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► Review of AC-DC-AC Converters 
► Derivation of Basic MC Topologies 
 
►  
 
► MC Dimensioning 
► Extended MC Topologies 
 
 
 
 
 
 
 
 

►   
 
 
 
 
 
 
 
 
 
 

► Methodology for Converter Comparisons 
► Comparative Evaluation of AC-AC Converters 
 
► 
 
► Multi-Domain Simulator Demonstration (GECKO) 
► Conclusions / Questions / Discussion 
 

Outline 
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15 Min 
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15 Min 
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Classification of Three-Phase AC-AC Converters 

■  Converters with DC-link 
■  Hybrid Converters  
■  Indirect / Direct Matrix Converters 
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DC-link AC-AC Converter Topologies  

! ! ! 

► V-BBC 

► I-BBC 
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Symmetric Three-Phase Mains  

Phase Voltages Phase Currents 

Instantaneous Power 
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All-SiC JFET I-BBC Prototype  

DC Link Inductor 
320 H/6 A 

► Pout = 2.9 kVA 
► fS = 200 kHz 
► 2.4 kVA / liter  (42 W/in3)  
► 230 x 80 x 65 mm3 

Uin  = 400 V 
Iin = 4.3 A 

Uout = 400 V 

200V/div 
5A/div 
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Basic Matrix Converter Topologies  
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V-BBC 
Voltage Space Vectors 

Modulation 
DC Link Current 
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! 

VSI Space Vector Modulation  (1) 

! 

Output Voltage Reference Value 

23 = 8 Switching States 

-  Switching with 
   Interlock Delay 
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VSI Space Vector Modulation  (2) 
Switching State Sequence 

Relative On-times 

Formation of the Output Voltage 
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VSI Space Vector Modulation  (3) 

Discontinuous Modulation 

Freewheeling On-time 

Space Vector Orientation 

Modulation Limit 
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DC-link Current Shape 

! 

Local Average Value 

VSI Space Vector Modulation  (4) 
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! 
Local DC-link Current Shape 

! 

VSI Space Vector Modulation  (5) 
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VSI DC-link Current 
Waveform   
Influence of Output 
Voltage Phase  Displacement 
2 on DC-link Current 
Waveform 
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VSI Functional Equivalent Circuit 

Voltage Conversion 

Current Conversion 

Load 
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I-BBC 
Current Space Vectors 

Modulation 
DC Link Voltage 



17/135 

CSR Commutation & Equivalent Circuit 

Forced Commutation 

Natural Commutation 

Equivalent Circuit 

-  32 = 9 Switching States 
-  Overlapping Switching 
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CSR Space Vector Modulation  (1) 

Input Current Reference Value 

! 
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Formation of the Input Current  

Relative On-times 

Space Vector Orientation 

CSR Space Vector Modulation  (2) 
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CSR Space Vector Modulation  (3) 

Switching State Sequence 

DC-link Voltage Formation 
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! 

! 

CSR Space Vector Modulation  (4) 

Local DC-link Voltage Shape 
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CSR DC-link  
Voltage 
Waveform   

! 

Influence of Input 
Current Phase  Displacement 
1 on DC-link Voltage 
Waveform 
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Voltage Conversion 

Current Conversion 

Mains 

CSR Functional Equivalent Circuit 
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Fundamental Frequency Front End  
F     

3E 

Derivation of MC Topologies 
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Classification of Three-Phase AC-AC Converters 

■  Converter without DC-link Capacitor 
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++ 
─ 

- - 

F3E Topology  /  
Mains Behavior 

! 

P. Ziogas           [12] 
T. Lipo      [13, 18, 20] 
B. Piepenbreier [15] 
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F3E Topology Extension  

► Sinusoidal Mains Current 

Y. Okuma [34]  
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Indirect Matrix Converter – IMC  
Space Vectors 
Modulation 
Simulation 

Experimental Results 
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Classification of Three-Phase AC-AC Converters 

■  Indirect Matrix Converter  
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IMC Topology Derivation  

► Extension of  F3E-Topology 
► Bidirectional CSR Mains Interface ! 

J. Holtz         [16] 
K. Shinohara [17] 
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IMC Properties  
► Positive DC-link Voltage Required ! 
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IMC Voltage and Current Space Vectors  
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IMC Space Vector Modulation  (1)  
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IMC Space Vector 
Modulation  (2)  

► Zero Current Commutation 
► Zero Voltage Commutation 

! 
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DC-link Voltage     u = uac 
DC-link Current     i  = iA 

(100) (ac) 

IMC Zero DC-link Current 
Commutation  (1) 

PWM 
Pattern 

120°of  
Mains  
Period 

DC link  
Voltage & 

Current 
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120°of  
Mains  
Period 

DC link  
Voltage & 

Current 

IMC Zero DC-link Current 
Commutation  (2) 

DC-link Voltage     u = uac 
DC-link Current     i  = - iC 

(110) (ac) 

PWM 
Pattern 
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120°of  
Mains  
Period 

DC link  
Voltage & 

Current 

IMC Zero DC-link Current 
Commutation  (3) 

DC-link Voltage     u = uac 
DC-link Current     i  = 0 

(111) (ac) 

PWM 
Pattern 
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120°of  
Mains  
Period 

DC link  
Voltage & 

Current 

IMC Zero DC-link Current 
Commutation  (4) 

DC-link Voltage     u = uab 
DC-link Current     i  = 0 

(111) (ab) 

PWM 
Pattern 
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120°of  
Mains  
Period 

DC link  
Voltage & 

Current 

DC-link Voltage     u = uab 
DC-link Current     i  = - iC 

(110) (ab) 

IMC Zero DC-link Current 
Commutation  (5) 

PWM 
Pattern 
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DC-link Voltage     u = uab 
DC-link Current     i  =  iA 

IMC Zero DC-link Current 
Commutation  (6) 

120°of  
Mains  
Period 

DC link  
Voltage & 

Current 
(100) (ab) 

PWM 
Pattern 
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Summary 
 
  Simple and Robust Modulation Scheme 
    Independent of Commutation Voltage 
    Polarity or Current Flow Direction 
 
  Negligible Rectifier Stage Switching 
    Losses Due to Zero Current Commutation 

120°of  
Mains  
Period 

DC link  
Voltage & 

Current 

PWM 
Pattern 

IMC Zero DC-link Current 
Commutation  (7) 
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Coffee Break ! 
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IMC Space Vector Modulation  (3)  

Output Voltage Ref. Value 

Input Current Ref. Angle 

Mains Voltage 

Assumptions 

Load Behavior 

PWM Pattern is Specific for each Combination of Input Current and Output Voltage Sectors 



44/135 

Freewheeling Limited to Output Stage 

Input Current Formation 

Desired Input Current 

Resulting Rectifier Stage  
Relative On-Times 

Absolute On-Times 
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Mains Voltage 

Available DC Link Voltage Values   

Select Identical Duty Cycles of Inverter 
Switching States (100), (110) in τac and τab 
for Maximum Modulation Range 

  Switch Conducting 
 the Largest Current is Clamped 

 (over π/3-wide Interval)  
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Voltage Space Vectors Related to 
Active Inverter Switching States 

Output Voltage Formation  

Local DC-link Voltage Average Value 

Calculation of the Inverter Active Switching State On-Times can be 
directly based on ū ! 
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DC-link Voltage Local Average Value 

Simulation of DC-link Voltage 
and Current Time Behavior 

Minimum of DC-link Voltage 
Local Average Value  

Resulting IMC Output Voltage Limit  
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Resulting Inverter Stage 
Relative On-Times 

Resulting Inverter Stage  
Absolute On-Times 
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DC-link Voltage Local Average Value 

Equal DC-link Current Local 
Average Values for Inverter 
Active Switching States 

Local Average Value of 
Input Current in a  

Resulting Input Phase 
Current Amplitude 

Power Balance of Input 
and Output Side 
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IMC Simulation Results 

! 
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Input filter

Heatsink

Fans

Output connectors

Control boards

 2.9 kW/dm3
=~

Input RMS voltage        400V 
Output Power                   6.8 kVA 
Rectifier Switching Frequency    12.5 kHz 
Inverter Switching Frequency     25 kHz 

2.9 kW/dm3 

48 W/in3 

Efficiency   95% 

RB-IGBT IMC Experimental Results  (1) 
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U12 = 400V 
Pout = 1.5 kW 
fout = 120 Hz 
fS = 12.5 kHz / 25kHz 

Output Current      

DC Link Voltage 

Input Current      

100 V/div 
5A/div 

RB-IGBT IMC Experimental Results  (2) 



53/135 

 t1

► Conventional Modulation  (HV)     ► Low Output Voltage Modulation (LV)   

Alternative Modulation Schemes  (1) 

DC-link Voltage:     Largest and Medium Line- 
                               to-Line Mains Voltage   

DC-link Voltage:      Medium and Smallest 
                                Line-to-Line Mains Voltage   

11I,max,2 Û86.0Û
2

3
Û  11II,max,2 Û5.0Û

2

1
Û ! ! 



54/135 

Alternative Modulation Schemes  (2) 
    ► Low Output Voltage Modulation   
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Output Voltage 
Generation 

Input Current 
Generation 

Alternative Modulation Schemes  (3) 
    ► LV  vs. HV  Modulation 

! 

! 
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HV 

 LV 

Reduction of Switching Losses 
to approx. 58% 

Switching Losses Output Common Mode Voltage 

Output Common Mode Voltage reduced 
to approx. 75% 

    ► LV  vs. HV  Modulation 

 LV HV 

Alternative Modulation Schemes  (4) 
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Input Voltage Ripple Output Current Ripple 

LV 
■  Input Voltage Ripple Doubles 
 
 

■  Output Current Ripple Slightly Reduced 
 
 
 

■  For given Û2 (M12) the Component 
    Current Stress are Increasing (Conduction 
    Losses) 

 LV 

    ► LV  vs. HV  Modulation 

 HV 

 HV 

 LV 

Current Stresses 

 HV 

Alternative Modulation Schemes  (5) 
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High Output Voltage Modulation  (HVM) 

Low Output Voltage Modulation (LVM) 

Three-Level Modulation 

2 1

3ˆ ˆ0
2

U U 

2 1

1ˆ ˆ0
2

U U 

2 1

1 3ˆ ˆ
2 2

U U 

► Three-Level Medium Voltage Modulation 

Weighted Combination of HVM and LVM 

Alternative Modulation Schemes  (6) 
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Sparse Matrix Converter - SMC 
Topology Derivation 

Bidirectional / Unidirectional Converter 
Experimental Results 
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■  Sparse Matrix Converter   

Classification of Three-Phase AC-AC Converters 
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Sparse 
Matrix 
Converter 

► 15 Transistors 
► 18 Diodes 

ETH Zurich 
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D 

G 

S 

DM 

SiC-JFET 

Si-MOSFET 

 

-v
GS

i
S2

2 A/div

100 V/div

20 ns/div

20 V/divv
DS2

 

-v
GS

i
S2

100 V/div

2 A/div

20 ns/div

20 V/div

v
DS2

 
SiC Sparse 
Matrix Converter 
 
 
 
Switching Frequency                    150kHz 
Output Power            2.5kW@10kW/dm3 
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D 

G 

S 

DM 

SiC-JFET 

Si-MOSFET 

 
SiC Sparse 
Matrix Converter 
 
 
 
Switching Frequency                    150kHz 
Output Power            2.5kW@10kW/dm3 
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►  9  Transistors 
► 18 Diodes 

ETH Zurich 
T.  Lipo  [13, 20] 

Ultra Sparse 
Matrix Converter 
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Ultra Sparse 
Matrix Converter 
 
 
 
Uin = 3-Φ 400V/50Hz 
Uout = 3-Φ 0…340V / 0…200Hz 
P  = 5.5kVA  
 
fS  =  25kHz (Rect.) / 50kHz (Inv.) 

200V/div 
2A/div 

5ms/div 

  uDC 
  
 
 

ia 
 
 
 

iA 

! 
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Unidirectional 9-Switch AC-AC Converters with PFC Input 

► With Intermediate Energy Storage 
► 3-Level Input Stage 
► Impressed Currents at Input Terminals (a,b,c) 
► Additional DC-Link Chopper Required 
 

VIENNA Rectifier with VSI (VR-VSI) 

► Without Intermediate Energy Storage 
► “Quasi” 3-Level Output  
► Impressed Voltages at Input Terminals (a,b,c) 
► Additional DC-Link Chopper/Clamp Required 
 

Ultra Sparse Matrix Converter (USMC) 
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Z-Source Converter ZSC 
T-Source Converter TSC 

Topologies with LC-Element in DC-Link 
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Z-Source Converter 

F3E-Topology with Z-Source-Element (LC-Element) in DC-Link 

F. Z. Peng [45] 
L. Sack [46] 

Z-Source-Element 
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T-Source Converters 

T-Source “Sparse Matrix Related” AC-AC Converter 

■  Suggested 2-Level T-Source Inverter  
    Topologies by Strzelecki et al. [46],  
    2009, and Trans-Z-Source Inverter by  
    Quian et al. [48], 2010. 

Double T-Source with HF Autotransformer  

■  IMC-Based Modulation Scheme 
■  Output Voltage Boost Capability 
■  Low Input Stage Switching Losses 
■  High Blocking Voltage Require-   
     ments of Output Side Switches 
■  Need for Low Leakage Transformer 



70/135 

IMC - Extensions   
- Three-Level    
-   Hybrid   
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■  Three-Level IMC   
■  Hybrid IMC   

Classification of Three-Phase AC-AC Converters 
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Three-Level Matrix 
Converter 

►  Bidirectional Converter 

►  Unidirectional Converter ETH Zurich 
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! 

Ch. Klumpner [23, 24] 

Three-Level Matrix 
Converter 



74/135 

Hybrid IMC 

Ch. Klumpner [5, 6] 
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Conventional Matrix Converter - CMC 
Modulation 

Multi-Step Commutation 
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Classification of Three-Phase AC-AC Converters 

    
■  Conventional Matrix Converter  
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Conventional Matrix Converter – CMC 

►  Quasi Three-Level Characteristic 
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CMC Classification of Switching States 

Freewheeling States 

Group II 

Group III 

Generating Stationary  
Output Voltage and Input 
Current Space Vectors 

Generating Rotating 
Space Vectors 

Positive Sequence 

Negative Sequence 

Group I 
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CMC Rotating 
Space Vectors 

Positive Sequence 
Switching States 

Negative Sequence 
Switching States 
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CMC Stationary Space Vectors 

Output Voltage Space Vectors Input Current Space Vectors 
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►  Indirect Space Vector Modulation 
P. Ziogas  [12] 
L. Huber / D. Borojevic 

Correspondence of 
Switching States 

CMC/IMC Relation  (1) 
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► CMC 

► IMC 

Matrix Representation 
of Voltage and Current 
Conversion 

CMC/IMC Relation  (2) 
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Example 

CMC/IMC Relation  (3) 
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Correspondence of 
Switching States 

► IMC 

► CMC 

► IMC 

► CMC 

CMC/IMC Relation  (4) 
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CMC/IMC Relation  (5) 
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CMC Multi-Step 
Commutation 

J. Oyama / T. Lipo 
N. Burany 
P. Wheeler 
W. Hofmann 

►  Four-Step Commutation 
►  Two-Step Commutation 

Example:  u- Dependent  
                   Commutation 
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4-Step Commutation of CMC  (1)  

 
 
  No Short Circuit of Mains Phases 
  No Interruption of Load Current Assumption:   i > 0, uab < 0,     aA  bA 

Example:  i-Dependent Commutation 
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    Constraints  
 
  No Short Circuit of Mains Phases 
  No Interruption of Load Current 

4-Step Commutation of CMC  (2)  

1st  Step:  Off 

Assumption:   i > 0, uab < 0,     aA  bA 
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1st  Step:  Off 
2nd Step:  On 

    Constraints  
 
  No Short Circuit of Mains Phases 
  No Interruption of Load Current 

4-Step Commutation of CMC  (3)  

Assumption:   i > 0, uab < 0,     aA  bA 
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1st  Step:  Off 
2nd Step:  On 
3rd  Step:  Off 

    Constraints  
 
  No Short Circuit of Mains Phases 
  No Interruption of Load Current 

4-Step Commutation of CMC  (4)  

Assumption:   i > 0, uab < 0,     aA  bA 
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Sequence Depends on 
Direction of Output Current ! 

1st  Step:  Off 
2nd Step:  On 
3rd  Step:  Off 
4th Step:  On 

    Constraints  
 
  No Short Circuit of Mains Phases 
  No Interruption of Load Current 

4-Step Commutation of CMC  (5)  

Assumption:   i > 0, uab < 0,     aA  bA 
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All-SiC JFET Conventional direct Matrix Converter 

► Pout = 3 kVA,  = 93.1% (at 200 kHz) 
 
► fS,nom= 144 kHz (fS,design= 200 kHz) 
► 3 kVA/dm3 (50W/in3) with 1200 V/6 A SiC JFET 
►  8 kVA/dm3 (135W/in3) with 1200 V/ 20 A SiC JFET 
► 273 x 82 x 47mm3 = 1.05 dm3 (64 in3) 

Measurements @ Uin= 115 V RMS, 400 Hz 

AC out 

AC in 

Output CM 
(dv/dt) Filter 

Auxiliary 
Supply 

Integrated 
Input EMI Filter 
(CISPR Class A) 

Gate Drives 

Input 
Capacitors 

Input  
Voltage 

 200 V/div 

Input 
 Current 
2 A/div 

Output 
 Current 
2 A/div 
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Control Properties of AC-AC Converters  (1) 

Voltage DC-Link B2B Conv. (V-BBC) Matrix Converter (CMC/IMC) 

DC/DC Control Equiv. Circ. 

► Boost-Buck-Type Converter 
 

► Max. Output Voltage can be Maintained 
     during Low Mains Condition 

► Buck-Type Converter 
 

► Maximum Output Voltage is 
      Limited by  Actual Input Voltage Û2 = 0.866 ∙ Û1 
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Control Properties of AC-AC Converters   (2) 

DC-DC Equivalent Circuits 

! 

! 

! 

! Uncontrolled 
Input Filter 

IMC 

I-BBC 

V-BBC 

CMC 
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■  Voltage DC-Link B2B Converter (V-BBC) ■  Matrix Converter (CMC / IMC) 

► Input Current (in Phase 
      with Input Voltage) 
 

► DC-Link Voltage 
 

 
► Output Current (Torque  
      and Speed of the Motor) 

► Output Current (Torque  
      and Speed of the Motor) 2 Cascaded 

Control Loops 

2 Cascaded 
Control loops 

2 Cascaded 
Control Loops 

► Optional: Input Current 
 (Formation of Input Current 
      still Depends on the Impressed 
      Output Current) 

Control Properties of AC-AC Converters  (3) 
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CMC - Extensions   
Multi-Level    
Full-Bridge   



97/135 

■  Hybrid CMC  
■  Full-Bridge CMC  

Classification of Three-Phase AC-AC Converters 
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B. Erickson 

Hybrid CMC 
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Full-Bridge CMC / IMC 

M. Braun 
N. Mohan 
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Coffee Break ! 
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Comparative Evaluation 
DC Link Converters  
Matrix Converters 
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Bidirectional Power Flow Unidirectional Power Flow 

Elevators 

Escalators Cranes 

Roller Test Benches 

Automation Production Machinery 

Pumps and Compressors 

Ventilation and AC 

Renewable Energy 

MEA 

 
60% of Worldwide Ind. Energy 

  Used by Electric Motor Drives! [a] 

 

Application Areas of Three-Phase PWM Converters 

[a] “Study on Worldwide Energy Consumption”, ECPE Workshop, 2008 
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[b]: Based on “ECPE Roadmap on Power Electronics, 2008” 

Motor

C
o

n
v

e
rt

e
r

Power Semiconductors 

Cooling System 
and Mounting 

Control and Gate 
Drive Circuitry 

Passive Components 

●  Holistic Converter System Comparisons 
     are (still) Rarely Found 
 

●   Comprehensive Comparisons Involves a 
 Multi-Domain Converter Design 
 

●   Voltage-Source-Type Converter Topologies 
 are Widely Used  
  

► Cost Allocation of VFD Converters ► Status Quo  Motivation  

●   Bidirectional Three-Phase AC/DC/AC and 
 AC/AC Converters 
 

●   Low Voltage Drives 
 

●   Power Level from 1 kVA to few 10 kVA 

► Focus of the Investigation 

Motivation 

[b] 
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■  Define Application / Mission Profile   
 
 
 

     -  M-n Operating Rage 
        (Continuous / Overload Requirement) 
     -  Torque at Standstill 
     -  Motor Type   
     -  etc. 
 
■  Compare Required Total Silicon Area (e.g. for TJ < 150°C, TC = 95°C) 
 

    -  Guarantee Optimal Partitioning of Si Area between IGBTs and Diodes 

• M-n Operating Range 
• Mission Profile 
• etc. 

• Semiconductor Type, Data 
• Thermal Properties 
• EMI Specifications 
• Converter Type, Motor Type (Losses)  
• Modulation Scheme  
• etc.  

• Total Si Area – Figure-Of-Merit 
• Operating Efficiency 
• Average Mission Efficiency 
• Total Mission Energy Losses 
• EMI  Filter Volume 
• Costs 

Virtual Converter 
Evaluation Platform 

Power Semicon- 
ductors  30% 

Cooling System 
and Mounting 

Control and Gate 
Driver Circuitry 

Passive 
Components 

Comparative Evaluation – Virtual Converter Evaluation Platform 
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Current Source Back-to-Back Converter (I-BBC) 

Conventional (Direct) 
Matrix Converter (CMC) 

Voltage Source Back-to-Back Converter (V-BBC) 
“State-of-the-Art” Converter System 

With Intermediate Energy Storage Without Intermediate Energy Storage 

Indirect Matrix Converter (IMC) 
VSR (Boost) VSI (Buck) CSR (Buck) VSI (Buck) 

CSR (Buck) CSI (Boost) 

(Buck) 

U2,max = 0.866 U1 

U2,max = 0.866 U1 

Considered Converter Topologies – V-BBC, I-BBC, IMC, and CMC 
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Converter Comparison Overview 

Semiconductor Chip Area (TJ, TS) 
Power Module 
Heat Sink (TA, TS) 
Gate Driver 

Semiconductor and Cooling System Design / Optimization  

Energy Storage 
Control 
Power Quality 
Reactive Power 
EMI & Filter Topology 
Loading Limits  Lifetime 
Thermal Properties 

Converter 
Topology 

Modulation 
Scheme 

Operating 
Point 

Drive System 
Specs 

Semiconduc- 
tor Losses 

Passive Component and EMI Filter Design / Optimization  

Passive 
Components 

4 Topologies 

Optimized 
SPV 
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OP1/OP5 Nominal Motor/Generator Operation (90% U2,max) 
OP2/OP4 Motor/Generator Operation for f2 = f1 
OP3 Motor Operation at Stand-still f2 = 0 

Torque Speed Plane 

► 3 x 400 V / 50 Hz, 15 kVA 
 fsw = [8 … 72] kHz 
 UDC = 700 V (VSBBC) 
 
► PMSM, Matched to Converter 
 (LS in mH range, 2  0°) 
 
► EMI Standard, CISPR 11 
 QP Class B (66 dB at 150 kHz) 
 
► Ambient Temperature TA = 50°C 
 Sink Temperature TS = 95°C 
 Max. Junction Temperature TJ,max =150°C 
 (for TA = 20°C  TS = 65°C, TJ,max = 20°C) 

Main Converter Specifications 

Comparative Evaluation (1) – Specifications and Operating Points 
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Comparative Evaluation (2) – Semicond. Area Based Comparison 

AChip = 5.0 cm2

OP1 = 95.5%

AChip = 4.4 cm2

OP1 = 94.2%

AChip = 2.9 cm2

OP1 = 96.7%

VLBBC, OP3

AChip = 7.9 cm2AChip = 6.1 cm2AChip = 5.0 cm2

AChip = 4.7 cm2

OP5 = 95.6%

AChip = 4.4 cm2

OP5 = 94.2%

AChip = 3.0 cm2

OP5 = 96.8%

CLBBC, OP3 IMC, OP3

VLBBC, OP1 CLBBC, OP1 IMC, OP1

VLBBC, OP5 CLBBC, OP5 IMC, OP5

T

64%

D

36%

T

65%

D

35%

T

60%

D

40%

T

55%

D

45%

T

62%

D

38%

T

56%

D

44%

T

57%

D

43%

T

64%

D

36%

T

64%

D

36%

AChip = 4.4 cm2

CLBBC, OP1&5

T

64%

D

36%

T

62%

D

38%

IMC, OP1&5

AChip = 5.9 cm2

T

63%

D

37%

VLBBC, OP1&5

AChip = 3.4 cm2

► Minimum Chip Area Required to Fulfill the 
 Junction Temperature Limit TJ,max (150°C)  

ETH Zurich [49] 
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Simulation with 
ICEPAK and GECKO 

Semiconductor Database 
 

■ 1200 V Si IGBT4 and EmCon4 Diodes (Infineon) 
■  1200 V normally-on SiC JFET (SiCED) 
 

Semiconductor and Cooling System Modeling 

Cooling Performance 

System Level Component Level 

Losses as f (Achip, I, U, and TJ) 

Transient Thermal Impedance 

Diode 

IGBT 

Scaling of Chip Area 
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Comp. Evaluation (3) – Semiconductor Chip Areas (OP1 & OP5) 

Conduction Losses 

Switching Losses 

Resulting 
Sensitivities 

1200 V Si IGBT4 and EmCon4 Diodes 1200 V Normally-On SiC JFETs (SiCED) 

I-BBC V-BBC I-BBC V-BBC 
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► For OP1 (P2N = 15 kVA) and OP3 (Stand-Still) 

Comparative Evaluation (4) – Torque Envelope for Equal Achip 

8 kHz: AChip 6 cm2, Referenced to IMC 32 kHz: Available Chip Area AChip 6 cm2 

CMC 

V-BBC 

I-BBC 
IMC 

V-BBC 

IMC 

I-BBC 

CMC 

Note:   Design at Thermal Limit – A More  Conservative Design would be Applied for a Product! 
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Verification by Electro-Thermal Simulation Shown for IMC 

Junction Temperatures OP1 

TJ,T  @ 5 Hz 

TJ,T  @ 50 Hz 
TJ,T  @ 150 Hz 

TJ,D  @ 150 Hz 

► Suggested Algorithm to   
 Optimally Select the Semicon-
 ductor Chip Area Matches well 
 at OP1 and OP3  

Trend Line 

Evaluated for OP1 @ 8 kHz 

Torque Limit 

Torque at OP1 and OP3 

► Suggested Algorithm allows for  
 Accurate Torque Estimation 
 at OP1 and OP3  
 
► Torque Limit Line Requires 
 a Thermal Impedance Model of 
 the Module (R-C Network) 

IMC 
CMC 
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► CISPR 11 (Compliant to IEC/EN) 
 EMI Standard for CE 
► Filter Design Margin 
 DM Design Margin: 6 dB 
 CM Design Margin: 8-10 dB 

System Level Component Level 

EMI Input Filter Topology 

L0,Imax 
Top,max = 100°C 

IC,rms,max 
du/dt |max 
Top = 70°C 
MTTF data 

Top,max = 100°C 

► Ripple-Based (CF,inp, CF,out, LB) 
► Reactive Power (CF,inp) 
► Control-Based  (CDC, LDC) 
► Energy-Based  (CDC, LDC) 

Design Criteria and Constraints 

Passive Component and EMI Input Filter Modeling 
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Comparative Evaluation (5) – Attenuation, Volume of Passives 

Volume of Passive Components 

I-BBC V-BBC MC (IMC/CMC) 

●  V-BBC Requ. 15 dB More Atten. 

V-BBC 

I-BBC 

MC 
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Efficiency vs. Switching Frequency Volume vs. Switching Frequency 

► V-BBC: Local Optimum at 35 kHz for SiC JFETs 
► MC: Significant Volume Reduction 

-35%  
-20%  

Comparative Evaluation (6) – Total Efficiency and Volume 

V-BBC 

I-BBC 

MC 

V-BBC 

I-BBC 

MC 
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Multi-Domain Simulation Software 
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3D-Thermal 
FEM Solver 

Thermal 
Impedance 

Matrix 

Fast Circuit 
Simulator 

HF Magnetics  
Design 
Toolbox 

3D-Electromagn.  
Parasitics 
Extraction 

Reduced 
Order 

Impedance 
Matrix 

EMC Filter  
Design 
Toolbox 

Heatsink 
Design 
Toolbox 

Reliability 
Analysis 
Toolbox 

Device & Material Database 
Control Toolbox 
Optimization Toolbox 

Input 
Topology / Device Models / Control Circuit / 3D-Geometry / Materials  

Post Processing 
Design Metrics, Sensitivity Calculation, Optimization 



118/135 

Overview of Gecko-Software Demonstration 
 
►  Gecko-CIRCUITs: Basic Functionality 
 
 
►  Indirect Matrix Converter (IMC) 
 
 
 
 

      -  IMC Simulation with Controlled AC Machine 
      -  Specify Semiconductor Characteristics 
      -  Simulate Semiconductor Junction Temperature 
      -  etc. 
 
 
 
 
 
 
 
 
 
 
 
►  Gecko EMC: Basic Functionality 
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Further Information Regarding Gecko-Research 

www.gecko-research.com 
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Gecko-Research Application Notes   (1) 

Overview of 
AC-AC Converters 
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Gecko-Research Application Notes   (2) 

Useful Hints for e.g. How to Implement Sector Detection for SV Modulation 

► JAVA Code Block   
 
●  Integration of Complex Control Code;  
      Enhances Overview and Transparency 
 

●  Code can Virtually be Copied to DSP C-Code 
    Generator (Minor Syntax Adaptations) 
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Power Electronics Converter Optimization 

     Goal: Optimization Toolbox 
 
► Guided Step-by-Step Converter Design Procedure to Enable Optimal Utilization of Technological 
      Base and Optimal Matching between Design Specifications and Final Performance 

ETH Zurich [50] 
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Conclusions 
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Through of  
Disillusionment 

   1970´s  
●  Invention of Matrix  
     Converter Topology 

   1990     
●  Multi-Step Commutation 
●  Indirect Space Vector Modulation 
●  Indirect Matrix Converter 

   1995 
●  Reverse Blocking IGBTs 
●  Handling of Unbalanced Mains 

   2000  
●  Sparse Matrix Converter 
●  Three-Level Matrix Converter 

    2005 –  
●   Hybrid Matrix Converter  
●   More Complicated Topologies 
●   Refinements 
●   Holistic Comparisons [51-54]  

Hype Cycle of Technologies 
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RB-IGBT 
IXRH40N120 

IGBT 
FII50-12E 

► EMI Filter 
► Clamp Circuit 

Conclusions  (1) 

►  MC  is  NOT an All-SiC Solution  
 
 
 
 

      -  Industry Engineers Missing Experience 
      -  86% Voltage Limit / Application of Specific Motors / Silicon Area 
      -  Limited Fault Tolerance 
      -  Braking in Case of Mains Failure 
      -  Costs and Complexity Challenge 
      -  Voltage DC Link Converter could be implemented with Foil Capacitors 
 
►  MC  does NOT offer a Specific Advantage without Drawback 

CCM,1

Y2 250V

4.7nF

A

B

C

CDM,1

X2 250V

CDM,2

X2 250V

CCM,3

Y2 250V
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32 turns
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22 turns
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4.7nF

18  1W 18  1W

18
0.68  4W

1 F 1 F 10 F
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► Research MUST Address Comprehensive System Evaluations 
 
 
 
 

     -  MC Promising for High Switching Frequency 
     -  Consider Specific Application Areas 
     -  Consider Life Cycle Costs     
     -  etc. 
 
► V-BBC is a Tough Competitor 
 
► F3E Might Offer a Good Compromise  
 
►  Most Advantageous Converter Concept Depends on Application 
 and on whether a CUSTOM Drive Design is Possible 
 

► Integration of Multiple Functions (as for MC) Nearly ALWAYS 
 Requires a Trade-off 

Conclusions  (2) 
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Thank You ! 
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