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Outline
► SST Origins

▪ Traction
▪ Smart Grids

► Key Characteristics  
► MEGATRENDS  Future SST Application Areas

▪ Datacenter    
▪ Smart Cities / Buildings 
▪ High Power EV Charging
▪ More Electric/Hybrid Aircraft 
▪ More Electric/Hybrid Ships
▪ Renewable Energy – Wind / Solar
▪ Deep Sea Exploration etc.

► Key Topologies
► Industry / ETH Demonstrators 
► Conclusions
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Next Generation
Traction Vehicles

SST Origins



► Classical Locomotives

- Catenary Voltage 15kV  or 25kV
- Frequency 162/3Hz  or  50Hz
- Power Level 1…10MW  typ.

■ Transformer: Efficiency    90…95% (due to Restr. Vol., 99% typ. for Distr. Transf.)
Current Density       6 A/mm2 (2A/mm2 typ. Distribution Transformer)
Power Density         2…4 kg/kVA (0.5…0.25 kVA/kg)

!

Source: www.abb.com
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► Passive Transformer

Pt  …. Rated Power
kW …. Window Utilization Factor  
Bmax ...Flux Density Amplitude
Jrms… Winding Current Density  
f  .…. Frequency

  



■ Low Frequency    Large Weight / Volume   
■ Trade-off             Volume vs.  Efficiency 

● Magnetic Core 
Cross Section

● Winding Window

● Construction Volume
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■ Trends *  Distributed Propulsion System  Volume Reduction  (Decreases Efficiency)
*  Energy Efficient Rail Vehicles    Loss Reduction     (Requires Higher Volume)
*  Red. of Mech. Stress on Track    Mass Reduction

● Replace LF Transformer with  MF Transformer  &  Power Electronics Interface   SST
● Medium-Frequency Allows Reduction of Volume  & Losses

Source: ABB
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Next Generation Locomotives (1)



■ Loss Distribution of  Conventional  &  Next Generation Locomotives

LF
MF

SST

● MF Provides Degree of Freedom Reduction of  Volume  &  Losses (!)
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Next Generation Locomotives (2)



Future Smart 
EE Distribution

Source: TU Munich

SST Motivation



► Advanced (High Power Quality) Grid Concept
- Heinemann / ABB (2001)

● MV AC Distribution with DC Subsystems (LV and MV) and  Distributed AC & DC Sources /Loads
● MF AC/AC Conv. with  DC Link Coupled to Energy Storage provide High Power Qual. for Spec. Customers
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► Future Ren. Electric Energy Delivery & Management (FREEDM) Syst.

- Huang et al. (2008)

● SST as Enabling Technology for the “Energy Internet”

- Full Control of the Power Flow
- Integr. of DER (Distr. Energy Res.) 
- Integr. of DES (Distr. E-Storage) + Intellig. Loads
- Protects Power Syst. From Load Disturbances
- Protects Load from Power Syst. Disturbances
- Enables Distrib. Intellig. through COMM
- Ensure Stability & Opt. Operation
- etc. 
- etc.

● Bidirectional Flow of Power & Information / High Bandw. Comm.  Distrib. / Local Autonomous Cntrl

IFM =  Intellig. Fault
Management

►

►

!

SST
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Source: www.yacht-chartercroatia.com



► 3-Φ AC  vs.  DC Power Systems  
■ DC Voltage Ensures Max. Utiliz. of Isol. Voltage  Highest Voltage RMS Value / Lowest Current (!)
■ Quadratic Dependency of Losses on Voltage Level  Reduction of Conductor Cross Section

■ DC Voltage Level Transformation Requires Power Electronics Interfaces
■ DC Fault Current Clearing is Challenging (Missing Regular Current Zero Crossing)

  

  


   Conductor Cross Sections 

for Same Losses
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► AC  vs.  DC Power Transmission

■ Low-Frequency AC (LFAC) as Possible (Purely Passive) Solution for Medium Transmission Distances

■ AC Cable – Thermal Limit Due to Cap. Current @ L = 0

■ HVDC Transmission – Advantageous for Long Distances  
Costs

Losses

Cable

Terminal

Distance
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McMurray Electronic Transformer (1968)
Brooks Solid-State Transformer (SST, 1980)
EPRI Intelligent Universal Transformer (IUTTM)
ABB Power Electronics Transformer (PET)
Wang Energy Router
etc.

► SST Key Characteristics

■ Interface to Medium-Voltage /  Medium-Frequency Isolation  /  AC or DC Input and/or Output
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● Lower Efficiency  of SST  Compared to  “Grid-Type”  Passive Transformer
● Medium Freq.  Higher Transf. Efficiency only Partly Compensates Converter Stage Losses

LF Isolation
Purely Passive (a) 

Series Voltage Comp. (b)  
Series AC Chopper (c)

MF Isolation
Active Input & Output Stage (d)

LF

MF
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Trade–Off  - Controllability  vs. Efficiency



► SST Development Cycles

■ Development Cycles Reaching Over Decades – Matched to “Product” Life Cycle

12/65

Ultra-Fast Charging
PV

MF Transformer Concepts
for Traction
(Thyristors)



Global
Megatrends

Digitalization
Urbanization
Sustainable Mobility
Renewable Energy
Etc.
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Server-Farms
up to 450 MW

99.9999%/<30s/a
$1.0 Mio./Shutdown

Since 2006 
Running Costs > 

Initial Costs

─ Ranging from Medium Voltage to Power-Supplies-on-Chip
─ Short Power Supply Innovation Cycles
─ Modularity / Scalability

─ Higher Availability 
─ Higher Efficiency
─ Higher Power Density  
─ Lower Costs



Source: REUTERS/Sigtryggur Ari

► Deep Green/Zero              Datacenters
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■ 5…7%  Reduction in Losses &  Smaller Footprint
■ Improves Reliability  &  Power Quality

Future Modular SST-Based Power Distribution

─ Conventional

■ MV  48V 1.2V - Only 2 Conversion Stages from MV to CPU-Level (!)

Load

─ Direct  3-Φ 6.6kV AC  48V DC Conversion / Unidirectional SST



14/65



Global
Megatrends

Digitalization
Urbanization
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► Urbanization
■ 60% of World Population Exp. to Live in  Urban Cities  by 2025
■ 30 MEGA Cities Globally  by 2023

─ Smart Buildings 
─ Smart Mobility
─ Smart Energy / Grid 
─ Smart ICT, etc.

► Selected Current & Future MEGA Cities  2015  2030

Source: World Urbanization
Prospects: The 2014 Revision
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Source:

Smart Cities/Grids/Buildings (1)

www.masdar.ae 

─ Masdar = “Source”
─ Fully Sustainable Energy Generation

* Zero CO2
* Zero Waste

─ EV Transport / IPT Charging
─ to be finished  2025


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Source:

www.masdar.ae 

─ Masdar = “Source”
─ Fully Sustainable Energy Generation

* Zero CO2
* Zero Waste

─ EV Transport / IPT Charging
─ to be finished  2025

Smart Cities/Grids/Buildings (2)
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DC Microgrids

─ Conventional ─ Future SST-Based Concept

■ Local DC Microgrid  Integrating Loads/Ren. Sources/Storage
■ No Low-Voltage AC/DC Conversion Higher Efficiency & Lower Realization Effort

18/65
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► Sustainable Mobility

www.theicct.org

■ EU Mandatory 2020 CO2 Emission Targets for New Cars

─ 147g CO2/km for Light-Commercial Vehicles 
─ 95g CO2/km for Passenger Cars
─ 100% Compliance in 2021

► Hybrid Vehicles
► Electric Vehicles


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 Ultra-Fast /High-Power EV Charging
■ Medium Voltage Connected Modular Charging Systems 
■ Very Wide Output Voltage Range (200…800V)

Source: Porsche 
Mission-E Project

─ E.g., Porsche FlexBox incl. Cooling 
─ Local Battery Buffer (140kWh)
─ 320kW 400km Range in 20min

20/65
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 Bidirectional SST-Based MV Interface
■ Conventional

■ Future SST-Based Concept

● On-Site Power / Energy Buffer  „Energy-Hub“
● Power / Energy Management    Peak Load Shaving &   Grid Support / Stabilization



► Sustainable Air Transportation
■ Massive Steady Increase of Global Air Traffic Over the Next Decades

22/65

─ Need for 70´000 New Airliners over the Next 20 Years (Boeing & Airbus)
─ Stringent Flightpath 2050 Goals of ACARE  Reduction of CO2/NOx/Noise Emissions  






Source:   

● Wing-Tip Mounted Eff. Optimized Gas Turbines    &   Distributed E-Fans (“E-Thrust”)
● MV or Superconducting Power Distribution Integr. 1000Wh/kg Batteries (EADS-Concept)

Turbo 
Generators

E-Fans / 
Continuous 
Nacelle

NASA N3-X 
Vehicle Concept

 Future Distributed Propulsion Aircraft

■ Cut Emissions Until 2050
─ CO2 by 75%, 
─ NOx by 90%, 
─ Noise Level by 65%
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● Generators  ─ 2 x 40.2MW (NASA)
● E-Fans  ─ 14 x 5.7 MW  (1.3m Diameter)

► MV or Superconducting Power Distribution Integr. 1000Wh/kg Batteries (EADS-Concept)

 Future Aircraft Electric Power System

24/65



► Sustainable Maritime Transportation
■ 80% of All Globally Traded Goods Transported by Ships

─ IMO  Ship Energy Eff. Management Plan (SEEMP)  &  Energy Eff. Design Index (EEDI)   
─ Crude Oil  New Fuel Types (LNG)
─ Fully-Electric Port Infrastructure

► Worldwide Seaborne
Trade in Billions of
Cargo Ton-Miles

25/65

Source: UNCTAD 2018



Low-Voltage

Medium-Voltage
Power Distribution

Low-Voltage

Medium-Voltage
Power Distribution

■ Conv. AC Power Distrib. Network  Disadvantage of Const. Prime Mover / Generator Speed 

■ No Mech. Coupling of Propulsion & Prime Movers (DGs)  Eff. Optim. Load Distrib. to the DGs 
■ Energy Storage (Batt., Fuel Cell, etc.)
─ Peak Shaving 
─ Opt. Gen. Scheduling 
─ High Dyn. Performance

 Hybrid Diesel-Electric Propulsion  

26/65



Medium-Voltage
Power Distribution

Low-Voltage

Medium-Voltage
Power Distribution

Low-Voltage

 Shipboard DC Power Distribution

■ 1kV/< 20MW  or 1…35kV/20…100MW  DC Distribution (Radial or Ring, Central. or Distrib.)

■ Future DC/AC-SST Interface to Low-Voltage AC & DC Grid  
■ Future DC/DC-SST Interface  to Energy Storage (ES)

27/65

─ DC Distribution 
Up to 20% Fuel Eff.
Improvement /
Smaller Footprint /
Easier ES Integr.



Future Combat Ships (1)
■ MV Cellular DC Power Distribution on Future Combat Ships  etc.

Source: 
General Dynamics

► “Energy Magazine” as Extension of  Electric Power System / Individual Load Power Conditioning
► Bidirectional Power Flow for Advanced Weapon Load Demand 
► Extreme Energy and Power Density Requirements

28/65





6kV DC/DC SST  for 
Size/Weight Reduction

Dorrey (2009)

■ MV Cellular DC Power Distribution on Future Combat Ships  etc.

► “Energy Magazine” as Extension of  Electric Power System / Individual Load Power Conditioning
► Bidirectional Power Flow for Advanced Weapon Load Demand 
► Extreme Energy and Power Density Requirements 

29/65

Future Combat Ships (2)
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► Wind Energy

■ Power prop.  D2
 “Bigger is Better” / Lower Relative Costs

■ 50kW (D = 15m) in 1980   Up to 20MW (D = 250m) in Future

540 GW

12MW
Under 

Development

Source: gwec.net / Blaabjerg
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─ Current 690V Electrical System Significant Cabling Weight/Costs & Space Requirement  
─ Future  Local Medium-Frequency Conv. to Medium-Voltage AC or DC

► On-Shore Wind Power System

 Wind Turbine Electrical System

► Future Off-Shore System 

31/65

Low-
Voltage 
Cable

Medium-
Voltage 
Cable



 Off-Shore Collector-Grid Concepts

■ DC/DC-SST Interface  — Wind Turbine DC Link to MVDC Collector Grid   Lower Losses (1%) & Volume
■ DC/DC-SST Interface  — MVDC Grid to HVDC Transmission                      Lower Losses (1%) & Volume

■ Conventional AC Collector-Grid

32/65



► Utility-Scale Solar Power Plants

■ Globally 
Installed PV 
Capacity 
Forecasted to
2.7 Terawatt by
2030 (IEA)

■ Medium-Voltage Power Collection and Transmission   

33/65

Source: REUTERS/Stringer 



Future DC Collector Grid

■ DC/DC SST for MPPT  & Direct 
Interfacing of PV Strings to 
MV Collector Grid 

■ 1.5% Efficiency Gain  
Compared to Conv. 
AC Technology  



Conventional   ►

AC Medium-Voltage

HV MainsHV Mains

High-Voltage
Transmission 

System

Medium-Voltage
Collector Grid 

Low-Voltage

Future  ►
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► Power-to-Gas
■ Electrolysis for Conversion of Excess Wind/Solar Electric Energy   into       Hydrogen

 Fuel-Cell Powered Cars
 Heating■ High-Power @ Low DC Voltage (e.g. 220V)

■ Very Well Suited for MV-Connected SST-Based Power Supply
■ SST Allows Direct Interfacing to DC Collector Grid

– Hydrogenics 100 kW
H2-Generator (η=57%)

35/65

Medium-Voltage
Distribution System

Conventional  ► Future

►
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► Future Deep Sea Mining

■ “Subsea Factories” / Subsea Power Grid  Long-Distance MV Power Supply from Shore
■ Subsea Mining Machines / ROVs / Pumps / Compressors etc.

36/65

■ Demand for Highly Compact / Efficient / Reliable Systems

Source: SMD - Specialist 
Machine Developments 



Future Power Supply of Subsea Systems

Source: Devold (ABB 2012)

■ DC Transmission from Shore 
■ No Platforms/Floaters

37/65

►

Today   ► Future  ►Ongoing  ►





■ MV-Level Shore-Side Power to Docked Ships (“Cold-Ironing”)  Diesel Aux. Engines Turned Off

Source: iecetech.org

 Cutting Emissions & Noise in Airports / Harbours

■ Ground Power Supply of Aircraft  APU Turned Off

■ SST Medium-Voltage Interfaces

─ Voltage Level / Frequ. Adaption  
─ Low Space Requirement

38/65



SST Concept
Implementation



Creation of MV  LV 
SST Topologies



► Classification of SST Topologies (1)

■ Degree of Power
Conversion Partitioning

■ Number of Levels
Series/Parallel Cells

■ Degree of Phase
Modularity

► 3-Dimensional Topology Selection Space   

!

!

!!
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■ Very (!) Large Number of Possible Topologies  

– Partitioning of Power Conversion  Matrix & DC-Link Topologies
– Splitting of 3ph. System into Individual Phases  Phase Modularity
– Splitting of Medium Operating Voltage into Lower Partial Voltages  Multi-Level/Cell Approaches

Degree of Power
Conversion Partitioning

Degree of
Phase Modularity

- Wrede (2003)

Number of Levels
Series/Parallel Cells

40/65

► Classification of SST Topologies (2)



Combining the 
Basic Concepts I

Single-Phase AC-DC Conversion /
Traction Applications



MV LF AC MF AC LV DCMV DC

Source: Zhao / Dujic ( ABB / 2011)

► Cascaded H-Bridges w. Isolated Back End
■ Multi-Cell Concept (AC/DC Front End & Soft-Switching Resonant DC//DC Converter)
■ Input Series / Output Parallel Connection – Self Symmetrizing (!)
■ Highly Modular / Scalable
■ Allows for Redundancy 
■ High Power Demonstrators:                                                           etc. 
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► DCX  — “DC Transformer”

■ fS ≈ Resonant Frequency  “Unity Gain” (U2/U1=N2/N1) 
■ Fixed Voltage Transfer Ratio Independent of Transferred Power (!)
■ Power Flow Level & Direction Self-Adjusting 
■ No Controllability / No Need for Control
■ ZCS of All Devices



i1

i2
i1 i2

42/65

Diodes  IGBTs 
for Bidirectional 
Power Flow



► Current Shaping & Isolation   Isolation & Current Shaping

■ Isolated DC/DC Back End   ■ Isolated AC/│AC│Front End   

● Typical Multi-Cell SST Topology
● Two-Stage Multi-Cell Concept
● Direct Input Current Control
● Indirect Output Voltage Control
● High Complexity at MV Side

● Swiss SST  (S3T)
● Two-Stage Multi-Cell Concept
● Indirect Input Current Control
● Direct Output Voltage Control
● Low Complexity on MV Side
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► Modular Multilevel Converter

- Marquardt/Glinka (2003)

MV LF AC

MF AC

LV DC

Source: Zhao / Dujic ( ABB / 2011)

■ Single Transformer Isolation
■ Highly Modular / Scalable
■ Allows for Redundancy 
■ Challenge of Balancing the Cell DC Voltages

44/65



Combining the 
Basic Concepts II

Three-Phase AC-AC Conversion /
Smart Grid Applications

Source:  



● 2-Level Inverter on LV Side  
● HC-DCM-SRC DC//DC Conversion
● Cascaded H-Bridge MV Structure – ISOP Topology

► MEGALink @ ETH Zurich
SN    = 630kVA
ULV   = 400 V
UMV   = 10kV

45/65





● 13.8kV  480V
● Scaled Prototype
● 15kV SiC-IGBTs, 1200V SiC MOSFETs

20kHz

22kV 800V

► Non-Cascaded Structure (SiC)

■ Redundancy Only for Series-Connection of Power Semiconductors (!)
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SST Demonstrator Systems
Future Locomotives 

Smart Grid Applications



► 1ph. AC/DC Power Electronic Transformer - PET

P =  1.2MVA, 1.8MVA pk
9 Cells (Modular)

54 x (6.5kV, 400A IGBTs)
18 x (6.5kV, 200A IGBTs)
18 x (3.3kV, 800A IGBTs)

9   x MF Transf. (150kVA, 1.8kHz)
1   x  Input Choke

- Dujic et al. (2011)

- Heinemann           (2002)
- Steiner/Stemmler (1997)
- Schibli/Rufer        (1996)
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► 1.2 MVA  1ph. AC/DC Power Electronic Transformer (1)

■ Cascaded H-Bridges – 9 Cells
■ Resonant LLC DC/DC Converter Stages

48/65

■ Same Overall Volume as Conventional System
■ Future Development Targets Half Volume 



► 1.2 MVA  1ph. AC/DC Power Electronic Transformer (2) 

Efficiency

49/65

■ Cascaded H-Bridges – 9 Cells
■ Resonant LLC DC/DC Converter Stages

■ Same Overall Volume as Conventional System
■ Future Development Targets Half Volume 



► SiC-Enabled Solid-State Power Substation (1)

- Das et al. (2011)
- Lipo (2010)
- Weiss (1985 for Traction Appl.)

50/65

● SiC Enabled 20kHz/1MVA “Solid State Power Substation”
● 97% Efficiency @ Full Load / 1/3rd Weight / 50% Volume Reduction (Comp. to 60Hz)

- Fully Phase Modular System
- Indirect Matrix Converter Modules (f1 = f2)
- MV ∆-Connection (13.8kVl-l, 4 Modules in Series)
- LV  Y-Connection (265V,  Modules in Parallel)
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- Das et al. (2011)

● SiC Enabled 20kHz/1MVA “Solid State Power Substation”
● 97% Efficiency @ Full Load / 1/3rd Weight / 50% Volume Reduction (Comp. to 60Hz)

- Fully Phase Modular System
- Indirect Matrix Converter Modules (f1 = f2)
- MV ∆-Connection (13.8kVl-l, 4 Modules in Series)
- LV  Y-Connection (265V,  Modules in Parallel)

► SiC-Enabled Solid-State Power Substation (2)



25kW SwiSS-Transformer @ ETH Zurich  
■ Bidirectional 1-Φ 3.8 kVrms AC  400V DC Power Conversion
■ Based on 10kV SiC MOSFETs
■ Full Soft-Switching

► 35…75kHz  iTCM Input Stage                             ► 48kHz DC-Transformer Output Stage

3.3kW/dm3

3.8 kW/dm3
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■ Full-Bridge iTCM – integrated Triang. Current Mode Operation  Enables ZVS

► Full-Load Measurement (25kW @ 3.8kVrms AC, 7kV DC)  - ZVS  Over Full AC Cycle (!)

─ ZVS Requires Change of Sw. Current Direction in Each Sw. Period
─ Open-Loop Variation of Sw. Frequency for Const. ZVS Current (35…75kHz) 
─ Separate Optim. of ZVS and Input Inductor Possible
─ No Large Ripple Input Current

► 3.8kV  7kV  ZVS AC/DC Stage

3.3kW/dm3
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► 7kV  400V DC/DC Stage (1)

■ MV-Side Half-Bridge

► Half-Bridge for Cutting Voltage in Half / Lower Switch Count

─ 48kHz Sw. Frequency, ZVS
─ Cooling of Power Semicond. by Floating Heatsinks (Not Shown)
─ Creepage Distances Ensured by PCB Slots

3.8 kW/dm3
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■ MF-Transformer Measurement

► Transformer Prototype / Loss Distribution / Efficiency 

─ Fully Tested @ 25kW / 7 kV
─ Calorimetric Loss Measurement
─ 99.64% Efficiency

► 7kV  400V DC/DC Stage (2)
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► Overall Performance

► Red. of Losses & Volume by Factor of  > 2 Comp. to Alternative Approaches (!) 
► Significantly Simpler Compared to Multi-Module SST Approach

■ Full Soft-Switching
■ 98.1%  Overall Efficiency @ 25kW
■ 1.8 kW/dm3 (30W/in3)

56/65
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1-Φ 2.4kVrms AC  54V DC  

► Power Density of 0.4kW/dm3 (6.6W/in3)
► 96% Overall Efficiency @ 25kW

■ Published @ IEEE APEC 2017 
■ N=5 Series-Connected Cells @ MV-Side  / Cost Optimum
■ Input Stage Module    Boost PFC Half Contr. Thyr. Rect. / 1.2kV IGBTs & SiC Diodes
■ Output Stage Module  3-Level DC/DC Conv. - 600V SJ & 100V MOSFETs

57/65





► 40kV SiC Super-Switch @ ETH Zurich

● Integrated Gate Drive / Voltage Balancing / Protection / Isol. Cooling Surface etc.

■ Cascaded 10kV SiC MOSFETs
■ Quasi-X-Level (Staggered) Switching 
■ Intellig. Power Module — Two-Level Bridge-Leg Appearance  
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► SST — Air-Core vs. Magnetic-Core XFRM (1) 

■ Rated Power 166kW 
■ DC/DC Conversion   7kV / 7kV 

► Clarify Weight / Efficiency Trade-Off 
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■ η-γ-ρ-Pareto Fronts of Transformers & Converters 

► SST — Air-Core vs. Magnetic-Core XFRM (2) 
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■ Air Core SST  98.9% / 12.8kg (77kHz)
■ Mag. Core SST  99.2% / 27.2kg (40kHz)

► Weight / Efficiency Trade-Off 

Aluminum 
Shielding (0.5mm)

► SST — Air-Core vs. Magnetic-Core XFRM (3) 

61/65

13kW/kg

24 kW/kg

Losses



Conclusions
SST Limitations / Concepts

Research Areas



► The Solid-State Transformer Hype 

Source:  

■ Large # of Publications !  
■ Research on Main

Application Challenges
Currently Largely 
Missing

► Protection (?)
► Control in ActiveGrids (?)
► System Level Adv. (?)
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► SST Applications  The Road Ahead

● AC/AC
- Efficiency Challenge
- More Eff. Voltage Control by   

* Tap Changers 
* Series Regulators  (Partial Power)

- Not Compatible w. Existing Infrastr.
- Cost / Robustness / Reliability

■ Weight / Space Limited  
■ Traction Applic. etc.

■ NOT (!) Weight / Space Limited  
■ Smart Grid, Stationary Applications

63/65

● AC/DC
- Efficiency Challenge more Balanced
- “Local” Applic. (Datacenters, DC Distr.)
- Cost / Robustness / Reliability

● DC/DC
- No Other Option (!)
- MV DC Collection Grids (Wind, PV)
- Sw. Frequ. as DOF of Design

● DC/DC
● AC/DC
● AC/AC
- Sw. Frequ. as DOF of Design
- Low Weight/Volume @ High Eff.
- Local Applic. (Load/Source Integr.)



“Hybrid” Transformers 

■ Combination of Mains-Frequ. Transformer &  SST
■ Fractional Power Processing   High Efficiency
■ Low Blocking Voltage Requirement
■ Simplified Protection

► Shunt Connection
─ Reactive Current Inj. 
─ Harm. Curr. Inj.

► Series Connection
─ Reactive Voltage Inj. 
─ Phase Shiftg / Volt. Cntrl

► Combined Connection
─ Reactive / Harm. Curr. Inj. 
─ Volt. Cntrl / Phase Shiftg
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Done !

To be 
Done…

■ Huge Multi-Disciplinary Challenges / Opportunities (!)  are  Still Ahead

► Current SST Research Status
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Thank  You!



Questions

www.pes.ee.ethz.ch/publications.html 

Source: P. Aylward





Electronic Transformer - History   
■ System Using Mech. Switches Patented Already in 1913 (!)
■ Mechanical Sw. Tubes  Mercury Arc Valves  Solid State Switches 

1913 ─ P.M.J. Boucherot 1928 ─ D.C. Prince  
1944 ─ E.F.W. Alexanderson  et al.                                   1968 ─ W. McMurray

● “Transformer of Cont. Current” / “DC Transformer” / “Electronic Transformer” 

►

►

►►

E/1



1970!

E/2

● Transistor/Diode-Based “Electronic Transformer”  
● AC or DC  Voltage Regulation  &  Current Regulation/Limitation/Interruption


