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► Classification of Unidirectional Rectifier Systems 
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■  Phase-Modular Systems 

■   Definitions and Characteristics 

● Passive Rectifier Systems -  Line Commutated Diode Bridge/Thyristor Bridge - Full/Half Controlled 
-  Low Frequency Output Capacitor for DC Voltage Smoothing 
-  Only Low Frequency Passive Components Employed for Current 
   Shaping, No Active Current Control 
-  No Active Output Voltage Control 

● Hybrid Rectifier Systems -  Low Frequency and Switching Frequency Passive Components and/or 
-  Mains Commutation (Diode/Thyristor Bridge - Full/Half Controlled) 
   and/or Forced Commutation 
-  Partly Only Current Shaping/Control and/or Only Output Voltage Control 
-  Partly Featuring Purely Sinusoidal Mains Current  

●  Active Rectifier Systems -  Controlled Output Voltage 
-  Controlled (Sinusoidal) Input Current 
-  Only Forced Commutations / Switching Frequ. Passive Components 

-  Only One Common Output Voltage for All Phases 
-  Symmetrical Structure of the Phase Legs  
-  Phase (and/or Bridge-)Legs Connected either in Star or Delta 

► Classification of Unidirectional Rectifier Systems 

■  Direct Three-Phase Syst. 

-  Phase Rectifier Modules of Identical Structure 
-  Phase Modules connected in Star or in Delta 
-  Formation of Three Independent Controlled DC Output Voltages 
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► Classification of Unidirectional Rectifier Systems 
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► Diode Bridge Rectifier with Capacitive Smoothing 

ULL = 3 x 400 V 
fN = 50 Hz 
Pout = 2.5 kW  (R=125 Ω) 
C = 1 mF; 40 µF 
Xc/R = 0.025; 0.636 
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► Diode Bridge Rectifier / DC-Side Inductor and Output Capacitor 

ULL = 3 x 400 V 
fN = 50 Hz 
Pout = 2.5 kW  (R=125 Ω) 
C =  1 mF 
L = 5 mH; 20 mH 
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► Diode Bridge Rectifier / AC-Side Inductor and Output Capacitor 

ULL = 3 x 400 V 
fN = 50 Hz 
Pout = 2.5 kW  (R=125 Ω) 
C =  1 mF 
L = 2 mH; 20 mH 
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► Passive 3rd Harmonic Injection 
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● Minimum THD of Phase Current for iy = 1/2 I 
● THDmin = 5 % 

► Passive 3rd Harmonic Injection 
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► Classification of Unidirectional Rectifier Systems 
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► Auto-Transformer-Based-12-Pulse Rectifier Systems 

■  AC-Side Interphase Transf. (Impr. DC Voltage) 

■  DC-Side Interphase Transf. (Impr. DC Current) 

20A/Div ia ib ic 

0.5ms/Div 

DC-Side Interphase Transformer can 
be omitted in Case of Full Transformer 
Isolation of Both Diode Bridges  
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► Classification of Unidirectional Rectifier Systems 
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► Diode Bridge and DC-Side Electronic Inductor (EI) 

+  Only Fract. of Output Power Processed 
+  High Efficiency and Power Density 
  
–  Not Output Voltage Control 
–  EMI Filtering Required 
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■  Control Structure 

●  Current Control could Theoretically Emulate Infinite Inductance Value but Damping 
    (Parallel Ohmic Component) has to be Provided for Preventing Oscillations 

► Diode Bridge and DC-Side Electronic Inductor (EI) 
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ULL = 3 x 400 V 
Po = 5 kW 
fs = 70 kHz 
C = 4 x 330 µF /100 V 

η = 98.3 % 
λ = 0.955 
THD = 28.4 % 

ia 

2ms/div 

■  Experimental Results 

► Diode Bridge and DC-Side Electronic Inductor (EI) 

5A/Div 
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Fundamental Frequency Equivalent Circuit 

■  MERS Concept (Magnetic Energy Recovery Switch) 

► Diode Bridge and DC-Side EI or Electronic Capacitor   
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●  Switching Frequency DC-Side Inductors  
●  Proper Control of the EIT Allows to Achieve Purely Sinusoidal  Mains Current ! 

► 12-Pulse Rectifier Employing Electr. Interphase Transformer (EIT) 
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► Classification of Unidirectional Rectifier Systems 
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● No Output Voltage Control 
● Mains Current Close to Sinusoidal Shape 

● Controlled Output Voltage   
● Purely Sinusoidal Shape of Mains Current 

e.g.:    i1 = I + 3/2 iy 
           i2 = I – 3/2 iy 
 
CCL:    3iy = i1 – i2   

► Active 3rd Harmonic Injection into All Phases 

Minnesota Rectifier 
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● Current Control Implemention with Boost-Type DC/DC Converter (Minnesota Rectifier) or 
    with Buck-Type Topology 

 

► Active 3rd Harmonic Injection into All Phases 
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+  Purely Sinusoidal Mains Current (Only for Const. Power Load) 
+  Low Current Stress on Active Semicond. / High Efficiency 
+  Low Complexity 
 

-  No Output Voltage Control 

► Active 3rd Harmonic Inj. Only into One Phase  (I) 

●  T+, T- Could be Replaced by Passive Network 
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 ■ Proof of Sinusoidal Mains Current Shape for 

- Current to be Inj. Into Phase b: 

- Local Avg. Ind. Voltage / Bridge  
     Leg (T+, T-) Output Voltage: 

- Bridge Leg Voltage Formation: 

- Bridge Leg Current Formation: 

- Constant Power Load Current: 

and/or 

■  Sinusoidal Mains Current:  

Condition: 

 
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3 Different States Regarding the Current Paths  
with Relative On-Times     ,      , and 

T+ on, T- off 
T+ off, T- on 
T + off, T- off 
T + on, T- on 

●  4 Different Switching States: 

 ■  Proof of Sinusoidal Mains Current Shape for                 (1) 

► Active 3rd Harmonic Inj. Only into One Phase  (II) 

■  Boost-Type Topology 

+  Controlled Output Voltage 
+  Purely Sinusoidal Mains Current  
 
 

-    Power Semiconductors Stressed  
    with Line-to-Line and/or Full  
    Output Voltage 
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 ■  Proof of Sinusoidal Mains Current Shape for                  (2) 

-  Current to be Injected into b: 

-  Inductor Voltages: 

-  Bridge Leg (T+, T-): Voltage Form.: 

-  Current Formation in T+: 

-  Constant Power, Load Current: 

Condition: 

 
■  Sinusoidal Mains Current:  
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-  Higher Number of Active 
      Power Semiconductors than 
       Active Buck-Type PWM Rect. 
     (but Only T+, T- Operated with 
       Switching Frequency) 

► Active 3rd Harmonic Inj. Only into One Phase (III) 

● Patent Pending 

UN,LL= 400Vrms 
Upn= 400VDC 

P=10kW 

+  Controlled Output Voltage 
+  Purely Sinusoidal Mains Current 
 
 

+  Low Current Stress on the 
    Inj. Current Distribution 
    Power Transistors / High Eff. 
 

+  Low Control Complexity 

●  Switches Distributing the Injected Current could be Replaced by Passive Network 

■  Buck-Type Topology 
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 ■  Proof of Sinusoidal Mains Current Shape for 

- Current to be Inj. into Phase b: 

- Local Avg. Ind. Voltage : 

- Current Formation: 

- Voltage Formation: 

 

 

T+  
T- 

Duty Cycles: 

    = const.  →         = const.      = const.   
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► Classification of Unidirectional Rectifier Systems 
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► Diode Bridge Combined with DC/DC Boost Converter 

■   Other Diode Bridge Output Current Impressing DC/DC Converter Topologies  
     (e.g. SEPIC, Cuk) result in Same Mains Current Shape 

ULL = 3 x 400 V (fN = 50 Hz) 
Pout = 10 kW 
λ =  0.952 
THD= 32 % 
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► Half-Controlled Rectifier Bridge Boost Converter 

Sector A: 

Sector B: 

●  Sinusoidal Current Control Only in Sectors 
    with 2 Positive Phase Voltages, e.g. in Sector B 
 
●  In other Sectors, Only One Phase Current  
    could be Shaped, e.g. in Sector A 
 
+  Controlled Output Voltage (U > √6 Û) 
+  Low Complexity (e.g. Single Curr. Sensor) 
+  Low Conduction Losses 
 
–  Block Shaped Mains Current 
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■   Current Control Concepts 

Option 1:  All Switches Simultaneously Controlled with Same Duty-Cycle (Synchr. Modulation) 

Option 2:  Only Phase with most Positive Voltage is Modulated, Switch of Phase with most Neg. Voltage 
                 is Cont. Turned on for Lowering Conduction Losses in Case of Switch Implementation 
                 with MOSFETs.  Middle Phase Switch is OFF;  Results in Block Shaped Mains Current 

► Half-Controlled Rectifier Bridge Boost-Type Converter 

Control Acc. to Option 2 
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► Boost-Type Auto-Transf.-Based 12-Pulse Hybrid Rectifier  

+  Output Voltage Controlled 
+  Sinusoidal Mains Current Shaping Possible 
 
-  Active Converter Stage Processes Full Output Power 
-  Low Frequency Magnetics Employed 

■  Impressed Diode Bridge Output Voltages  
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0.5ms/div 

20A/Div 

Input Currents 

ULL = 3 x 115 V (400 Hz) 
Po = 10 kW 
Uo = 520 V 
fs = 60 kHz 
THDi = 3.1% 

■  Experimental Results (Impressed Diode Bridge Output Voltages)  

Duty Cycle 
Variation 

► Boost-Type Auto-Transf.-Based 12-Pulse Hybrid Rectifier  
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►  Wide Varity of Further Topologies for Pulse Multiplication (e.g. 12p  36p) which 
      Process Only Part of Output Power but don´t Provide Output Voltage Control 

+  Output Voltage Controlled 
+  Sinusoidal Mains Current Shaping Possible 
 
-  Active Converter Stage Processes Full Output Power 
-  Low Frequency Magnetics Employed 

► Boost-Type Auto-Transf.-Based 12-Pulse Hybrid Rectifier  

■  Impressed Diode Bridge Output Currents  
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► Classification of Unidirectional Rectifier Systems 
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●  Topology Limits Input Current Shaping to  
    Intervals  with Positive Phase Voltage 
 
    Sector 1: Only ia could be Controlled 
    Sector 2: ia and ib could be Controlled 
 
●  Low Complexity Control: Only Current of  
    Phase with most Positive Voltage Controlled;  
    Switch of Phase with most Neg. Voltage Turned 
    On Cont. for Providing a Free-Wheeling Path 
 

► Half-Controlled Rectifier Bridge Buck-Type Converter 

+  Controlled Output Voltage 
+  Low Complexity 
+  Low Conduction Losses 
 
–  Block Shaped Mains Current 
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► Classification of Unidirectional Rectifier Systems 
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■  Δ-Rectifier 

■  Y-Rectifier 

●  Individual DC Output Voltages of the Phase Units 
●  Isolated DC/DC Converter Stages Required for Forming Single DC Output 

► Phase-Modular Rectifier Topologies 
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AC-Side Equivalent Circuit 

●  Basic AC-Side Behavior Analogous to Direct Three-Phase Three-Level Rectifier Systems 

► Y-Rectifier   
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■  Cond. States for  ia>0, ib<0, ic<0  in Dep. on Transistor Switching States (Sa Sb Sc) 

Switching States (011) and (100) 
(010) (011) (001) (000) 

(111) (110) (101) (100) 

► Y-Rectifier   

●  Redundant Concerning Formation 
      of uab, ubc, uca 
 

●  Inverse Concerning Charging of Ca 
    and Cc (and Cb) 



41/178 

(shown at the Example of Phase a) 

! 

■  Equivalent Circuit and Voltage Formation 

► Y-Rectifier   
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●  Voltage of the Star Point N’ Defined by u0 (CM-Voltage) 

■  Equivalent Circuit and Voltage Formation 

► Y-Rectifier   
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■  Modulation and Voltage Formation 

●  Addition of m0 Increases Modulation Range from Ûa = U to Ûa = 2/√3U 
●  Potential of Star Point N’ Changes with LF (     ) and Switching Frequency (u0,~) 

► Y-Rectifier   
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■  Balancing of Phase-Module DC-Output 
       Voltages by DC Component of u0 (m0) 

● No Influence on the AC-Side Current  
    Formation– Allows Balancing of the Module 
    Output Voltages Independent of Input 
    Current Shaping 
 

m0 = 0 

m0  0 

► Y-Rectifier   

● m0 Only Changes the On-Time of Redundant 
Switching Stages, e.g. (100) and (011) 
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VDC,a 

VDC,b 

VDC,c 

► Y-Rectifier 
■  Control Structure / 2-out-of-3 Output Voltage Balancing 

E.g.: 

● Output Voltage Balancing Considers  
    Only Output Cap. Voltage of Phase with 

Max. Voltage (e.g. Phase a) and Phase  
    with Min. Voltage (e.q. Phase b). 
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► Y-Rectifier 
■  Experimental Verification of Output Voltage Balancing 

UN = 3 x 230 V (50 Hz) 
Po = 3 x 1 kW 
Uo = 400 V 
fs = 58 kHz 
L = 2.8 mH (on AC-side) 
C = 660 µF 

Input Phase Currents, Control Signal i0, Output Voltages 

• Symm. Loading   Pa = Pb = Pc = 1000 W 
• Asymm. Loadng  Pa = 730 W, Pb = Pc = 1000 W  

iN,i: 1 A/div 
VDC,i: 100 V/div 

2 ms/div 

Symm. Loading Asymm. Loading 
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●  Connection of Each Module to All Phases / Rated Power also Available for Phase Loss ! 

► Δ-Rectifier 
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■  Derivation of Equivalent Circuit / Circulating Current Component i0 

► Δ-Rectifier 

Def.: 

●  Mains Phase Current Formed by          ,        , 
                                                 and   ua, ub, uc 
●  Circulating Current i0 Formed by u0 
 
 
 

●  u0 and/or i0, which does not Appear in ia, ib and ic, can be  
    Maximized by Proper Synchron. of Module PWM Carrier Signals; 
    Accordingly, Switching Frequency Components of         ,         and         
    are Minimized 
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●  Equiv. Conc. No-Load Voltage at Terminals a, b, c (No Circ. Current i0, i.e. No Voltage Drop across LΔ 

●  Equiv. Y-Voltage Syst. should not Contain Zero Sequ. Comp. 

●  Equiv. Concerning Input Impedance between any Terminals 

■  Y-Equivalent Circuit Describing Mains Current Formation 

! 

► Δ-Rectifier 
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■  Circulating Current Max. / Minimization of Mains Current Ripple 

● For Proper Phase Shift of Module PWM Carrier  
    Signals a Share of the Line-to-Line Current Ripple 
    can be Confined into the Delta Connection. 

ULL = 3 x 480 V (50 Hz) 
Po = 5 kW 
Uo = 800 V 
fs = 25 kHz 
L = 2.1 mH (on AC-Side) 

iab 

iab- i0 

i0 

iab 

iab- i0 

i0 

► Δ-Rectifier 
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■  Experimental Results 

iab 

2 ms/div 

ia, iab, ica: 5 A/div;      ia-ia,(1), i0: 2 A/div 

ia 
ica 

i0 

ia-ia,(1) 

- Formation of Input Phase Current ia = iab - ica 
- Circulating Zero Sequence Current i0 

► Δ-Rectifier 

ULL = 3 x 480 V (50 Hz) 
Po = 5 kW 
Uo = 800 V 
fs = 25 kHz 
L = 2.1 mH (on AC-Side) 
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Coffee Break ! 
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► Classification of Unidirectional Rectifier Systems 
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●  Improvement of Mains Current Shape by 6th Harmonic 
    Duty Cycle Modulation or Boundary Mode Operation 
 
●  Reduction of EMI Filtering Effort by Interleaving 

ULL = 3 x 400 V (50Hz) 
Po = 2.5 kW 
Uo = 800 V 
THDi = 13.7 % 

► Single-Switch + Boost-Type DCM Converter Topology 

+  Low Complexity / Single Switch 
+  No PWM, Constant Duty Cycle Operation 
+  No Current Measurement 
 
–  High Peak Current Stress 
–  Low Frequ. Distortion of Mains Currents / Dep. on Upn/Û 
–  High EMI Filtering Effort 
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+  Interleaving Reduces Switching Frequency Input Current Ripple 
+  For Low Power Only One Unit Could be Operated – Higher Efficiency 
 
–  Low Frequency Mains Current Distortion Still Remaining 
–  Relatively High Implementation Effort 

► Two Interleaved Single-Switch Boost-Type DCM Converter Stages 
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ULL = 3 x 400 V 
Po = 2.5 kW 
Uo = 700 V 
THDi = 9 % 

+  Slightly Lower THDI for same Upn/ÛN Component 
    as  Single-Switch DCM Converter 
–  Large Switching Frequency CM Output Voltage Comp. 
–  High Input Capacitor Current Stress 

► Two-Switch Boost-Type DCM Converter Topology 

●  Artificial Capacitive Neutral  Point N 
●  Decoupling of the Phases 
●  Pros and Cons. as for Single-Switch Converter 
●  T+ and T-  Could also be Gated Simultaneously 
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► Classification of Unidirectional Rectifier Systems 
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Two-Level CCM Boost-Type PFC Rectifier Systems 
• Y-Switch Rectifier 
• Δ-Switch Rectifier 
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► Y-Switch Rectifier 

● Proper Control of Power Transistors Allows Formation of PWM Voltages at    ,     ,     and/or 
Impression of Sinusoidal Mains Current  
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● -Switch Rectifier Features Lower Conduction  
    Losses Compared to Y-Switch System 
 
● Active Switch Could be Implemented with  
    Six-Switch Power Module 

► Δ-Switch Rectifier 
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●  Reference Voltages, i.e. the Output of the Phase Current Controllers Need to be Transformed into 
    Δ-Quantities 
 

●  Mains Currents Controlled in Phase with Mains Voltages ua, ub, uc 
 
 
 

●  Voltage Formation at a, b, c is Determined by Switching State of          ,          ,          and AND Input 
     Current Direction/Magnitude 
●  Always Only Switches Corresponding to Highest and Lowest Line-to-Line Voltage are Pulsed 
●  Switch of Middle Phase Turned Off Continuously 
 

■  Equivalent Circuit / Mains Current Control 

► Δ-Switch Rectifier 
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■  Modulation 

► Δ-Switch Rectifier 

ULL = 115 V (400Hz) 
Po = 5 kW 
Uo = 400 V 
fs = 72 kHz 
 
Power Density: 2.35 kW/dm3 



63/178 

1ms/Div 

100 V /Div 

10 A /Div 

THDI = 2.3% 

■  Experimental Analysis 

► Δ-Switch Rectifier 

ULL = 115 V (400Hz) 
Po = 5 kW 
Uo = 400 V 
fs = 72 kHz 
 
Power Density: 2.35 kW/dm3 
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Three-Level Boost-Type CCM PFC Rectifier System 

•  Derivation of Circuit Topologies 
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► Derivation of Three-Level Rectifier Topologies (1) 

● Sinusoidal Mains Current Shaping Requires Independent Controllability of the Voltage  
    Formation of the Phases 
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●  Three-Level Characteristics 

► Derivation of Three-Level Rectifier Topologies (2) 

+  Low Input Inductance Requ.  
+  Low Switching Losses,  
+  Low EMI 
 

–  Higher Circuit Complexity  
–  Control of Output Voltage Center Point Required 



67/178 

Three-Level PFC Rectifier Analysis 

• Input Voltage Formation 
• Modulation / Sinusoidal Input Current Shaping 
• Output Center Point Formation 
• Control 
• Design Considerations 
• EMI Filtering 
• Digital Control 
• Experimental Analysis 
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●  Voltage Formation  
 
 
 
 

is Determined by Phase Switching State  
AND  Direction of Phase Current 

► Input Voltage Formation 

sa = 0 
Ta+, Ta-: OFF 
        = +½U 

sa = 1 
Ta+, Ta-: ON 
        = 0 

sa = 0 
Ta+, Ta-: OFF 
        = -½U 

sa = 1 
Ta+, Ta-: ON 
        = 0 



69/178 

• DF+:     Limited to U+ via Parasitic  Diode of Ta+ 
     
• DN+:    Not Dir. Def. by Circuit Structure 
• DN-:     Not Dir. Def. by Circuit Structure 
 
• DF-:     Limited to U- via Paras. Diode of Ta- 
• Ta+:     Limited to U+ via DF+ 
• Ta-:        Limited to U- via DF- 

► Semiconductor Blocking Voltage Stress 

■ Blocking Voltage Definition 

sa = 0 
Ta+, Ta-: OFF 
        = +½U 

sa = 1 
Ta+, Ta-: ON 
        = 0 

sa = 0 
Ta+, Ta-: OFF 
        = -½U 

sa = 1 
Ta+, Ta-: ON 
        = 0 



70/178 

► Impression of Input Current Fund. (Ohmic Fund. Mains Behavior) 

●  Difference of Mains Voltage (e.g.  ua) and 
    Mains Frequency Comp. of Voltage Formed  
    at Rectifier Bridge Input (e.g.        ) 
    Impresses Mains Current (e.g. ia) 

 δ = 0,1°… 0,3° (50/60 Hz) 
 δ = 1°… 3°       (360 Hz … 800 Hz) 
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• Def. of Modulation Index: 

► PWM / Formation of ua, ub, uc / AC-Side Equiv. Circuit (1) 

• Zero-Sequence Signal to Achieve Ext. Mod. Range 

• Generation of u0, i.e. 3rd Harmonic Signal 
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Low Frequency Zero Sequence Component 
for Extending the Modulation Range from 
                 (Sinusoidal Modulation) to 
      

Impression of Mains Current Fundamental 
in Combination with ua, ub, uc 

Causing the Switching Frequ. 
Ripple of the Mains Currents and/or 
DM Filtering Requirement Note: 

Switching Frequency CM Voltage Fluctuation 
of the Output  Resulting in CM Current and/or 
CM Filtering Requirement  

► PWM / Formation of ua, ub, uc / AC-Side Equiv. Circuit (2) 
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► Time Behavior of the Components of Voltages      ,     , 
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● Derivation of Low-Frequency Component       of Center Point Current Assuming a 3rd Harmonic 
 Component of    (as Employed for Increasing the Modulation Range) 

Assumption: 

(relative on-time of Ta+) 

(relative on-time of Tb+) 

(relative on-time of Tc+) 

●      , i.e. PWM incl.  3rd Harm., Reduces      and Extends the Modulation Range 

► Local Average Value of Center Point Current 

RMS of       minimal for   
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● Switching States (100), (011) are Forming 
Identical Voltages              but Inverse 
Centre Point Currents 

● Control of       by Changing the Partitioning 
    of Total On-Times of (100) and (011) 

● Consider e.g. 

● Corresponding 
 Switching States 
 and Resulting 
 Currents Paths 

(000), iM = 0 (001), iM = ia (010),  iM = -ib 

(111),  iM = 0 (110), iM = ic (101),  iM = ib 

► Cond. States within a Pulse Period / Center Point Current Formation 

(011),  iM = ia 

(100),  iM = -ia 
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System Control 
• Control Structure 
• Balancing of the Partial Output Voltages 
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●  Output Voltage Control 
●  Mains Phase Current Control 
●  Control of Output Center Point Potential 
    (Balancing of U+, U-) 

●  Control of ia, ib, ic Relies on      ,       ,    
●  Control of uM Relies on      (DC Component) 
●  No Cross Coupling of both Control Loops 

► Control Structure 
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●  Control via DC Component of u0, i.e. by Adding m0 to the Phase Modulation Signals 
    i.e. by Inversely Changing the Rel. On-Times of (100) and (011), δ(100) and δ(011), without 
    taking Influence on the Total On-Time δ(100) + δ(011). 

●  Assumption:   ia > 0, ib < 0, ic < 0 

► Control of Potential uM of Output Voltage Center Point 
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● Assumption: 

●  Output Voltage Unbalance Results in Increasing On-Time of Ta+ and Decreasing Off-Times of Tb- and 
     Tc- so that the Voltages        ,        ,        are Formed as in the Symmetric Case (ΔU = 0) and/or the 
     Mains Phase Currents Remain at Sinusoidal Shape 
 
●  Resulting      Reduces ΔU, i.e.  Self Stability Guaranteed    

 

► Control of Output Voltage Center Point Potential uM 
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●  System Tolerates Load Unbalance Dependent on the Voltage Transfer Ratio (U+ + U-)/Û and/or 
    the Value of The Modulation Index M 

► Admissible Unbalance of Loading of U+ and U- 
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Design Guidelines 
• Current Stress on the Components 
• Transistor Selection 
• Output Pre-Charging at Start-up 
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■   6-Switch Circuit Topology 

► Current Stress on Power Semiconductors 

●  Output Voltage > √3 Ûmax (typ. 1.2 √3 Ûmax);  Ûmax: Ampl. of  Max. Mains Phase Voltage 
●  Required Blocking Capability of All Semiconductors:  ½ U 
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■   3-Switch Circuit Topology 

► Current Stress on Power Semiconductors 

●  Output Voltage > √3 Ûmax (typ. 1.2 √3 Ûmax);  Ûmax: Ampl. of  Max. Mains Phase Voltage 
●  Required Blocking Capability of All Semiconductors:  ½ U 
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●  Nonlinear Output Capacitance Coss of MOSFET 
    (CoolMOS) has to be Charged at Turn-off 
 
●  Large Turn-Off Delay for Low Currents (e.g. Delay 
    of CoolMOS IPP60R099  (@ IDS = 1.3 A): 11% of 
    Switching Cycle @ fs = 500 kHz 
 
●  Results in PWM Volt. and/or Input Curr. Distortion 

IDS =1.3 A 

ULL = 3 x 400 V (50 Hz), fs    = 1 MHz, Po  = 10 kW 

C*oss=Coss/AChip 

► Nonlin. Coss of Superjunct. MOSFETs Causes Input Curr. Distortion 
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●  Lower Mains Diode DN- is Replaced by Thyristor 
●  Inrush Current is Limited by Rpre 
●  Switches are not Gated During Start-Up 
●  Start-up Sequence is Required 

U 
100V/Div 

IN,1 
10A/Div 

DSP-States 

Offset Comp. 
Soft Start Run Stop    Precharge 

► Pre-Charging of Output Capacitors / Start-Up Sequence 
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EMI Filtering 
• DM Filtering 
• CM Filtering   
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●  DM and CM Filter Stages 
 
●  Connection of Output Voltage Midpoint M 
    to Artificial Mains Star-Point N’ 
 

 No High-Frequency CM-Voltage at M 
 Capacitance of CFB Not Limited by 
     Safety Standards 
 
●  Parasitic Capacitances have to be Considered 
    for CM-Filter Design 

► EMI Filtering Concept 
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●  DM Equivalent Circuit 

●  Required DM Attenuation, e.g. for 
    fs = 1 MHz (VR1000) 

► DM Filter Design 

●  DM Filter Structure 
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● CM Equivalent Circuit 

●  Required CM Attenuation 

CFB = 220 nF 

► CM Filter Design 
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► EMI Filter Structure for VR1000 Rectifier System 

●  3 Stage DM Filter 
●  2 Filter Stages for CM Filter 

–  3 x CM Inductors in Series to Implement Proposed Filter Concept 
–  Additional CM Filter Stage Required Due to Parasitic Capacitances 
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EMI Filter Design 
• Analytical Approximation  
• Volume / Efficiency Optimization   
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Goal   Meet Conducted EMI Standards (e.g. CISPR 11, Class A or Class B)  

1) Find Needed Filter Attenuation  
2) Design Filter Accordingly 

Tasks 

Considered System 
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  Determine Spectrum of VDM and VCM 
  Computationally Intensive Test Receiver Modeling  

 

  Determine Filter Attenuation such that Test Receiver 
      Output is Below EMI Limits at all Frequencies 

Calculate Required Filter Attenuation 

DM Attenuation 

Challenges 



94/178 

► Voltage Va  splitted into  LF and High Frequency Components 

CM and DM Voltage Formation / Time Behavior 
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Simplified Calculation of  Required Filter Attenuation 

► Shown for DM 
     Attenuation 

  Model of Test Receiver is Omitted 
  Harmonic Power Concentrated only @ Switching Frequency  
  VDM,rms can be Calculated in Time Domain 
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  Model of Test Receiver is Omitted 
  Harmonic Power Concentrated only @ Switching Frequency fP 
  VDM,rms can be Calculated in Time Domain 

Simplified Calculation of  Required Filter Attenuation 

► Shown for DM 
     Attenuation 
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Simplified Calculation of  Required Filter Attenuation 

► Shown for DM 
     Attenuation 
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► Optimal Selection of Current Ripple Ratio k (fP = const.) 

 High Ripple Current in LBoost  ( high   k) requires Large CLC-filter; in Return the Lboost is Small 
 Small Ripple Current in LBoost ( small k) requires Large Lboost;         in Return the CLC-filter is Small 

EMI Filter Optimization 

► Shown for DM Filter 

Key Parameters 

CLC-Filter 
P 
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EMI Filter Optimization 

► Shown for DM Filter 

CLC-Filter 
P 

Key Parameters 

► Optimal Selection of Switching Frequency fP (k = const.) 

 High Switching Frequency requires Large CLC-filter;     in Return the Lboost is Small 
 Low    Switching Frequency requires Large Lboost;          in Return the CLC-filter is Small 
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EMI Filter Optimization 

► Optimization Result for DM Filter of a Single- 
     Phase Boost-Type PFC Rectifier 

P 
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EMI Filter Optimization 

► Optimization Result for DM Filter of a Single- 
     Phase Boost-Type PFC Rectifier 
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Experimental Analysis 
• Power Density / Efficiency Pareto Limit  
• Experimental Analysis – VR250 
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■ Generation 1 – 4 of VIENNA Rectifier Systems fs = 50 kHz 
ρ = 3 kW/dm3 

fs = 72 kHz 
ρ = 4.6 kW/dm3 

fs = 250 kHz 
ρ = 10 kW/dm3 

      (164 W/in3) 
Weight = 3.4 kg 

fs = 1 MHz 
ρ = 14.1 kW/dm3 

Weight = 1.1 kg 

●  Switching Frequency of fs = 250 kHz Offers Good   
    Compromise Concerning Power Density / Weight per  
    Unit Power, Efficiency  and Input Current Quality THDi 

► Experimental Analysis 
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●  Specifications 
 
 ULL = 3 x 400 V 
 fN =  50 Hz … 60 Hz or 360 Hz … 800 Hz 
 Po = 10 kW 
 Uo = 2 x 400 V 
 fs = 250 kHz 
 
●  Characteristics 
 
 η = 96.8 % 
 THDi = 1.6 % @ 800 Hz 
        10 kW/dm3 
        3.3 kg (≈3 kW/kg) 

Dimensions:    195 x 120 x 42.7 mm3 

► Demonstrator – VR250 (1) 
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●  Specifications 
 
 ULL = 3 x 400 V 
 fN =  50 Hz … 60 Hz or 360 Hz … 800 Hz 
 Po = 10 kW 
 Uo = 2 x 400 V 
 fs = 250 kHz 
 
●  Characteristics 
 
 η = 96.8 % 
 THDi = 1.6 % @ 800 Hz 
        10 kW/dm3 
        3.3 kg (≈3 kW/kg) 

Dimensions:    195 x 120 x 42.7 mm3 

► Demonstrator – VR250 (2) 
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5A/Div 

200V/Div 
5ms/Div 

PO = 4kW 
UN = 230V 
fN = 50Hz 
UO = 800V 

THDi = 1.1% 

► Mains Behavior @ fN = 50 Hz 
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10A/Div 

200V/Div 
0.5ms/Div 

PO = 10kW 
UN = 230V 
fN = 400Hz 
UO = 800V 
THDi = 1.4% 

 
10A/Div 

200V/Div 
1ms/Div 

PO = 10kW 
UN = 230V 
fN = 800Hz 
UO = 800V 
THDi = 1.6% 

► Mains Behavior @ fN = 400Hz / 800Hz    
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●  Efficiency @ fN = 800 Hz 

●  Input Current Quality @ fN = 800 Hz 

► Demonstrator Performance (VR250)  



109/178 

20 ms/Div 

Uo 
250 V/div 

I N 
5 A/div 

20 ms/Div 

Uo 
250 V/div 

I N 
5 A/div 

► Demonstrator (VR250) Control Behavior 

●  Mains Phase Loss 

●  Mains Phase Return 
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► Demonstrator (VR250) EMI Analysis 

●  Total Emissions ●  DM Emissions ●  CM Emissions 
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Evaluation of Boost-Type Systems 
3rd Harmonic Inj. Rectifier 

Δ-Switch Rectifier 
Vienna-Rectifier 

Six-Switch Rectifier 
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Boost-Type PFC Rectifiers 

■  3rd Harmonic Inj. Type 
■  Diode Bridge Conduction Modulation 
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Boost-Type PFC Rectifiers 

■  3rd Harmonic Inj. Type   
      Limited Operating Range 
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Boost-Type PFC Rectifiers 

■  Δ-Switch Rectifier   
      System Complexity 
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Vienna Rectifier vs. Six-Switch Rectifier 

Boost- 

! 
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► Classification of Unidirectional Rectifier Systems 



117/178 

Buck-Type CVM PFC Rectifier System 

•  Derivation of Circuit Topologies 
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► Derivation of the Circuit Topology (1) 

■   Insertion of Switches in Series to the Diodes 

+ DC Current Distribution to Phases a, b, c 
 can be Controlled 
+ Control of Output Voltage 

  
–  Pulsating Input Currents / EMI Filtering Requ. 
–  Relatively High Conduction Losses 
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● Insertion of 4Q-Switches on the AC-Side in Order to  
    Enable Control of the DC Current Distribution to Phases a, b, c 

(1) 

(2) 

(3) 

► Derivation of the Circuit Topology (2) 
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■  Circuit Extensions 

● Internal Filtering of CM Output 
 Voltage Component 

● Integration of Boost-Type 
 Output Stage 
 
● Wide Output Voltage 
 Range, i.e. also 

► Derivation of the Circuit Topology (3) 

■ Circuit Extensions Shown for 3-Switch Topology, but is also Applicable to 6-Switch Topology 

●  Sinusoidal Mains  
    Current also in Case of 
    Phase Loss 
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Buck-Type PFC Rectifier Analysis 

• Modulation  
• Input Current Formation 
• Output Voltage Formation 
• Experimental Analysis 
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● Consider 60°-Wide Segment of the 
Mains Period; Suitable Switching 
States Denominated by (sa, sb, sc) 

● Clamping and “Staircase-Shaped” Link Voltage in Order to Minimize the Switching Losses 

(111) (110) (100) 

(101) (011) also: (010) 
 (011) 

► Modulation Scheme 

-  Assumption: 

-  Phase c for                          etc. 

-  Phase a for                       , 

●  Clamping to Phase with Highest  
    Absolute Voltage Value, i.e.  
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- Ohmic Mains Behavior: 

- Example: 

► Input Current and Output Voltage Formation (1) 

- Assumption: 
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► Input Current and Output Voltage Formation (2) 

●  Output Voltage is Formed by Segments of the 
  Input Line-to-Line Voltages 
 

●  Output Voltage Shows Const. Local Average Value 

- Output Voltage Formation: 

- Assumption: 



125/178 

■  Ultra-Efficient Demonstrator System 

► Experimental Results 

ULL = 3 x 400 V (50 Hz) 
Po = 5 kW 
Uo = 400 V 
fs = 18 kHz 
L = 2 x 0.65 mH 
 
 = 98.8% (Calorimetric Measurement) 



126/178 

■  Ultra-Efficient Demonstrator System 

► Experimental Results 

ULL = 3 x 400 V (50 Hz) 
Po = 5 kW 
Uo = 400 V 
fs = 18 kHz 
L = 2 x 0.65 mH 
 
 = 98.8% (Calorimetric Measurement) 
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Comparison of Buck-Type Systems 
Six-Switch Rectifier 

SWISS-Rectifier 
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Buck-Type PFC Rectifiers 

■  3rd Harmonic Inj. Type 
■  Diode Bridge Cond. Modulation 
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Buck-Type PFC Rectifiers 

■  Three-Switch Rectifier   
      Conduction Losses 
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SWISS Rectifier vs. Six-Switch Rectifier 

! 



131/178 

Summary of Unidirectional 
PFC Rectifier Systems 

•  Block Shaped Input Current Systems 
•  Sinusoidal Input Current Systems 
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Boost-Type 

Buck-Type 

Buck+Boost-Type 

 
+  Controlled Output Voltage 
+  Low Complexity  
+  High Semicond. Utilization 
+  Total Power Factor λ ≈ 0.95 
–  THDI ≈ 30% 

► Block Shaped Input Current Rectifier Systems 
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Boost-Type 

Unregulated 
Output 

+  Controlled Output Voltage 
+  Relatively Low Control Complexity  
+  Tolerates Mains Phase Loss 
 

–  2-Level Characteristic 
–  Power Semiconductors Stressed with Full  
    Output Voltage 

+  Controlled Output Voltage 
+  3-Level Characteristic 
+  Tolerates Mains Phase Loss 
+  Power Semicond. Stressed with Half  
    Output Voltage 
 

–  Higher Control Complexity 

+  Low Current Stress on Power Semicond. 
+  In Principal No DC-Link Cap. Required 
+  Control Shows Low Complexity 
 

–  Sinusoidal Mains Current Only for Const. 
    Power Load 
–  Power Semicond. Stressed with Full 
    Output Voltage 
–  Does Not Tolerate Loss of a Mains Phase 

► Sinusoidal Input Current Rectifier Systems (1) 

Boost-Type 
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Buck-Type 

Buck+Boost-Type 

+  Allows to Generate Low Output Voltages 
+  Short Circuit Current Limiting Capability 
 

–  Power Semicond. Stressed with LL-Voltages 
–  AC-Side Filter Capacitors / Fundamental 
    Reactive Power Consumption 

+  See Buck-Type Converter 
+  Wide Output Voltage Range 
+  Tolerates Mains Phase Loss, i.e. Sinusoidal 
    Mains Current also for 2-Phase Operation 
 

–  See Buck-Type Converter (6-Switch Version 
    of Buck Stage Enables Compensation of AC- 
    Side Filter Cap. Reactive Power) 

► Sinusoidal Input Current Rectifier Systems (2) 
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Bidirectional PFC  
Rectifier Systems 
•  Boost-Type Topologies 
•  Buck-Type Topologies 
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Boost-Type Topologies 
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► Classification of Bidirectional Boost-Type Rectifier Systems 
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► Derivation of Two-Level Boost-Type Topologies 

●  Output Operating Range 
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► Derivation of Three-Level Boost-Type Topologies 

●  Output Operating Range 
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●  Two-Level  Three-Level Converter Systems 
 
+ Reduction of Device Blocking Voltage Stress 
+ Lower Switching Losses 
+ Reduction of Passive Component Volume 
 
 
–  Higher Conduction Losses 
–  Increased Complexity and Implementation Effort 

+  State-of-the-Art Topology for LV Appl. 
+  Simple, Robust, and Well-Known 
+  Power Modules and Auxiliary Components 
 Available from Several Manufacturers 
 
-  Limited Maximum Switching Frequency 
-  Large Volume of Input Inductors   

► Comparison of Two-Level/Three-Level NPC Boost-Type Rectifier Systems 

●  Two-Level Converter Systems 
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+ Active Distribution of the Switching Losses Possible 
+ Better Utilization of the Installed Switching Power Devices 
 
–  Higher Implementation Effort Compared to NPC Topology 

► Active Neutral Point Clamped (ANPC) Three-Level Boost-Type System 
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+ Semiconductor Losses for Low Switching Frequencies 
 Lower than for NPC Topologies 
+ Can be Implemented with Standard Six-Pack Module 
 
–  Requires Switches for 2 Different Blocking Voltage Levels 

►  T-Type Three-Level Boost-Type Rectifier System 



143/178 

+  Lower Number of Components (per Voltage Level) 
+  For Three-Level Topology only Two Output Terminals 
 
–  Volume of Flying Capacitors  
–  No Standard Industrial Topology  

► Three-Level Flying Capacitor (FC) Boost-Type Rectifier System 
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► Three-Level Bridge-Leg Inductor (BLI) Boost-Type Rectifier System 

+  Lower Number of Components (per Voltage Level) 
+  For Three-Level Topology only Two Output Terminals 
 
–  Additional Volume due to Coupled Inductors 
–  Semiconductor Blocking Voltage Equal to DC Link Voltage 
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► Multi-Level Topologies are Commonly Used for Medium Voltage Applications but Gain 
             Steadily in Importance also for Low-Voltage Renewable Energy Applications 

–  More Semiconductors 
–  More Gate Drive Units 
–  Increased Complexity 
–  Capacitor Voltage Balancing Required 
–  Increased Cost 

+  Losses are Distributed over Many Semicond. 
 Devices; More Even Loading of the Chips  
 Potential for Chip Area Optimization for Pure 
    Rectifier Operation 
+  High Efficiency at High Switching Frequency 
+  Lower Volume of Passive Components 

● Moderate Increase of the Component Count 
    with the T-Type Topology   

►  Pros and Cons of Three-Level vs. Two-Level Boost-Type Rectifier Systems 

Consideration for 10kVA/400VAC Rectifier 
Operation; Min. Chip Area, Tj,max= 125°C   
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Buck-Type Topologies 
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●    System also Features Boost-Type Operation 

●  Output Operating Range 

► Derivation of Unipolar Output Bidirectional Buck-Type Topologies 
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► Derivation of Unipolar Output Bidirectional Buck-Type Topologies 

●  Output Operating Range 
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Final Remarks  
Performance Trends 

Multi-Objective Optimization 
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Power Electronics  
Performance Trends 

─  Power Density       [kW/dm3] 
─  Power per Unit Weight    [kW/kg] 
─  Relative Costs    [kW/$] 
─  Relative Losses  [%] 
─  Failure Rate              [h-1] 

 

■  Performance  Indices 
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► Sensitivity to Technology Advancements 
► Trade-off Analysis 

Technology Sensitivity Analysis 
Based on η-ρ-Pareto Front 
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Converter Performance Evaluation 
Based on η-ρ-σ-Pareto Surface 

 

 ►    σ:  kW/$ 
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Converter Performance Evaluation 
Based on η-ρ-σ-Pareto Surface 

► ´ Technology Node´  

►
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Thank  You! 
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Questions ? 
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