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Outline 

► The                 Little Box Challenge 
 

► Little Box 1.0  
► Concepts & Performances of Other Finalists 
► Analysis of Advanced Concepts 
► Optimization of Little Box 1.0 
► Little Box 2.0    
 

► Little Box 3.0 / Conclusions   



    

  Requirements 
  The Grand Prize  
  Finalists & Finals 

 
Little Box Challenge 



●  Design / Build the 2kW 1-Φ Solar Inverter with the Highest Power Density in the World 
●  Power Density > 3kW/dm3 (> 50W/in3, multiply  kW/dm3 by Factor 16) 
●  Efficiency    > 95% 
●  Case Temp.  < 60°C 
●  EMI  FCC Part 15 B 

■  Push the Forefront of New Technologies in R&D of High Power Density Inverters 

! 

! 

! 

! 
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The Grand Prize 

■  Timeline      – Challenge Announced in Summer 2014 
       – 2000+ Teams Registered Worldwide 
       – 100+ Teams Submitted a Technical Description until July 22, 2015 
       – 18 Finalists (3 No-Shows) 

$1,000,000 

●  Highest Power Density (> 50W/in3) 
●  Highest Level of Innovation 
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Finalists 

- 5 Companies 
- 6 Consultants  
- 4 Universities    

* and  FH IZM / 
           Fraza d.o.o. 

Univ. of Tennessee   

Univ. of Illinois    

Virginia Tech   
     Rompower   

Schneider 
Electric   

Tommasi 
Bailly   

CE+T   

Energy 
Layer   

AHED   OKE Services   

Cambridge 
Active 
Magnetics   

AMR   

Venderbosch   

Fraunhofer 
IISB   

                     * 
  

15 Teams/Participants in the Final @ NREL 
   



– Finalists Invited to NREL / USA 
– Presentations on Oct. 21, 2015 
– Subsequent Testing by NREL 
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Final Presentations 



Acknowledgement 

 
Little Box 1.0     

  Converter Topology 
  Modulation & Control  
  Technologies / Components   
  Mechanical Concept 
  Exp. Analysis   



Derivation of     
Converter Concept  



1-Φ Output Power 
Pulsation Buffer 



●  Parallel Buffer @ DC Input 

●  Series Buffer @ DC Input 

■  Parallel Approach for Limiting Voltage Stress on Converter Stage Semiconductors  

Power Pulsation Buffer   
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Passive Power Pulsation Buffer (1) 

■  C > 2.2mF / 166 cm3       Consumes 1/4 of  Allowed Total Volume ! 

S0 = 2.0 kVA 
cos Φ0 = 0.7 
VC,max = 450 V 
ΔVC/VC,max=3 % 

●  Electrolytic Capacitor 

5 x 493μF/450 V 
C = 2.46 mF 
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*  Cr =   20 μF 
*  Lr = 127 mH @ vLr = 400 V 

●  Series Resonant Circuit / Used in Rectifier Input Stage of Locomotives 

■  Unacceptably Large Inductor Volume !                  Electronic Inductor 

fr = 120Hz 

Passive Power Pulsation Buffer (2) 
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●  Coupling Capacitor & “Electronic Inductor” Processing Only Partial Power  

■  Low UC,aux   Low Converter Losses 
■  High Values of CK, Caux Required for Low UC,aux 
■  Full-Bridge Aux. Converter Allows Lower UC,aux 

Partial Active Power Pulsation Buffer   

*  Ertl  (1999) 
*  Enslin (1991) 
*  Pilawa (2015) 

Electronic  
Inductor  
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Properties of Full-Bridge Aux. Conv. 

●  Coupling Capacitor & “Electronic Inductor”   

■  Low UC,aux   Low Converter Losses 
■  High Values of CK, Caux Required for Low UC,aux 
■  Full-Bridge Aux. Converter Allows Lower UC,aux 

►
 

Partial Active Power Pulsation Buffer   
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●   Large Voltage Fluctuation Foil or Ceramic Capacitor  
●   Buck- or Boost-Type DC/DC Interface Converter 
●   Buck-Type allows Utilizing 600V Technology  

■  Significantly Lower Overall Volume Compared to Electrolytic Capacitor 

108 x 1.2 μF /400 V 
Ck ≈ 140 μF 
VCk= 23.7cm3 

CeraLink 

Full Active Power Pulsation Buffer *  Kyritsis (2007) 
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   Output Stage  
Topology / Modulation 



–  Boost-Type 
    1-Φ PFC Rectifier 

–   DC/|AC| Buck Converter & 
     Mains Frequency “Unfolder” 

  Analysis Only for cos Φ = -1  

●   Inversion of Basic 1-Φ PFC Rectifier Topology 

Derivation of Output Stage Topology (1) 

*  Erickson (2009) 
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■  CM Component of Output Voltage vO 
■  Larger EMI Filtering Requirement Due to Temporary High-Frequ. Switching of Unfolder 

●  Temporary PWM Operation of Unfolder @ U < Umin   to Avoid AC Current Distortion  

! 
! 

Advanced DC/│AC│-Buck Conv. & Unfolder 
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72W/in3 (4.5kW/dm3) incl. Holdup Capacitors @ 98.6% Efficiency 
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Full-Bridge AC/DC Conv. Topology  

●  Example of (Bidirectional) 1-Φ Telecom Boost-Type PFC Rectifier 
●  Low-Frequency Unfolder Operation of One Bridge Leg 
●  Interleaving  for High Part Load Efficiency  
●  Si Superjunction MOSFETs 
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●  New Control Concept - PWM Operation of Mains Freq. Unfolder Bridge Leg @ |u| < u0,min  

■  CM Component uCM of Generated Output Voltage 
■  Potentially Larger EMI Filtering Requirement  

! 

! 

Advanced Full-Bridge DC/AC Conv. Topology  
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●  Symmetric PWM Operation of Both Bridge Legs 
●  No Low-Frequency CM Output Voltage Component 

■   DM Component of  u1 and u2  Defines Output  uO 
■   CM Component of  u1 and u2  Represents Degree of Freedom of the Modulation (!) 

Symmetric PWM Full-Bridge AC/DC Conv. Topology  
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■   CM Reactive Power prop.  2 C 
■   DM Reactive Power prop. ½ C 

●  Full Bridge Output Stage / Full PWM Operation 
●  CM Reactive Power of Output Filter Capacitors used for Comp. of Load Power Pulsation 

 Remark:  AC Side Power Pulsation Buffer   

*  Serban (2015)   
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■   Requires Only Measurement of Current Zero Crossings, i = 0 
■   Variable Switching Frequency Lowers EMI 

●  TCM Operation for Resonant Voltage Transition @ Turn-On/Turn-Off 

ZVS of Output Stage / TCM Operation   


 


 

*  Henze (1988) 
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CM–Enhanced TCM Modulation 
●  CM Comp. of u1, u2 Changes Sw. Frequency 
●  Limits Sw. Frequency Variation 
●  Lower Residual Sw. Losses 

19/124 



4D-Interleaving    
●  Interleaving of 2 Bridge Legs per Phase  - Volume / Filtering / Efficiency Optimum 
●  Interleaving in Space & Time – Within Output Period 
●  Alternate Operation of Bridge Legs @ Low Power 
●  Overlapping Operation @ High Power 

■   Opt. Trade-Off of Conduction & Switching Losses  / Opt. Distribution of Losses 
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Remark:  i TCM Inverter Topology  

*  P. Jain (2015) 

●  TCM :   Challenging Inductor Design  Superposition of HF & LF Currents 
●  iTCM:   Adding LC-Circuit between Bridge Legs  Separation of LF & HF Currents  L >>LB   

■   Low Output Current Ripple     Reduced Filtering Effort 
■   PWM Modulation Applicable     Simple Control Strategy 
■   Dedicated LF and HF Inductor Designs Possible      Improved Converter Efficiency 

– TCM  – iTCM  
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   iTCM : 



Selection of Switching Frequency 
●  Significant Reduction in EMI Filter Volume for Increasing  Sw. Frequency 

■   Doubling  Sw. Fequ.  fS  Cuts Filter Volume in Half  
■   Upper Limit due to Digital Signal Processing Delays / Inductor & Sw. Losses – Heatsink Volume 
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EMI Filter Topology (1)  
●  Conventional Filter Structure  – DM Filtering Between the Phases 
   – CM Filtering     Between Phases and PE 

■   CM Cap. Limited by Earth Current Limit – Typ. 3.5mA for PFC Rectifiers (GLBC: 5mA then 50mA !) 
■   Large CM Inductor Needed – Filter Volume Mainly Defined by CM Inductors 
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EMI Filter Topology (2)   
●  Filter Structure with Internal CM Capacitor Feedback  
●  Filtering to DC- (and optional to DC+) 

■   No Limitation of CM Capacitor C1 Due to Earth Current Limit  µF Instead of nF Can be Employed 
■   Allows Downsizing of CM Inductor and/or Total Filter Volume   
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1 

2 



Final Converter Topology    

■   ZVS of All Bridge Legs @ Turn-On/Turn-Off in Whole Operating Range (4D-TCM-Interleaving)  
■   Heatsinks Connected to DC Bus / Shield  to Prevent Cap. Coupling to Grounded Enclosure   

●  Interleaving of 2 Bridge Legs per Phase    
●  Active DC-Side Buck-Type Power Pulsation Buffer 
●  2-Stage EMI AC Output Filter   (1)  Heat Sink 

(2)  EMI Filter 
(3)  Power Pulsation Buffer  
(4)  Enclosure    
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Power Semiconductors  
   Cooling 

DSP/FPGA 
Auxiliary 

Technologies  

■ 



●  Accurate Measurement of ZVS Losses Using Calorimetric Approach   
●  High Sw. Frequency for Large Ratio of Sw. and Conduction Losses 

Evaluation of Power Semiconductors (1) 
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■  Direct Measurement of the Sum of Sw. and Conduction Losses 
■  Subtraction of the Conduction Losses Known from Calibration 
■  Fast Measurement  by Cth.ΔT/Δt  Evaluation    



Evaluation of Power Semiconductors (2)  

●  Comparison of Soft-Switching Performance of ~60mΩ, 600V/650V/900V GaN, SiC, Si MOSFETs 
●  Measurement of Energy Loss per Switch and Switching Period 

■   GaN MOSFETs Feature Highest Soft-Switching Performance 
■   Similar Soft-Switching Performance Achieved with Si and SiC 
■   Almost No Voltage-Dependency of Soft-Switching Losses for Si-MOSFET 
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Selected Power Semiconductors   

●  600V IFX Normally-Off GaN GIT  -  ThinPAK8x8 
●  2 Parallel Transistors / Switch  
●  Antiparallel CREE SiC Schottky Diodes   

■  CeraLink Capacitors for DC Voltage Buffering   

-  1.2V typ. Gate Threshold Voltage 
-  55 mΩ RDS,on @ 25°C,  120mΩ @ 150°C  
-  5Ω Internal Gate Resistance 

dv/dt = 500kV/μs 
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High dv/dt-Immunity Gate Drive (1) 
●  Low Threshold-Voltage of GaN GIT Devices  Negative Gate Voltage During Off-State Needed 
●  Internal Diode Characteristic              Gate Current Limitation During On-State Needed 

►
 

– R3 Discharges Cs 
During Off-State 

■   Duty Cycle and Frequency Dependent Gate Voltage 
■   Risk of Parasitic Turn-on Due to Switching of Complementary Switch 

– Cs Enables High Gate 
Current for Fast Turn-On 
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●  State-of-the-Art Gate Drive with Additional RC-Circuit 



High dv/dt-Immunity Gate Drive (2) 

– Diode ZD1 Prevents Cs   
from Complete Discharge 

During Off-State 

►
 

●  Improved Gate Drive Circuit with RC-Circuit and Added Clamping Diodes 
●  High Current for Fast Turn-On as Conventional Approach 

■   Fixed Neg. Turn-Off Gate Voltage Independent of Duty Cycle and @ Start-Up 
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–  Diode ZD2 Quickly  
Discharges Cs to VZD2  

@ Turn-Off 



High dv/dt-Immunity Gate Drive (3) 

– Diode ZD1 Prevents Cs   
from Complete Discharge 

During Off-State 

►
 

●  Improved Gate Drive Circuit with RC-Circuit and Added Clamping Diodes 
●  High Current for Fast Turn-On as Conventional Approach 

■   Fixed Neg. Turn-Off Gate Voltage Independent of Duty Cycle and @ Start-Up 
■   RC-Circuit in Neg. Rail Enables Precharge of Cs with R4 
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–  Diode ZD2 Quickly  
Discharges Cs to VZD2  

@ Turn-Off 



 Final Advanced Gate Drive       
●   Fixed Negative Turn-off Gate Voltage   -  Independent of  Sw. Frequency and Duty Cycle 
●   Extreme dv/dt Immunity  (500   kV/μs) -  Due to CM Choke at Signal Isolator Input 

■  Total Prop. Delay < 30ns  incl. Signal Isolator, Gate Drive, and Switch Turn-On Delay 

IFX 5893 LM5114 

► 
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High Frequency Inductors (1)   

■  Dimensions  - 14.5 x 14.5 x 22mm3 

-  L= 10.5μH 
-  2 x 8 Turns 
-  24 x 80μm Airgaps  
-  Core Material DMR 51 / Hengdian 
-  0.61mm Thick Stacked Plates 
-  20 μm Copper Foil / 4 in Parallel 
-  7 μm Kapton Layer Isolation 
-  20mΩ Winding Resistance / Q≈600 
-  Terminals in No-Leakage Flux Area 

●   Multi-Airgap Inductor with Multi-Layer Foil Winding Arrangement Minim. Prox. Effect 
●   Very High Filling Factor / Low High Frequency Losses 
●   Magnetically Shielded Construction Minimizing EMI 
●   Intellectual Property of F. Zajc / Fraza 
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High Frequency Inductors (2)  
●  High Resonance Frequency  Inductive Behavior up to High Frequencies 
●  Extremely Low AC-Resistance  Low Conduction Losses up to High Frequencies 
●  High Quality Factor   
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■  Shielding Eliminates HF Current through the Ferrite  Avoids High Core Losses  
■  Shielding Increases the Parasitic Capacitance 



■  Comparison of Temp. Increase of a Bulk  
    and a Sliced Sample @ 70mT / 800kHz 

●   Cutting of Ferrite Introduces Mech. Stress   
●   Significant Increase of the Loss Factor 
●   Reduction by Polishing / Etching (5 μm)  

x 7 (!) 

*  Knowles (1975!) 

High Frequency Inductors (3)   
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Thermal Management   

●  Evaluation of Optimum Heatsink Temperature for Thermal Isolation of Converter 

●  30°C max. Ambient Temperature 
●  60°C max. Allowed Surface and Air Outlet Temperature 

■   Minimum Volume Achieved w/o Thermal Isolation with Heatsink @ max. Allowed Surface Temp. 
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Thermal Management   
●  Overall Cooling Performance Defined by Selected Fan Type and Heatsink 

–  Axial Fan –  Radial 
     Blower 

–  Square  
Cross Section 

of Heatsink for 
Using a Fan   

–  Flat and 
 Wide 

Heatsink 
for Blower 
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■  Optimal Fan and Heat Sink Configuration Defined by Total Cooling System Length 
■  Cooling Concept with Blower Selected  Higher CSPI for Larger Mounting Surface  



●   30mm Blowers with Axial Air Intake / Radial Outlet 
●   Full Optimization of the Heatsink Parameters 

-  200um  Fin Thickness  
-  500um  Fin Spacing    
-  3mm Fin Height  
-  10mm Fin Length   
-  CSPI = 37 W/(dm3.K)  
-  1.5mm Baseplate 

■  CSPIeff= 25 W/(dm3.K) Considering Heat Distribution Elements 
■  Two-Side Cooling   Heatsink Temperature = 52°C @ 80W  (8W by Natural Convection) 

 Final Thermal Management Concept (1)   
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●   CSPI = 37 W/(dm3.K) 
●   30mm Blowers with Axial Air Intake / Radial Outlet 
●   Full Optimization of the Heatsink Parameters 
●   CSPIeff=25 W/(dm3.K) incl. Heat Cond. Layers 

■  CSPIeff= 25 W/(dm3.K) Considering Heat Distribution Elements 
■  Two-Side Cooling   Heatsink Temperature = 52°C @ 80W  (8W by Natural Convection) 

 Final Thermal Management Concept (2)   
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 i     =   0 Detection   

●   Analyzed Methods • Shunt Current Measurement   
• Measurement of the Rds,on   
• Two Antiparallel Diodes   
• Giant Magneto-Resistive Sensor  
• Hall Element  
   
• Saturable Inductor  

Losses, No Galvanic Isolation, 
Low Signal-to-Noise Ratio (SNR), 
Size, Bandwidth, Realization 
Effort 

Various Drawbacks 

■      Galvanic Isolation, High SNR,  
      Small Size, High Bandwidth,  
      Simple Design 
 
■   Min. Core Volume/Cross Section for Min. Core Losses    
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●   Saturable Inductor –  Toroidal Core       R4 x 2.4 x 1.6, EPCOS (4mm Diameter) 
–  Core Material    N30, EPCOS 

■   Operation Tested up to 2.5MHz Switching Frequency 

 Digital Signal vo 
 

 Induced Voltage vi 
 

 Current i 
 

41/124 

 i     =   0 Detection   



●   Saturable Inductor –  Toroidal Core       R4 x 2.4 x 1.6, EPCOS (4mm Diameter) 
–  Core Material    N30, EPCOS 

■   Operation Tested up to 2.5MHz Switching Frequency 
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 i     =   0 Detection   



 Control Board  & i = 0 Detection   

●   Fully Digital Control - Overall Control Sampling Frequency of  25kHz 
●   TI  DSC TMS320F28335 / 150MHz / 179-pin BGA / 12mm x 12mm 
●   Lattice FPGA  LFXP2-5E / 200MHz / 86-pin BGA / 8mm x 8mm 

■  i=0 Detection of TCM Currents Using  R4/N30 Saturable Inductors  
■  Galv. Isolated / Operates up to 2.5MHz  Switching Frequency / <10ns Delay 

-  TCM Current / Induced Voltage / Comparator Output    
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 Active Power Pulsation Buffer Capacitor (1)  

44/124 

●   Electrolytic Capacitors                 –  Limited by Lifetime-Relevant Current Limit   
●   2.2μF, 450 V Class II X6S MLCC   –  Highest Energy Density but Cap. Decreases with DC Bias 
 
●   Novel 1 μF /2 μF, 650 V CeraLinkTM Cap. (PLZT Ceramic) Features High Cap. @ High DC Bias    
●   Allows 125°C Operating Temp.  &  Shows Very Low ESR @ High Frequencies   

■  CeraLink Resonance Frequency at Several MHz  
■  Small-Signal ESR of CeraLink in MHz Frequ. Range Sign. Lower Comp. to X6S MLCC 

Top =25°C 

Top =25°C 



 Active Power Pulsation Buffer Capacitor (2) 
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●   CeraLink       –  Large-Signal Excitation with 2xLine-Frequ. Reveals Large Hysteresis 
                            –  Significantly Higher Losses @ 2xLine-Frequ. Comp. to X6S MLCC  
                            –  ESR Drops Significantly @ Higher Temperatures 
                            –  36μF (27μF) Blocks of Prepackaged Single Chips  
                             –  Reliable Mech. Construction 

Top =60°C 

Top =60°C 

●   X6S MMLC        –  Only Available as Single Chips 
                             –  Complicated Packaging  



 Final Active Power Pulsation Buffer 
●   High Energy Density 2nd Gen. 400VDC CeraLink Capacitors  Utilized as Energy Storage 
●   Highly Non-Linear Behavior  Optimal DC Bias Voltage of 280VDC 
●   Losses of 6W @ 2kVA Output Power  

■  Effective Large Signal Capacitance of C ≈160μF 

-  108 x 1.2μF /400 V 
-  23.7cm3 Capacitor Volume 

46/124 



Active Power Pulsation Buffer Control (1) 
●  New Cascaded Control Structure  

■   P-Type Resonant Controller 
■   Feedforward of Output Power Fluctuation 
■   Underlying Input Current (ii) / DC Link Voltage (uC) Control 
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Active Power Pulsation Buffer Control (2) 
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Inverter AC Output 
Voltage & Current 

Current Reference 
for Power Decoupling 

●  Multiple Controller Outputs Combined in a Single Current Reference   

■   Regulation of Mean Buffer Voltage (Bias Voltage) 
■   Tight Control of Inverter DC Link Voltage also During Transients 
■   Active Power Decoupling – Rejection of 2 x Line-Frequ. Ripple in Inverter DC Input Voltage 

Current Ref. for  
Bias Voltage Cntrl 

Current Ref. for Inverter 
DC Input Voltage Cntrl 

Total PPB Inductor  
Current Reference 



 Auxiliary Supply      
●  Constant 50% Duty Cycle Half Bridge w. Diode Rect. or Synchr. Rectification (SR)  
●  ZVS  Compact / Efficient / Low EMI   

■   Only Marginal Eff. Gain with Synchr. Rectification for Output Power Levels > 5W 

@ Vin = 380V, Pout = 10W 
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 Auxiliary Supply  &  Measurement Circuits   

●   Constant 50% Duty Cycle Half Bridge with Synchr. Rectification  
●   ZVS  Compact / Efficient / Low EMI  (fs=465 kHz) 

■   19mm x 24mm x 4.5mm  (2cm3 Volume ) 

-  10W   Max. Output Power    
-  390V…450V Input Operating Range  
-  13.8V…16.8V DC Output in Full Inp. Voltage / Output Power Range 
-  90%  Efficiency @ Pmax  
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3D-CAD Construction 



Mechanical Construction (1) 

●  Built to the Power Density Limit @ η= 95%  / Tc < 60°C  

■  88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3 )  8.2 kW/dm3  

Top Side Heatsink 
Power  

Pulsation  
Buffer  

Cap. 

Power  
Pulsation  

Buffer  
Inductor 
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Mechanical Construction (2) 

■  88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3 )  8.2 kW/dm3  

i=0 
Detector 

Power Pulsation Buffer 
Bridge Leg 

Auxiliary  
Supply & 
Measurement 
Board 
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●  Built to the Power Density Limit @ η= 95%  / Tc < 60°C  



Mechanical Construction (3) 

■  88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3 )  8.2 kW/dm3  

Bottom Side 
Heat Sink 

DSP/FPGA 
Board Gate Driver 

Board 
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●  Built to the Power Density Limit @ η= 95%  / Tc < 60°C  



Mechanical Construction (4) 

■  88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3 )  8.2 kW/dm3  

Output Stage 
Inductor Cooling Output Stage  

Transistor Heat 
Spreading 
 

Output Stage 
Power Board 

Output Stage 
Inductors 
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●  Built to the Power Density Limit @ η= 95%  / Tc < 60°C  



Mechanical Construction (5) 

■  88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3 )  8.2 kW/dm3  

Two-Stage 
EMI Filter 

CM Inductor 

DM Inductor 
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●  Built to the Power Density Limit @ η= 95%  / Tc < 60°C  



  Hardware 
   Output Voltage/Input Current Quality 

Thermal Behavior 
Efficiency  

EMI 

Experimental Results  



Little Box 1.0  -  Prototype I    

 120 W/in3 

273cm3 

7.3 kW/dm3    
97,5%  Efficiency @ 2kW 
Tc=58°C @ 2kW 
 
ΔuDC,pp       = 2.85% 
ΔiDC,pp     = 15.4% 
THD+NU = 2.6% 
THD+NI  = 1.9% 
 
97mm x  90.8 mm x 31mm  ( 16.6 in3 ) 

■  Compliant to All Specifications    

●   System Employing Electrolytic Capacitors as 1-Φ Power Pulsation Buffer      
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DC Input Current (1 A/div)  
DC Voltage Ripple (5 V/div) 
Output Voltage  (100 V/div) 
Output Current (4 A/div) 

■  Compliant to All Specifications    

●   System Employing Electrolytic Capacitors as 1-Φ Power Pulsation Buffer      

Little Box 1.0–I  Measurement Results (1)    
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5 A 

Ohmic Load / 2kW 



■  Heating of System Lower than Specified Limit (TC,max= 60°C @ Tamb= 30°C)   

ηw= 96.4%  Weighted Efficiency  

Measured Efficiency      
Interpolated Efficiency      

Output Power      

Ef
fi

ci
en

cy
   

   

●   System Employing Electrolytic Capacitors as 1-Φ Power Pulsation Buffer      

Little Box 1.0–I  Measurement Results (2)    
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●   System Employing Electrolytic Capacitors as 1-Φ Power Pulsation Buffer      
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■  Compliant to All Specifications    

Little Box 1.0–I  Measurement Results (3)    
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●   System Employing Active Ceralink 1-Φ Power Pulsation Buffer      

Little Box 1.0  -  Prototype II (Final)    

- 8.2 kW/dm3   
- 8.9cm x 8.8cm x 3.1cm    
- 96,3%  Efficiency @ 2kW 
- Tc=58°C @ 2kW 
 
- ΔuDC,pp        = 1.1% 
- ΔiDC,pp     = 2.8% 
- THD+NU = 2.6% 
- THD+NI  = 1.9% 

 135 W/in3 

■  Compliant to All Original Specifications (!) 
 

-  No Low-Frequ. CM Output Voltage Component 
-  No Overstressing of Components 
-  All  Own IP / Patents   
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Little Box 1.0  -  Prototype II (Final)    

- 8.2 kW/dm3   
- 8.9cm x 8.8cm x 3.1cm    
- 96,3%  Efficiency @ 2kW 
- Tc=58°C @ 2kW 
 
- ΔuDC=  1.1% 
- ΔiDC=   2.8% 
- THD+NU = 2.6% 
- THD+NI = 1.9% 

■  Compliant to All Original Specifications (!) 
 

-  No Low-Frequ. CM Output Voltage Component 
-  No Overstressing of Components 
-  All  Own IP / Patents   

 135 W/in3 
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●   System Employing Active Ceralink 1-Φ Power Pulsation Buffer      



■  Compliant to All Specifications    

Output Current  (10 A/div) 
Inductor Current  Bridge Leg 1-1  (10 A/div)  
Inductor Current  Bridge Leg 1-2  (10 A/div) 

DC Link Voltage (AC-Coupl., 2 V/div) 
Buffer Cap. Voltage  (20 V/div)  
Buffer Cap. Current  (10 A/div)  

Output Voltage  (200 V/div) 

-  Ohmic Load / 2kW 

Little Box 1.0–II  Measurement Results (1)    
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●   System Employing Active Ceralink 1-Φ Power Pulsation Buffer      



■  Compliant to All Specifications    

ηw=95.07%  Weighted Efficiency  

Measured Efficiency      
Interpolated Efficiency      

Output Power      

Ef
fi

ci
en

cy
   

   

Little Box 1.0–II  Measurement Results (2)    
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●   System Employing Active Ceralink 1-Φ Power Pulsation Buffer      



■  Start-up and Shut-Down (No Load Operation)   

Buffer Cap Voltage  (50 V/div) 
Output Voltage (50 V/div) 

Buffer Cap. Current   (5 A/div)  
Ind. Curr. Bridge Leg 1-1  (5 A/div) 

Little Box 1.0–II  Measurement Results (3)    
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300 V 

225 V 

5 A 

5 A 

●   System Employing Active Ceralink 1-Φ Power Pulsation Buffer      



■  Stationary Operation @ 2kW Output Power  

Buffer Cap. Voltage  (50 V/div) 
Buffer Cap. Current  (10 A/div)  

Conv. Inp. Curr.  (AC Coupl. 500 mA/div) 
DC Link Voltage  (AC Coupl. 1 V/div) 

Little Box 1.0–II  Measurement Results (4)    
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●   System Employing Active Ceralink 1-Φ Power Pulsation Buffer      



■  Transient Response for Load-Step of  0 Watt  700 Watt 

DC Link Voltage (50 V/div) 
Buffer Cap. Voltage (50 V/div) 
Buffer Cap. Current (10 A/div) 
Conv. Input Current  (2 A/div)  
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Little Box 1.0–II  Measurement Results (5)    

●   System Employing Active Ceralink 1-Φ Power Pulsation Buffer      



■  Transient Response for Load-Step of 700 Watt  0 Watt 
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Little Box 1.0–II  Measurement Results (6)    

DC Link Voltage (20 V/div) 
Buffer Cap. Voltage (20 V/div) 

Buffer Cap. Current (5 A/div) 
Conv. Input Current (1 A/div)  

●   System Employing Active Ceralink 1-Φ Power Pulsation Buffer      



Little Box 1.0-II  Volume and Loss Distribution   

■  Large Heatsink (incl. Heat Conduction Layers) 
■  Large Losses in Power Fluctuation Buffer Capacitor (!) 
■  TCM Causes Relatively High Conduction & Switching Losses @ Low Power 
■  Relatively Low Switching Frequency @ High Power – Determines EMI Filter Volume  

●   Volume Distribution (240cm3) ●   Loss Distribution (75W) 
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■  Other Finalists  
  Topologies  

Switching Frequencies 
Power Density / Efficiency Comparison   

Detailed Descriptions:  
www.LittleBoxChallenge.com 



Finalists - Performance Overview   
●   18 Finalists (3 No-Shows)     
●   7 Groups of Consultants / 7 Companies / 4 Universities  

■  70   …   300 W/in3 

■  35 kHz …    500kHz    …    1 MHz (up to 1MHz: 3 Teams) 
■  Full-Bridge or  DC/   AC  Buck Converter + Unfolder  
■  Mostly Buck-Type Active Power Pulsation Filters (Ceramic Caps of Electrolytic Caps) 
■  GaN (11 Teams) / SiC (2 Teams) / Si (2 Teams)  
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x 2  

x 5  

IV  III  II  

 
Note: Numbering of  

Teams is Arbitrary.  .    



Finalists - Performance Overview   
●   18 Finalists (3 No-Shows)     
●   7 Groups of Consultants / 7 Companies / 4 Universities  
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(1) Virginia Tech 
(2) Schneider Electric 
(3) EPRI (Univ. of Tennessee) 
(4) Venderbosch  
(5) Energy Layer 

(6) ETH Zurich 
(7) Rompowe r 
(8) Tommasi-Bailly 
(9) Red Electric Devils 
(10) AHED 

(11) FH IISB 
(12) Univ. of Illinois 
(13) AMR 
(14) OKE 
(15) Cambridge Magnetics 

x 2  

x 5  

IV  III  II  

 
Note: Numbering of  

Teams is Arbitrary.  .    



■  70   …   300 W/in3 

■  35 kHz …    500kHz    …    1 MHz (up to 1MHz: 3 Teams) 
■  Full-Bridge or  DC/   AC  Buck Converter + Unfolder  
■  Mostly Buck-Type Active Power Pulsation Filters (Ceramic Caps of Electrolytic Caps) 
■  GaN (11 Teams) / SiC (2 Teams) / Si (2 Teams)  

●   18 Finalists (3 No-Shows)     
●   7 Groups of Consultants / 7 Companies / 4 Universities  

Finalists - Performance Overview   
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@ Rated Power 

(1) Virginia Tech 
(2) Schneider Electric 
(3) EPRI (Univ. of Tennessee) 
(4) Venderbosch  
(5) Energy Layer 
(6) ETH Zurich 
(7) Rompowe r 
(8) Tommasi-Bailly 
(9) Red Electric Devils 
(10) AHED 
(11) FH IISB 
(12) Univ. of Illinois 
(13) AMR 

 
Note: Numbering of  

Teams is Arbitrary.  .    



Category I:  300 – 400 W/in3  (1 Team) 
● “Over the Edge” 
●  Hand-Wound Overstressed & Too Small Electrolytic Capacitors  (210uF/400V) 
●  No Voltage Margin of Power Semiconductors (450V GaN, Hard Switching)  
●  50V Voltage Source for Semicond. Voltage Stress Reduction 
●  Low-Frequ. CM AC Output Component 

●  Alternate Switching of Full-Bridge Legs 
●  Input Cap. of Full-Bridge Used for Power Pulsation Buffering 
 
●  256 W/in3 (400 W/in3  Claimed) / 1MHz 
●  Multi-Airgap Toroidal Inductors (3F46, Cp≈1.5pF ) 
●  Bare GaN Dies Directly Attached to Pin-Fin Heatsink  
●  High Speed Fan (Mini Drone Motor & Propeller) 

2x 

4x 
2x 
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Category I:  300 – 400 W/in3  (1 Team) 
● “Over the Edge” 
●  Hand-Wound Overstressed Electrolytic Capacitors  (210uF (?)/400V) 
●  No Voltage Margin of Power Semiconductors (450V GaN, Hard Switching)  
●  50V Voltage Source for Semicond. Voltage Stress Reduction 

●  Alternate Switching of Full-Bridge Legs 
●  Input Cap. of Full-Bridge Used for Power Pulsation Buffering 
 
●  256 W/in3 (400 W/in3  Claimed) / 1MHz 
●  Multi-Airgap Toroidal Inductors (3F46, Cp≈1.5pF ) 
●  Bare Dies Directly Attached to Pin-Fin Heatsink  
●  High Speed Fan (Mini Drone Motor & Propeller) 
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Category II:  200 – 300 W/in3 (4 Teams) – Example #1  

●  “At the Edge”     
●   High  Complexity  
●   7-Level Flying Capacitor Converter  
●   Series-Stacked Active Power Buffer 
 

■  216 W/in3  

■  100V GaN  
■  Integrated Switching Cell  
■  720kHz Eff. Sw. Frequ. (7 x 120kHz) 
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Category II:  200 – 300 W/in3 (4 Teams) – Example #2  

●  “At the Edge” 
●   Very Well Engineered Assembly (e.g. 3D-Printed Heatsink w. Integr. Fans, 1 PCB Board, etc.) 
●   No Low-Frequ. Common-Mode AC Output Component  

■ 201W / in3 

■ Multi-Airgap (8 Gaps) Inductors 
■ 900V SiC @ 140kHz (PWM, Soft Sw. Around i=0 & Hard Switching)  
■ Buck-Type Active DC-Side Power Pulsation Filter / Ceramic Capacitors (X6S) 
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Category III:  100 – 200 W/in3 (8 Teams) – Example 
● “Advanced Industrial”     
●   Sophisticated 3D Sandwich Assembly incl. Cu Honeycomb Heatsink 
●   Shielded Multi-Stage EMI Filter @ DC Input and AC Output 
●   No Low-Frequ. Common-Mode AC Output Component  

■  143 W/in3 

■  GaN @ ZVS (35kHz…240kHz) 
■  2 x Interleaving for Full-Bridge Legs 
■  Buck-Type DC-Side Active Power Pulsation Filter (<150μF)    
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Category III:  100 – 200 W/in3 (8 Teams) – Example 
● “Advanced Industrial”     
●   Sophisticated 3D Sandwich Assembly incl. Cu Honeycomb Heatsink 
●   Shielded Multi-Stage EMI Filter @ DC Input and AC Output 
●   No Low-Frequ. Common-Mode AC Output Component  

► 

► 

■  143 W/in3 

■  GaN @ ZVS (35kHz…240kHz) 
■  2 x Interleaving for Full-Bridge Legs 
■  Buck-Type DC-Side Active Power Pulsation Filter (<150μF)    
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Category IV:  50 – 100 W/in3 (1 Team) 
●  “Industrial”   
●    400Vmax Full-Bridge Input Voltage  
●    DC-Link Cap. Used as Power Pulsation Buffer (470uF)   
●    GaN Transistors / SiC Diodes (400kHz DC/DC, 60kHz DC/AC) 
●    Multi-Stage EMI Filter @ AC Output and LCM + Feed-Trough CCM @ DC Inp. (Not Shown)  

■  ≈70 W/ in3 

■  98% CEC (Weighted) Efficiency  
■  4.4% DC Input Current Ripple 

■  54°C Surface Temp. / Cooling with 10 Mirco-Fans 
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■ 
 Competition 
Conclusions 
  Key Technologies  

Power Density Limit   



            Little Box Challenge Summary  

■  200W/in3 (12kW/dm3) Achievable 

●  fs < 150kHz (Constant)   
●  SiC (Not GaN) 
●  ZVS (Partial, i.e. Around i=0)    
●  Full-Bridge Output Stage  
●  Active Power Pulsation Buffer (Buck-Type, X6S Cap.) 
●  Conv. EMI Filter Structure 
●  Multi-Airgap Litz Wire Inductors 
●  DSP Only (No FPGA) 

■  Overall    

●  Engineering “Jewels” 
●  No (Fundamentally) New Approach / Topology 
●  Passives & 3D-Packaging are Finally Defining the Power Density 
●  Careful Heat Management (Adv. Heat Sink, Heat Distrib., 2-Side Integr. Cooling, etc.) 
●  Careful Mechanical Design (3D-CAD, Single PCB, Avoid Connectors, etc.) 
●  Clear Power Density / Efficiency Trade-Off    
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   100+ Teams 
  3 Members / Team, 1 Year 

 300 Man-Years  
  3300 USD / Man-Year 



    

  X6S Capacitors 
  Series Power Pulsation Buffer  
  Optimal Frequency Modulation 
  Flying Cap. Converter Topology 
  Autotrafo-Based Inverter 

Analysis of  
Advanced Concepts & 

Technologies 



Eff. Optimal Frequ. / Current-Ampl. Modulation (1) 

●  TCM      --  Enables ZVS but Suffers From Large Current Ripple & Wide Frequency Variation 
●  PWM --  Const. Sw. Frequency but Hard Switching Around AC Current Maximum   

●  Optimal Combination of TCM and PWM  Optim. Frequ. / Curr. Ripple Variation Over Mains Period   
●  Experimental Determination of Loss-Opt. Sw. Frequency fOFM Considering DC/DC Conv. Stage 
●  DC/AC Properties Calculated Assuming Corresponding Local DC/DC Operation 

■  Loss-Optimal Local Sw. Frequ. fOFM for Given VDC & Local Avg. Value of iL & Local Outp. Cap. Voltage vCO 
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CO 

DC 

0 



Eff. Optimal Frequ. / Current-Ampl. Modulation (2) 

●  Calculated Optimal Sw. Frequ. & Power Loss as Function of the Position in a Mains Half Cycle 
●  Comparison with 140 kHz Const. Frequency PWM  

■  Higher Average Switching Frequency @ Light Loads 
■  Reduction of fsw Around Peak of Mains Voltage (for Ohmic Load) in Order to Sustain ZVS 
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Eff. Optimal Frequ. / Current-Ampl. Modulation (3) 

●   Resulting Inductor Current Envelope for Different Output Power Levels  
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■  Higher Average Switching Frequency @ Light Loads 
■  Reduction of fsw Around Peak of Mains Voltage (for Ohmic Load) in Order to Sustain ZVS 



●   2.2 µF/450V Class II X6S MLCC (TDKs) Features Highest Energy Density   
●   Performance Comparison with Novel CeraLink Capacitor 

CeraLink / X6S Large-Signal Analysis (1)  

●  Experimental Setup for Generation of 
       DC Bias & Superimposed AC Voltage 
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■   PPB Design Optimiz. Requires Large-Signal Capacitance and Power Loss Data in All Operating Points  



CeraLink / X6S Large-Signal Analysis (2)  

EPCOS/TDK  
CeraLink 2µF, 600V 

TDK Class II  
X6S MLCC 2.2µF, 450V 
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■   PPB Design Optimiz. Requires Large-Signal Capacitance and Power Loss Data in All Operating Points  

► 

► 

●               Variation of   DC Bias and  
      Superimposed AC Voltage 
      @ 60°C Operating Temp. 
 
        Designed Op. Point 



Power Pulsation Buffer – Partial-Power Approach (1) 
●  Performance Comparison of Full-Power and Partial-Power Power Pulsation Buffer (PPB) Concepts 
●  Hybrid Approach (IV) Employs Red. Size Electrolytic DC-Link Cap. and Series-Conn. Partial-Power PPB 
●  Capacitor Volumes are Incl. Heatsink Vol. for Loss Dissipation (CSPIeff = 25 W/(dm3.K)) 

(I) Buck-Type 
(II) Boost-Type 
(III) Partial-Power Series-Stacked  
(IV) Partial-Power Series-Connected  

■  Buck-Type PPB Realized with 2.2μF/450 V X6S MLCC Features Smallest Cap. Volume 
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(I) (II) 

(III)* (IV)** 

*Pilawa  
**  Schneider  

Electric 



Power Pulsation Buffer – Partial-Power Approach (2) 

Buck-Type  
with CeraLink 

Vol.= 76.6 cm3 

η= 98.7 % 

Series-Conn. 
Partial-Power 

Vol.= 57.31 cm3 

η= 99.5 % 

Series-Stacked  
Partial-Power* 

Vol.= 80 cm3 

η= 98.9 % 
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■  Peak Efficiency of 99.75% Reached with  
       Series-Connected PPB @ 600 Watt 
 
 
 
 

■  Part-Load Efficiency of Buck-Type PPB  
       Expected to be Higher with PWM 

●  Performance Comparison of Full-Power and Partial-Power Power Pulsation Buffer (PPB) Concepts 
●  Partial-Power Concepts Feature Higher Efficiency Especially @ Light Load  

*Pilawa  



Performance of Series-Type Partial-Power PPB (1) 

Input Voltage, vi          (10  V/div) 
Filter Voltage, vf           (20  V/div) 
Input Current, ii                 (5  A/div) 
Pulsating Current, io  (5  A/div) 

■   Stationary Operation @ Rated Power of 2 kW  

Buffer Voltage, vbuf      (20  V/div) 
DC-Link Voltage, vdc  (50  V/div) 
Filter Voltage, vf          (50 V/div) 
Filter Current, if            (2 A/div) 
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Performance of Series-Type Partial-Power PPB (2) 

■   Startup of the Converter ■   Load Step 2kW  1kW 
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Buffer Voltage, vbuf   (20 V/div) 
DC-Link Voltage, vdc (200 V/div) 
Filter Voltage, vf         (20 V/div) 
Filter Current, if           (5 A/div) 
 

Buffer Voltage, vbuf   (20 V/div) 
DC-Link Voltage, vdc (20 V/div) 
Filter Voltage, vf         (20 V/div) 
Filter Current, if           (2 A/div) 
 



Sw. Frequ. Auto-Transformer Approach 

■  Concept Presented by “Cambridge Active Magnetics” @ Final 
■  Power Density Unclear (Presentation @ Final: 159W/in3, 290W/in3 Shown as Target in Report)  
■  Efficiency Unclear (10W of Losses @ 2kW in Documentation, Equal to Only R = 150mΩ in Total?)   

●   Multi-Tap Switching Frequ. Multi-Air-Gap Autotransformer Realizing a Multi-Tap Voltage Divider  
●   Tap Switch & Series Active Filter for Gen. of Sinus. Output Voltage from Multi-Step Waveform 
●   Low-Voltage Power Semiconductors   
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 Multi-Tapped Sw. Frequ. Auto-Transformer (1) 
●   Multi-Stage Multi-Level Inverter ●   DC-AC-DC      (I)       Resonant ZVS Half-Bridge 

                       (II)    Multi-Tapped Auto-Transf. 
                       (III) Voltage-Doubler Rectifier 
 

●   DC-AC        (IV)  PWM Tap-Selector 
                       (V)   Output Filter 
                       (VI)  Full-Bridge Unfolder 

 Multi-Tapped Sw. Frequ. Auto-Transformer (1) 

■  Topology & Operation Different to Approach Presented by “Cambridge Active Magnetics”   
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●   Efficiency                   97.7% @ 2kW (97.4% CEC) 
●   Power Density           120W/in3 (7.4kW/dm3) 

 Multi-Tapped Sw. Frequ. Auto-Transformer (2) 

●   ηρ-Pareto Optimization of the Converter System 

■  Efficiency of Resonant Multi-Level DC/DC Stage    > 99% 
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Multi-Level Converter Approach    

■  Basic Patent on FCC Converter – Th. Meynard (1991) ! 

●   Multi-Level PWM Output Voltage -  Minimizes Ind. Volume 
●   Flying Cap. Conv. – No Splitting of DC Inp. Voltage Required 
●   Low-Voltage GaN or Si Power Semiconductors 

 

 

Full-Bridge  
Topology or 

DC/|AC|Buck-Type  
+ Unfolder 
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 Multi-Level Conv. Approach – Flying Cap. Conv. (1) 
●  5 Voltage Levels 
●  320 kHz Single-Cell Sw. Frequency 
●  12µF Flying Capacitors 
●  Improved Phase-Shift PWM 

IBB: Internal Balance 
Booster, 10kΩ 

SIN1for Precharge 
SIN2for Operation 
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 Multi-Level Conv. Approach – Flying Cap. Conv. (2) 
●  Analysis of Symmetry of FC Voltages During Start-Up, Shut-Down, Stand-By, Output S.C.  Missing 
●  Inverter & Rectifier Operation 

(III) Inverter Operation – Start-Up form DC-Side, 
           Pre-Charge Resistors Bridged @ t=500ms  

(I) 

(II) 

(II) Rectifier Operation Under Load, Loss of Mains 
       or PWM Disabled (Load Still Present), FCs  
       Discharging over Diodes – Voltage Unbalance, 
       Bridge Leg Re-Enabled @ t=150ms, Dedicated 
       Control Procedure Requ. for Regaining FC Volt.  
       Symmetry             

(I)   Rectifier Operation – No Load, PWM Disabled  
          @ t=0, FCs Discharging over Balance Resistors, 
        Voltage Symmetry Maintained, PWM Re-Enabled 
           @ t=150ms, Uout Control @ t=300ms  

(III) 
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  ηρ-Pareto Front 
  TCM vs. Large Ripple PMW    
  The Ideal Switch is Not Enough (!) 
  Design Space Diversity 
    

Optimization of    
Little-Box 1.0 



 Multi-Objective Optimization    
●   Detailed System Models - Power Buffer/Output Stage/EMI Filter  
●   Detailed Multi-Domain Component Models (incl. GaN & SiC) 
●   Consideration of Very Large # of Degrees of Freedom   

■  Pareto Optimization Shows Trade-Off  Between Power Density and Efficiency 
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●   Multi-Objective Optimization of Little-Box 1.0  (incl. CeraLink  X6S) 
●   Absolute Performance Limits  (I)  - DSP/FPGA Power Consumption  
                                                      (II) - Heatsink Volume @ (1-η) 

■  Further Performance Improvement for Triangular Current Mode (TCM)   PWM  

 Little Box 1.0 ηρ-Performance Limits 

(b) CeraLink    Power Pulsation Buffer  
(c)  X6S         Power Pulsation Buffer    

 (a)        Realized Prototype 
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●  Lower Volume Comp. to Electrolytic Caps only for  ΔV/V < 6%   
●  No Efficiency Benefit of PPB (!) 

Power Pulsation Buffer (PPB) vs. Electrolytic Capacitor (1) 


 

X6S PPB 
CeraLink PPB 

Electrolytic Capacitor     

■  Electrolytics Favorable for High Efficiency @ Moderate Power Density   
■  Electrolytics Show Lower Vol. & Lower Losses if Large ΔV/V is Acceptable (e.g. for PFC Rectifiers)  
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●  Analysis for Google Little Box Challenge Specification  ΔV/V < 3%   
●  Efficiency Benefit of PPB only for ρ > 9kW/dm3  

Power Pulsation Buffer (PPB) vs. Electrolytic Capacitor (2) 

■  Electrolytics Favorable for High Efficiency @ Moderate Power Density (Δη= +0.5%)  
■  Electrolytics Show Lower Vol. & Lower Losses if Large ΔV/V is Acceptable (e.g. for PFC Rectifiers)  
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 Little Box 1.0 -- TCM  PWM 
●   Very High Sw. Frequency fS of TCM Around Current Zero Crossings   
●   Efficiency Reduction due to Residual TCM Sw. Losses & Gate Drive Losses Reduction 
●   Wide fS -Variation Represents Adv. & Disadvantage for EMI Filter Design 

■  PWM -- Const. Sw. Frequency & Lower Conduction Losses 
■  PWM @ Large Current Rippel -- ZVS in Wide Intervals  

(s)      Soft-Switching (ZVS)  
(p-h)  Partial Hard Switching  
(h)                                     Hard-Switching              
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●   Optimization for GaN GIT  & No Interleaving 
●   Resulting Opt. Inductance of Output Inductor L=10μH (TCM),  L=30μH (PWM@140 kHz) 

■  PWM vs. TCM  Slightly Higher Max. Power Density @ Same Efficiency 

ρ= 12.5kW/dm3 

η   = 97.4% 
ρ= 11.9kW/dm3 

η   = 97.4% 

 Little Box 1.0 -- TCM  PWM 
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The Ideal Switch is 
Not Enough (!)   



■  Analysis of  Improvement of  Efficiency @ Given Power Density  &  Maximum Power Density  

 Little Box 1.0 @ Ideal Switches 
●   Multi-Objective Optimization of Little-Box 1.0  (X6S Power Pulsation Buffer)  
●   Step-by-Step Idealization of the Power Transistors 
●   Ideal Switches:  kC= 0 (Zero Cond. Losses);  kS= 0 (Zero Sw. Losses) 

Zero Output Cap. 
and Zero Gate 
Drive Losses 
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@ TCM  



 Little Box 1.0 @ Ideal Switches  -- TCM 

■  Minor Improvement of Max. Power Density  -  ρ= 12kW/dm3  15kW/dm3 (PPB Cap. & Inductors) 
■  Finite Remaining Volume & Losses   The Ideal Switch is Not Enough (!)   

●   Δη= + 0.5% @ ρ= 6kW/dm3   – Main Benefit from Zero Conduction Losses (kC=0) 
●   Δη= +1.5%  @ ρ= 12kW/dm3 – Add. Benefit     from Zero Sw. Losses (kS=kC=0) 

102/124 



■  50% Improvement of Max. Power Density  -  ρ= 12kW/dm3  19kW/dm3 (PPB & Inductors) 
■  Finite Remaining Volume & Losses   The Ideal Switch is Not Enough (!)   

●   Δη= + 1.0%   @ ρ= 6kW/dm3   –  Benefit from Zero Cond. & Zero Sw. Losses (kS= kC= 0) 
●   Δη= +1.75%  @ ρ= 12kW/dm3 –     Benefit from Zero Cond. & Zero Sw. Losses (kS= kC= 0) 

 Little Box 1.0 @ Ideal Switches  -- PWM 
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 Little Box 1.0 @ Ideal Switches -- PWM  

■    L &  fS  are Independent Variables (Dependent for TCM) 
■    Large Design Space Diversity (Mutual Compensation of HF and LF Loss Contributions) 

 

 

ρ   = 6kW/dm3 

η   ≈ 99.35% 
 
L    =  50uH  
fS=  500kHz  or  900kHz 
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Little Box 2.0     

   DC/│AC│Converter + Unfolder 
   PWM vs. TCM incl. Interleaving        
   ηρ-Pareto Limits for Non-Ideal Switches 
   Preliminary Exp. Results  
   Final 3D-CAD 

250 W/in3 



 Little Box 2.0 – New Converter Topology (1) 
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■  vC0  Easy to Generate/Control 
■  Higher Conduction Losses Due to FB-Unfolder   
■  Lower CM-Noise (DC & n x 120Hz-Comp.) 
■  CCM=700nF Allowed for 50mA Gnd Current 

■  vAC1 More Difficult to Generate/Control 
■  Lower Conduction Losses 
■  Higher CM-Noise (DC and n x 120Hz-Comp.) 
■  CCM=150nF Allowed for 50mA Gnd Current 

●   Alternative Converter Topology  Only Single HF Bridge Leg + 60Hz-Unfolder  
●   DC/│AC│- Buck Converter + Full-Bridge Unfolder  OR  HF Half-Bridge & Half-Bridge Unfolder 



 Little Box 2.0 – New Converter Topology (2) 
●   Alternative Converter Topology - DC/│AC│- Buck Converter + Unfolder 
●   60Hz-Unfolder (Temporary PWM for Ensuring Continuous Current Control) 
●   TCM  or PWM of  DC/│AC│- Buck-Converter  

■  Full Optimization of All Converter Options for Real Switches / X6S Power Pulsation Buffer 
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 Little Box 2.0 – Multi-Objective Optimization  
●   DC/│AC│- Buck Converter (Single Bridge Leg) + Unfolder & PWM Shows Best Performance 
●   Full-Bridge Would Employ 2 Switching Bridge Legs -  Larger Volume & Losses 
●   Interleaving Not Advantageous – Lower Heatsink Vol. but Larger Total Vol. of Switches and Inductors  

■  ρ= 250W/in3 (15kW/dm3) @ η= 98% Efficiency Achievable for Full Optimization   


 


 

--  4D-Interleaving Considered for TCM     
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 Little Box 2.0 – Volume & Loss Distribution @ (P1…5)  

■    Volume Dominated by Heatsink & PPB (Power Pulsation Buffer) 
■    Losses for Buck+Unfolder Dominated by  Switches & PPB 

Full-Bridge Full-Bridge 

Buck+ 
Unfolder 
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Buck+ 
Unfolder 



Experimental Results  
Control Block Diagram 

   Output Voltage/Input Current Quality 
Efficiency  



 Little Box 2.0 – Control Structure 

■    Each Stage (Buck & Unfolder) Controlled with Cascaded Current and Voltage Loop 
■    Without Switching of Unfolder Control Like for Conventional Boost PFC Rectifier 

109/124 



Analysis of DC/│AC│-Buck Converter & Unfolder 

●  Voltage Zero Crossing Behavior With (Right) & Without (Left) Switching of Unfolder 
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■  Output Voltage & Current Fully Controlled Around Voltage Zero Crossings  
■  Slope of Buck Conv. Outp. Curr. can be Decreased – Adv. for React. Loads (No Step-Change of DC Curr.) 

Output Voltage  (200 V/div)   
Output Current  (10 A/div)                  
Buck Inductor Current  (10 A/div)          
Unfolder Output Voltage (200 V/div) 
  



■    Capacitive Load 

 Little Box 2.0 – Measured Waveforms 

●  DC/|AC| Buck-Stage Output Voltage & Inductor Current 

■    Inductive Load ■    Resistive Load 
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 Little Box 2.0 – Preliminary Efficiency Measurements 

●   Performance of First DC/│AC│- Buck Converter + Unfolder Prototype 
●   PWM Operation 
●   Without Power Pulsation Buffer 

■  98% for Res. Load Achievable if Cond. Losses of PCB (Copper Cross Sect.) & Unfolder (Rds,on) are Red. 
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3D-CAD Construction 

of the Final System 

250 W/in3 



 Little Box 2.0 – Final Mechanical Construction (1) 
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■  60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 )  14.8 kW/dm3 (243 W/in3) 

PPB Capacitor 
Output Filter 
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 Little Box 2.0 – Final Mechanical Construction (2) 

■  60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 )  14.8 kW/dm3 (243 W/in3) 

PPB Capacitor 

Heat Sink + Fans 

Output Filter 
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 Little Box 2.0 – Final Mechanical Construction (3) 

■  60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 )  14.8 kW/dm3 (243 W/in3) 

PPB Capacitor 

  Inductors 
(Buck-Stage & 
  Unfolder) 

Heat Sink + Fans 

Output Filter 
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PPB Capacitor 

Heat Sink + Fans 

Power Board 

■  60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 )  14.8 kW/dm3 (243 W/in3) 

 Little Box 2.0 – Final Mechanical Construction (4) 

  Inductors 
(Buck-Stage & 
  Unfolder) 

Output Filter 
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Control Board 

 Little Box 2.0 – Final Mechanical Construction (5) 

PPB Capacitor 

Heat Sink + Fans 

Power Board 

■  60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 )  14.8 kW/dm3 (243 W/in3) 

  Inductors 
(Buck-Stage & 
  Unfolder) 

Output Filter 



 
Little Box 3.0     

5…10MHz Switching Frequency   
Performance of Low-μ HF Magnetic Materials 
Digital Control    



●   Serious Limitation of Operating Frequency by HF Losses 

─   Core Losses (incr. @ High Frequ. & High Operating Temp.) 
─   Temp. Dependent Lifetime of the Core   
─   Skin-Effect Losses 
─   Proximity Effect Losses 

■   Skin-Factor Fs for Litz Wires with N Strands    ■   Adm. Flux Density for given Loss Density  



Source: Prof. Albach, 2011 

►  Magnetics Operation Frequency Limit  (1) 
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■  fS  in the MHz-Range Results in Very Low EMI Filter Volume    

►  Magnetics Operating Frequency Limit  (2) 

●    (Modified) “Core Material Perform. Factor“  F0.75= Bpk   .f 0.75  Defined for Def. Core Loss   
●    Performance Factor prop. to VA Handling Capability – Min. Vol. @ Max. of F0.75 
●    Little Benefit of Increased fS  for Conv. Ferrites in 200kHz…2MHz 
●    Peak Performance of Low-μ HF Core Materials @ 5-10 MHz   

►
 

►
 

Source:  
Hanson et al.   

 ECCE 2015 

Fair-Rite 67 (μr=40) 
  All Inductors w. Q= 200     

@ 500mW/cm3 
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 ►  TCM Digital Control / Timing Challenges @  fS > 1MHz  

●  Dead Times Required for Res. Transition (ZVS) 
●  i = 0  Detection Time Delay   
●  Signal Isolator & Gate Drive Time Delays 
 
●  Large Reactive Power for ZVS 
●  Rel. Large Cond. Losses @ Low Output Current 

■  New High Speed / Low-Volume / Low-Loss i= 0 Detection Concepts Required  
■  Integrated Gate Drive w. (Hysteresis) Current Control Functionality Required   
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Source: whiskeybehavior.info 

Overall 
Summary 



 Performance Limits / Future Requirements   

●  New Integr. Control Circuits and i=0 Detection for Sw. Frequency >1MHz    
●  Integrated Gate Drivers & Switching Cells 
●  High Frequency Low Loss Magnetic Materials 
●  High Bandwidth Low-Volume Current Sensors 
●  Low Loss Ceramic Capacitors Tolerating Large AC Ripple 
●  Passives w. Integr. Heat Management and Sensors 
●  3D Packaging  

●  New U-I-Probes Required for Ultra-Compact Conv. R&D 
●  Specific Systems for Testing  Devices Equipped with Integr. Measurement Functions  
●  Convergence of  Sim. & Measurem. Tools  Next Gen. Oscilloscope 
●  New Multi-Obj. Multi-Domain Simulation/Optim. Tools  
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●  220…250W/in3 for Two-Level Bridge Leg + Unfolder  
●  250…300W/in3 for Highly Integrated Multi-Level Approach  
●  Isol. Distance Requirements Difficult to Fulfill 
●  Fulfilling Industrial Inp. Overvoltage Requirem. would Signific. Reduce Power Density 

●  Low Frequency (20kHz…120kHz) SiC  vs.  HF (200kHz…1.2MHz) GaN 
●  Multi-Cell Concepts for LV Si (or GaN) vs. Two-Level SiC (or GaN)  
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