hz Transformer 

► DC-Link Based Fully Phase Modular SST Topologies  

-  Akagi (2005/2007) 
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●  Back-to-Back Connection of MV Mains by MF Coupling of STATCOMs   
●  Combination of Clustered Balancing Control with Individual Balancing Control 

► DC-Link Based Fully Phase Modular SST Topologies  

-  Akagi (2005) 
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●   SST Concept Without Accessible MV DC Bus 
●   Extension to Bidirectional Power Flow by Replacing the Passive Rectifiers with Active Systems 

► DC-Link Based Partly Phase Modular SST Topologies  

-  van der Merwe (2009) 
 



111/200 

●   Electronic Power Transformer for 110/20kV and 110/10kV Applications  
●   Truck Movable Temporary Replacement of Failed Conventional Transformer  

► DC-Link Based Partly Phase Modular SST Topologies  

-  Steimel et al. (2002) 
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●   Configuration of Cells for 10kV and 20kV MV System  
●   Implementation of Soft-Switching DC/DC Module (Self Balancing of DC Link Voltages, Cable Transf.) 

► DC-Link Based Partly Phase Modular SST Topologies  

-  Steimel et al. (2002) 



113/200 

► DC-Link Based Partly Phase Modular SST Topologies  

-  Steimel et al. (2002) 

●  Multi-Loop Control Structure of the Electronic Power  Transformer 

… controlled via vS 
     according to 
     the MV system 
     load state 
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●  Multi-Level or  Cascaded H-Bridge Interfaces for MV Connection   
●  Parallel Connection of Modules on the LV Side for Distribution of High Output Current  
●  Low Total Input Voltage / Output Current Harmonics (Low Ind. Volume / Low Cap. Curr. Stress) 
●  Cascaded H-Bridges Preferable due to Voltage Balancing Problem and Scaling of ML Converters  

► Multilevel  &  Input Series Output Parallel (ISOP) SST Topologies 
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●  Transformer Classification Independent of Number of DC Links    

► Classification System for Multi-Level & Multi-Cell Power Converters 
-  Clare/Wheeler et al. (2001) 

●  Classification of Structures with HV (Side A) and MV (Side B) DC Link 
●  Nomenclature for Topological Arrangement  

►  

●  Structure of HF Transformer Defined by L,M,N 

Side A    Side B 
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► Classification System for Multi-Level & Multi-Cell Power Converters 

●  Structure of HF Transformer Defined by L,M,N 

●  Structure of the DC Links 
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► Classification System for Multi-Level & Multi-Cell Power Converters 

●  Complete Converter Structures 
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●  Advanced Power Conv. for Universal and Flexible Power Management (UNIFLEX) in Future Grids 
●  Cellular 300kVA Demonstrator of 3-Port Topology  for 3.3kV Distr. System & 415V LV Grid Connection 

► UNIFLEX Project  

-  EU Project (2009) 
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●  Advanced Power Conv. for Universal and Flexible Power Management (UNIFLEX) in Future Grids 
●  Cellular 300kVA Demonstrator of 3-Port Topology  for 3.3kV Distr. System & 415V LV Grid Connection 

► UNIFLEX Project  

-  EU Project (2009) 
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●  AC/DC-DC//DC-DC/AC Module (MF Isolation, 1350V DC Link) and Prototype @ Univ. of Nottingham 

► UNIFLEX Project  

-  EU Project (2009) 
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●  SiC Enabled 20kHz/1MVA “Solid State Power Substation” 
●  97% Efficiency / 25% Weight / 50% Volume Reduction (Comp. to 60Hz) 

► SiC-Enabled Solid State Power Substation 

-  Das (2011) 

- Fully Phase Modular System 
- Indirect Matrix Converter Modules (f1 = f2) 
- MV ∆-Connection (13.8kVl-l, 4 Modules in Series) 
- LV  Y-Connection (465V/√3,  Modules in Parallel) 
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●  SiC Enabled 20kHz/1MVA “Solid State Power Substation” 
●  97% Efficiency / 25% Weight / 50% Volume Reduction (Comp. to 60Hz) 

► SiC-Enabled Solid State Power Substation 
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- Indirect Matrix Converter Modules (f1 = f2) 
- MV ∆-Connection (13.8kVl-l, 4 Modules in Series) 
- LV  Y-Connection (465V/√3,  Modules in Parallel) 
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► Transformerless Intelligent Power Substation (TIPS)   

-  Bhattacharya / FREEDM Center (2012) 

●  13.8kV  480V 
●  15kV Si-IGBTs, 1200V SiC MOSFETs 
●  Scaled Prototype 

20kHz 

22kV 800V 
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The MEGACube @ ETH Zürich 
 

  DC-DC Converter Stage 
  Module Power       166kW 
  Frequency             20kHz 
  Triangular Current Mode Modulation 

 Structure of the 166kW Module and MV Side Waveforms 
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The MEGACube @ ETH Zürich 

 
  Total Power  1MW 
  Frequency  20kHz 
  Efficiency Goal 97% 

LV DC MF AC MV DC 

  MV Level     12kV 
  LV Level    1.2kV 
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► The MEGACube - MOSFET-based LV Full-Bridge 

●  Power Rating                                      55kW 
●  Estimated Losses      0.31kW 
●  Based on Single TO-247 Devices  
●  Water-Cooled 

 55 kW Water-Cooled LV Full-Bridge 
Utilized for MOSFET/IGBT Arrangement 
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 83 kW Water-Cooled LV Full-Bridge 
Based on IGBT ECONOdual Modules 

► The MEGACube - IGBT-Based 
           LV Full-Bridge 

●  Power Rating                   83kW 
●  Estimated Losses         0.9kW 
●  Based on ECONOdual IGBT Module 
●  Water-Cooled 
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166 kW Water-Cooled MV NPC Module 
Based on ECONOdual IGBTs 

► The MEGACube - MV NPC Module 

●  Power Rating            166   kW 
●  Estimated Losses         3.1   kW 
●  Based on ECONOdual IGBT Module 
●  Water-Cooled 

 ► 
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 166 kW  Air-Cooled Ferrite Core Transformer 

► The MEGACube - Air-Cooled Ferrite Core Transformer 

●  Power Rating                                                166    kW 
●  Estimated Losses (incl. Fan Power)    0.59    kW 
●  Based on ECONOdual IGBT Module 
●  Forced-Air-Cooled 
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166 kW Water-Cooled  

Nanocrystalline Core Transformer 

► The MEGACube - Water-Cooled 
Nanocrystalline Transformer 

●  Power Rating             166 kW 
●  Estimated Losses             0.34 kW 
●  Power Density          45 kW/dm3  

 ► 
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► The MEGACube  166kW     /   20kHz Module 

 166kW / 20kHz TCM DC-DC Converter 
400V LV-Side / 2kV MV-Side 
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► The MEGACube -  Resonant 166kW / 20kHz Converter 

 166kW / 20kHz HC-DCM-SRC DC-DC Converter 
400V LV-Side / 2kV MV-Side 
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●  2-Level VSI on LV Side / HC-DCM-SRC DC-DC Conversion / Multilevel MV Structure 

MV LF AC LV DC MF AC MV 
DC 

LV LF AC 

► The MEGALink @ ETH Zürich 
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●  ISOP Modular Topology 
●  Three-Stage (AC/DC-DC/DC-DC/AC) Approach 

► Unidirectional DC-Link Based SST Structures 

-  Ronan et al. (2000) 
 

-  AC Input                      7.2kV  
-  DC/DC               1000V/±275V 
-  AC Output             120V/240V 

Input  
Module 

Isolation  
Module 

Output 
Module 
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●  100kVA 15kV Class Intelligent Universal Transformer (IUTTM) 
●  Development of HV Super GTO (S-GTO) as  MV Switching Device / SiC Secondary Diodes 
●  20kHz Series Resonant DC/DC Converter  Utilizing Transformer Stray Inductance  

► Unidirectional DC-Link Based SST Structures 

-  EPRI (2009) 
 

-  AC Input             8.6kV (15kVl-l) 
-  DC/DC                  3.5kV/400V 
-  AC Output             120V/240V 
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●  Outline of 100kVA (4x25kVA) IUT (Pole Mount Layout, 35”H 35”W 20”D, 1050 lbs) 
●  Natural Air Cooling / S-GTO Module (No Wire Bonds, 50kHz Switching Frequency Target) 

► Unidirectional DC-Link Based SST Structures 

-  EPRI (2009) 
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●  SST Application for MV Adjustable Speed Drive  (Unidirectional AC/AC Front End / 3L NPC Inverter) 
●  Avoids Bulky LF Transformer / DC Link  and Mains Current Harmonics (Active Filter) 

► Unidirectional DC-Link Based SST Structures 

-  Enjeti (2012) 
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●  SST Appl. for MV Adjustable Speed Drive  (Unidir. AC/AC Front End / Cascaded 2L 1ph.-Inverters) 
●  Avoids Bulky LF Transformer / DC Link  and  Mains Current Harmonics (Active Filter) 

► Unidirectional DC-Link Based SST Structures 

-  Enjeti (2012) 
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► Unidirectional DC-Link Based SST Structures 

●   5-Level Series Stacked Unidir. Boost Input Stage  

-  van der Merwe (2009) 
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●  Basic 1ph AC chopper - J.L. Brooks  (1980) 
    “Solid State Transformer Concept Development” 
 
 

●  Provides AC Voltage Regulation and Low  
     Sensitivity to Harmonics 
 
 

●  Isolation Provided with LF Transformer (Not Shown) 

► Full Power SST  Employing LF Transformers  

●  3ph AC Version – G. Venkataramanan  (1995) 
●  No 4-Quadrant Switches Required 
●  Isolation  with LF Transformer (Not Shown) 
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► Full Power SST  Employing LF Transformers  

●  Derived from DC Buck Converter 

●  J. C. Rosas-Caro (2010)     

* Modular Multi-Cell 3ph. AC Chopper 
   (Patent SIEMENS)     
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●  Electronic Tap Changer of  LF Transformer 
●  MV Winding with Power Electronic Switched Tap. 
●  Two Modes of Operation:     
 
 
 

                     - Single Tap Position     (a) 
                         - PWM Modulated Tap (b)       
 

► Partial Power SST  Employing LF Transformers  

-  P. Bauer (1997) 
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●  Electronic Tap Changer – Complex Control Circuit   
●  Crowbar for Emergency Ride-Through 

► Partial Power SST  Employing LF Transformers  

●  Commutation Sequence of the 
         4-Quadrant Switches 
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-  Enjeti (2003)     

► Partial Power SST  Employing LF Transformers  

●  Controlled Output Voltage: Vo= Vx + Vc 
●  LF Isolation Transformer 
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-  Barbi  (2006) 

► Partial Power SST  Employing LF Transformers  

●  Controlled Output Voltage:    vo= vi + Δv 
●  Isolation Provided with LF Transformer (Not Shown) 
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-  K2 and K3 = ON 

► Partial Power SST  Employing LF Transformers  

●  Reconfigurable Auto-Transformer 
●  Switches K1, K2, K3 and K4 Used to Modify Output Voltage 

-  K1 and K4 = ON 

-  K1 and K3 = ON 

-  Shmilovitz (2011) 
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-  Bala (ABB 2012) 

► Partial Power SST  Employing LF Transformers  

●  Reactive Power Compensation (PFC, Active Filter, Flicker Control) 
●  Available DC Port (Isolated in Option 1a) 
●  Option 2:         Controlled Output Voltage  
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-  Bala (ABB, 2012) 

► Partial Power SST  Employing LF Transformers  

●  Commercial Product (ABB) 
●  Direct Connection of Input to Output (Bypass) or 
●  Compensation of Inp. Voltage Sag (Contr. Output Voltage) 
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SST Concepts for Traction Applications 
   Railway Systems Voltage/Freq. 

Modern Railway Systems’ Requirements  
SST Concepts for Traction 
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► Electric Railway Systems – A Little History 

■  Siemens Electric Railway – Werner von Siemens (1879) 
■  Speed: 7km/h  -  Power: 2.2 kW   -   Length: 300m 
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► Electric Railway Systems – A Little History 

■  Electrification of European Railways – Steimel (2012) 

●  16 2/3 Hz / 15kV AC   -   (1912) 
●  3kV DC and 1.5kV DC  -  (1920)  
●  50Hz / 25kV AC   -   (1936) 

≈ 6 Turns Around the Earth 
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► Electric Railway Systems – Today’s Drive Scheme 

■     16.7Hz  1ph.-Transformer Required to Step-Down the  
     Catenary Voltage to the Drive’s Operating Voltage 

■  Low Frequency Transformer 
 
 
 
 
 

     -  15% Weight of Locomotive 
     -  e.g. for 2MW ca. 3000kg 
     -  90-92% Efficiency 
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► Trends in Modern Railway Systems 

■  Electric Multiple Units (EMUs) 
     - e.g. Under-Floor Mounted 
 
■  Weight Reduction    
■  Energy Efficient Railways 

■  All Goals Lead to a Medium-Frequency 
    Isolation / Conversion Syst. (Dujic 2011) 
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► VSI Commutated Primary Converter 

-  Menniken (1978)  
-  Östlund (1992) 

MV LF AC MF AC LV DC 
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► Cascaded VSI Commutated Primary Converter 

MV LF AC MF AC LV DC 

-  Hugo (ABB, 2006) 
-  Pittermann (2008) 
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► Cascaded Source Commutated Primary Converter 

● Pittermann (2008) 
     
-  Module Power    2kW (downscaled) 
-  Frequency          800Hz 
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► Cascaded Source Commutated Primary Converter 

● Hugo (ABB, 2006) 
 
  -  Total Power       1.2MVA/15kV 
  -  Module Power   75kW 
   -  Frequency         400Hz 
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► Cascaded H-Bridges with Resonant/Non-Resonant DC-DC Stages 

-  Steiner (Bombardier, 2007) 
-  Weigel  (SIEMENS, 2009) 

MV LF AC MF AC LV DC MV DC 
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► Cascaded H-Bridges with Resonant/Non-Resonant DC-DC Stages 

● Weigel (SIEMENS, 2009) 
 
    - Module Power    450kW 
    - Frequency           5.6kHz 

● Steiner (Bombardier, 2007) 
 
    - Module Power     350kW 
    - Frequency              8kHz 
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► Cascaded H-Bridges with Multi-Winding MF Transformer 

●  Engel (ALSTOM, 2003) 

MV LF AC MF AC LV DC MV DC 
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► Cascaded H-Bridges with Multi-Winding MF Transformer 

● Engel (ALSTOM, 2003) 
 
-  Module Power   180kW 
-  Frequency            5kHz 
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► Cascaded H-Bridges with Multi-Winding MF Transformer 

● Taufiq (ALSTOM, 2007) 
 
-  Module Power     180kW     
-  Frequency              5kHz 
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► Modular Multilevel Converter 

-  Marquardt/Glinka (SIEMENS, 2003) 

MV LF AC 

MF AC 

LV DC 
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► Modular Multilevel Converter 

-  Marquardt/Glinka (SIEMENS, 2003) 
 
-  Module Power             270kW 
-  Module Frequency       350Hz 
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► Cascaded H-Bridges and Resonant LLC DC-DC Stages 

● Zhao et al. (ABB, 2011) 

MV LF AC MF AC LV DC MV DC 
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► Cascaded H-Bridges and Resonant LLC DC-DC Stages 

MV Module 

LV Module 

Assembled Converter 
 

    - Module Power    170 kW 
    - Frequency        2kHz 

● Zhao et al. (ABB, 2011) 
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SST Design Remarks 
   Current Ratings 

Cooling Considerations  
MF Transformer Design 

Flux Balancing 
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► Current Ratings – Overcurrent Requirements 

●  MV Transformers must Provide 
    Short-Circuit Currents of up to  
    40 Times Nominal Current for  
    1.5 Seconds (EWZ, 2009) 
 
●  Traction Transformers: 150% 
     Nominal Power for 30 Seconds 
      (Engel 2003) 
 
●   Power Electronics: Very Short 
     Time Constants ! 
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► Grid Harmonics and EMI Standards 

●    Medium Voltage Grid Considered Standards (Burkart, 2012) 
 
 
 

    - IEEE 519/1547 
    - BDEW 
    - CISPR 
 
●    Requirements on Switching Frequency and EMI Filtering 
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► Semiconductor Cooling and Isolation 

●  1.7kV IGBTs  Semiconductor Modules on Coldplates/Heatsinks Connected to Different  
     Potentials (CM Voltage Problems) 
 
 
 
 
 

●  3.3kV or 6.5kV IGBTs  Isolation Provided by the Modules’ Substrate, No Splitting of the 
    Cooling System Necessary. 

● Hoffmann (2009) 
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► MF Transformer Design – Cold Plates Cooling 

●   Heat Conducted from Inner Parts (Winding/Cores) to 
     Outer Actively Cooled Coldplates  

● Pavlovsky (2005) 
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► MF Transformer Design – Water Cooling 

●  Hollow Aluminum Conductor with Forced Water Cooling 
●  Isolation:   De-Ionized Water or MIDEL 

● Hoffmann (SIEMENS, 2011) ● Heinemann (ABB, 2002) 
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► MF Transformer Design – Cold Plates/ Water Cooling 

●  Combination of Heat Conducting Plates and Top/Bottom  Water-cooled Cold Plates 
●  FEM Simulation Comprising Anisotropic Effects of Litz Wire and Tape-Wound Core 
 

■    Nanocrystalline 160kW/20kHz Transformer (ETH, Ortiz 2013) 
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► MF Transformer Design - Isolation 

●  Specially Designed Isolated Housing for High Isolation to Ground 

●  Steiner (Bombardier, 2007) 
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► MF Transformer Design - Isolation 

●  Glass-Fiber Container 
    Engel (ALSTOM, 2003) 
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► MF Transformer Design – Acoustic Noise Emissions 

●  Magnetostriction of Core Materials (Zhao, 2011) 
 
 
 
 

     - Nanocrystalline    ~ 0ppm 
     - Amorphous           ~ 27ppm 
 
●  Other Influences from Production Processes,  
    Shapes and Assembly Procedures Affect the  
    Emitted Noise 
 

● Acoustic Noise Emitted at    2·fs  (!) 
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► MF Transformer Design – Winding Arrangements 

● Coaxial Cable Winding 
 
   - Extremely Low Leakage Inductance 
   - Reliable Isolation due to Homog. E-Field 
 
   - Low Flexibility on Turns Ratio 
   - Complex Terminations 

● Heinemann (2002) 
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► MF Transformer Design – Winding Arrangements 

● Coaxial Windings  
 
   - Tunable Leakage Inductance 
   - More Complex Isolation 
   - Total Flexibility on Turns Ratio 
   - Simple Terminations 

● Hoffmann (2011) 

● Steiner (2007) 
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► Flux Balancing - DC Magnetization 

-  Diff.  Turn-on/Turn-off Times 

-  Diff. Switch On-Characteristics 

► Higher Losses 
► Overcurrents 
► Audible Noise 
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  Shared Magnetic Path between  
    Main and Auxiliary Core 
 

  Change in Inductance on the  
    Auxiliary Core is Related to the 
    Magnetization State 

► Flux Density Transducer – The Magnetic Ear 
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   Compensation Network to  
     Decouple Main and Auxiliary Flux 

► Flux Density Transducer – The Magnetic Ear 

   Interleaved Operation for 
     Maximum Bandwidth (ETH/Ortiz, 2013) 
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► Flux Density Transducer – The Magnetic Ear 

  Transducer Output for Biased Magnetic 
    Operation 

  Closed Loop Response 

    - Reference Step  
    - Disturbance Rejection 
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Conclusions 
SST Limits / Application Areas 

Optimization Potential 
Future Research Areas 

General Remarks    
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► Technology Hype Cycle    

■   Different State of Development of SSTs for 
                  Smart Grid  and  Traction Applications  

Through of  
Disillusionment 

SSTs  for Smart Grids 

SSTs for Traction 
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► SST Limitations – Application Areas 

► Applications for Volume/Weight Limited Systems  where  2-4 % of Losses Could be Accepted 
 
- Traction Vehicles 
- UPS Functionality with MV  Connection  
- Temporary Replacement of Conv. Distribution Transformer 
- Parallel Connection of LF  Transformer and SST (SST Current Limit – SC Power does not Change) 
- Military Applications  

■ SST Limitations  
 
-  Efficiency (Rel. High Losses  3-6%) 
-  High Costs  (Cost-Performance Ratio still to be Clarified) 
-  Limited Volume Reduction vs. Conv.  Transf. (Factor 2-3) 
-  Limited Overload Capability 
-  (Reliability)  
 

■ Potential Application Areas  

SST 

CT 
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► Application Areas    SST  Advantages /Weaknesses  

■ Traction  -  LF Transf. vs. SST ■ Distribution  -  LF Transf. vs. SST 

! 

! 

! 
! 
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► Current/Future Research Topics   
●  Insulation Materials under MF Voltage Stress 
●  Low Loss High Current MF Interconnections 
●  MF Transformer Construction  featuring High Voltage Isolation  
●  Thermal Management (Air and H2O Cooling, avoiding Oil) 
●  “Low” Voltage SiC Devices for Efficiency Improvement 
 
●  Multi-Level  vs. Two-Level Topologies with SiC Switches  “Optimum” Number of Levels 
●  Multi-Objective Cost / Volume /Efficiency  Optimization (Pareto Surface) 
●  SST Protection (e.g. Overvoltage) 
●  SST Reliability 
 
●    Hybrid (LF // SST) Solutions 
●  SST  vs. FACTS (Integration vs. Combination of Transformer and Power Electronics)  
●  System-Oriented Analysis  Clarify Benefits on System Level (Balancing the Low Eff. Drawback) 

► Main SST Optimization Potential    
 
●  Cost & Complexity Reduction  by  Functionality Limitation (e.g. Unidirectional Power Flow) 
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► Future Research Topics   

Done ! 

To be 
Done… 
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► Overall Summary 

●  SST  is    NOT  a 1:1 Replacement for Conv. Distribution Transformers 
●  SST  will NOT  Replace  All Conv. Distribution Transformers (even in Mid Term Future) 
●  SST  Offers High Functionality  BUT  shows also Several Weaknesses / Limitations 
     
 SST Requires a Certain Application Environment (until Smart Grid is Fully Realized) 
 SST Preferably Used in LOCAL Fully SMART EEnergy Systems 
 
     @ Generation End (e.g. Nacelle of Windmills) 
     @ Load End - Micro- or Nanogrids (incl. Locomotives, Ships etc.) 
 
 Environments with Pervasive Power Electronics for Energy Flow Control (No Protection Relays etc.) 
 Environments which Could be Designed for SST Application 
 

●  “SST” is NOT AT ALL Clearly Reflecting the Actual Functionality     EEnergy Router (?) 
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Thank  You! 
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Questions ? 
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