

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Tutorial 2

X-treme Efficiency Power Electronics

J. W. Kolar Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Deep Green Power Electronics

J. W. Kolar Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Outline

- Trends of Efficiency Improvement
- Converter Loss Components
- Efficiency Improvement by
 - * Design
 - * Control
 - * Topology & Control
- Highly Accurate Efficiency Measurement
 η > 99% Converter Demonstrators

 - Conclusions

Power Electronics Performance Trends

- Performance Indices
- Power Density [kW/dm³]
 Power per Unit Weight [kW/kg]
 Relative Costs [kW/\$]
- Relative Losses [%]
- Failure Rate [h⁻¹]

Drivers for High Efficiency

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

6/114

Efficiency / Power Factor Limits (5%)...20%...100% Load

General Efficiency Trends

Efficiency Basics

Converter Loss Components Efficiency Maximum Efficiency vs. Power Factor

Non-Idealities of Converter Circuits

$$P_{V} = (P_{aux} + \frac{1}{2}C_{E,eq}U_{2}^{2}f_{P}) + (U_{F} + k_{P}f_{P})I_{2} + (1-D)^{-2}(R_{L} + DR_{DS(on)} + D(1-D)ESR)I_{2}^{2}$$

Non-Idealities of Converter Circuits

$$P_{V} = P_{V,0} + P_{V,I} + P_{V,II} = k_{0} + k_{I}P_{2} + k_{II}P_{2}^{2}$$

11/114 -

Influence of Loss Components on Efficiency Characteristic

$$P_{V} = P_{V,0} + P_{V,I} + P_{V,II} = k_{0} + k_{I}P_{2} + k_{II}P_{2}^{2}$$

12/114 -

Influence of Loss Components on Efficiency Characteristic

$$\eta = \frac{P_2}{P_1} = \frac{1}{1 + \frac{P_V}{P_2}} \approx 1 - \frac{P_V}{P_2}$$

$$P_{V} = P_{V,0} + P_{V,I} + P_{V,II} = k_{0} + k_{I}P_{2} + k_{II}P_{2}^{2}$$

Only Constant Losses

13/114 -

Influence of Loss Components on Efficiency Characteristic

$$\eta = \frac{P_2}{P_1} = \frac{1}{1 + \frac{P_V}{P_2}} \approx 1 - \frac{P_V}{P_2}$$

$$P_{V} = P_{V,0} + P_{V,I} + P_{V,II} = k_{0} + k_{I}P_{2} + k_{II}P_{2}^{2}$$

Only Power Proportional Losses

$$\eta_{I} = \frac{1}{1 + \frac{P_{V,I}}{P_{2}}} = \frac{1}{1 + k_{I}} \approx 1 - k_{I} = const.$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

14/114 -

Influence of Loss Components on Efficiency Characteristic

$$\eta = \frac{P_2}{P_1} = \frac{1}{1 + \frac{P_V}{P_2}} \approx 1 - \frac{P_V}{P_2}$$

$$P_{V} = P_{V,0} + P_{V,I} + P_{V,II} = k_{0} + k_{I}P_{2} + k_{II}P_{2}^{2}$$

Quadratically Power Dependent Losses

Efficiency vs. Power Factor

Sensible Compromise e.g. for Three-Phase Systems

Measures for Efficiency Improvement

Design

- Power Semiconductors
- Inductive Components / EMI-Filter
- Auxiliaries

On-State Losses
 Capacitive Switching Losses

$$C_{GS} = C_{iss} - C_{rss}$$
$$C_{GD} = C_{rss}$$
$$C_{DS} = C_{oss} - C_{rss}$$

On-State Losses
 Capacitive Switching Losses

$$P_{V,T} = I_{DS,rms}^2 R_{DS(on)} + \frac{1}{2} C_{E,eq}(U_2) U_2^2 f_P$$

Silicon Area Related Resistance / Capacitance

Optimum Silicon Area - Minimum Losses

QOI

Power Semiconductors - Efficiency Barrier

Selection of $A_{Si} > A_{Si,opt}$ Leads to Lower Efficiency in Whole Operating Range

— Inductive Components / EMI Filter —

Inductive Components – Efficiency vs. Volume

$$\Delta B = \frac{L\Delta i}{NA_E} \propto \frac{U_d}{f_P A_E} \propto \frac{1}{A_E} \propto \frac{1}{l^2}$$
$$P_{V,E} \propto f_P^{\alpha} \Delta B^{\beta} V_E \propto \approx (\frac{1}{l^4}) l^3 \propto \frac{1}{l}$$

- Copper Losses
$$P_{V,W} = I_{rms}^2 R_W \propto \frac{l}{\kappa A_W} \propto \frac{l}{l^2} = \frac{1}{l}$$

Iron and Copper Losses are Decreasing with Increasing Linear Dimensions

Selection of the Switching Frequency

Example of Single-Phase PFC Rectifier Systems

Selection of the Switching Frequency

- Consider Boost Inductor as Part of EMI Filter
- Calculate Equivalent Noise Voltage @ Switching Frequency

Selection of the Switching Frequency

- Consider Boost Inductor as Part of EMI Filter
- Calculate Equivalent Noise Voltage @ Switching Frequency

Equivalent Noise Voltage @ Switching Frequency

> **Required EMI Filter Attenuation**

Higher Switching Frequency Increases Required Attenuation

Required EMI Filter Attenuation

Higher Switching Frequency Increases Required Attenuation

Minimize Required EMI Filter Attenuation

Distribute Harmonic Power Equal over Frequency Range

EMI Filter Optimization

Equal Partitioning of Total Inductance Provides Max. Attenuation

EMI Filter Optimization

Equal Partitioning of Total Volume between L & C Provides Max. Attenuation

EMI Filter Optimization

Optimization for Minimum Losses at Given Maximum Filter Volume

$$V_{\text{max}} = 0.4 \text{dm}^3$$

$$k_i = 0.075$$

$$f_P = 58 \text{kHz}$$

Optimum Values k_i and f_p are Close to Volume Optimal Design

Measures for Efficiency Improvement

Control

Intermittent OperationInterleaving

— Intermittent Operation —

Parallel Interleaving

Mechanical Version of "Parallel Interleaving"

Parallel Operation of Multiple Sub-Systems

Features Phase-Shedding (Equivalent to Adjustable Silicon Area!) Features Cancellation of Harmonics

Parallel Operation of Multiple Sub-Systems

Equal Sharing of Total Power for Minimal Losses

Efficiency Optimum Phase-Shedding

Maximization of Part-Load Efficiency

$$\eta\left\{\frac{1}{N}P_{2,sw}\right\} = \eta\left\{\frac{1}{N+1}P_{2,sw}\right\}$$

Efficiency Optimum Phase-Shedding

Deactivation of "Cylinders"

HONDA The Power of Dreams

Ripple Cancellation

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Ripple Cancellation

▶ Possible Red. of Input Capacitance $C \rightarrow C/8$ -or- Inductance $2L \rightarrow L/4$

Scaling Laws of Parallel Interleaving

Parallel Interleaving (Homogeneous Power)

Characteristics

- Breaks the Frequency Barrier
- Breaks the Impedance Barrier
 Breaks Cost Barrier Standardization
- High Part Load Efficiency

Fully Benefits from Digital IC Technology (Improving in Future) **Redundancy** \rightarrow Allows Large Number of Units without Impairing Reliability

Parallel Interleaving (Homogeneous Power)

- Multiplies Frequ. / Red. Ripple @ Same (!) Switching Losses & Incr. Control Dynamics

N = 3

■ Fully Benefits from Digital IC Technology (Improving in Future)
 ■ Redundancy → Allows Large Number of Units without Impairing Reliability

Harmonics Cancellation Allows Large ripple of Cell Currents

 \rightarrow Minimum Volume for 100% Current Ripple (DCM)

Remark #2

Impedance Matching

• Allowed L_s Directly Related to Switching Time $t_s \rightarrow$

 \rightarrow Parallel Interl. Allows to Split-Up Large Currents \rightarrow Increase of Z / Allows Faster Swtchg

Remark #3 Efficiency/Power Density (Pareto) Limit

■ Parallel Interleaving - Shift of the Pareto Limit → Higher Power Densities

EMI Reduction due to Parallel Interleaving

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

57/114 -

Power Electronic Systems Laboratory

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Measures for Efficiency Improvement

Topology & Control

- Single-Stage vs. Two-Stage Conversion
 Synchronous Rectification
 Resonant Transition Mode Switching

- Interleaving

Single-Stage vs. Two-Stage Conversion

Power Electronic Systems Laboratory

Single-Stage \rightarrow Integration of Functions

- **Examples:** *
 - Matrix Converters
 - * Multi-Functional Utilization (Machine as Inductor of DC/DC Conv.)

* etc.

- Integration Restricts Controllability / Overall Functionality (!) Typ. Lower Efficiency / Higher Control Compl. of Integr. Solution
- **Basic Physical Properties remain Unchanged (e.g. Filtering Effort)**

► Two-Stage → Optimal Splitting of Functionality

- **Highly Optimized Specific Functionality** \rightarrow **High Performance for Specific Task**
- **Restriction of Functionality** \rightarrow **Lower Costs**

Example of Wide Input Voltage Range Isolated DC/DC Converter

► Two-Stage → Optimal Splitting of Functionality

- **DC-Transformer** \rightarrow Isolation @ Constant (Load Ind.) Voltage Transfer Ratio **Example:** _ E.g. adopted by VICOR – "Sine Amplitude Converter" for Fact. Power Architecture → Current **Very High Efficiency** Isolation Stage **Operating Frequency** Voltage Current $i_{L_{
 m III}}$ 1.2Ē Q = R_L 1.0 $\frac{U_{R_L}}{U_0}$ 0.8 $\frac{\overline{T_{\rm s}}}{2}$ $\frac{-T_{\rm s}}{2}$ $T_{\rm s}$ 0 Q = 1Time tRelative voltage 0.6Q = 20.4 U_1 Q = 5 u_{p} 0.2Q = 100.00.51.01.52.00.0Relative Frequency $\frac{\omega}{\omega_0}$
- **Resonant Frequ.** \approx Switching Frequ. \rightarrow Input/Output Voltage Ratio = N_1/N_2

Power Electronic Systems

Laboratory

Resonant Transition Mode

Technological Limits of Hard-Switched CCM Converters

On-State Voltage of Freewheeling Diodes (U_F)
 Capacitive Switching Losses of MOSFETs (A_{Si,opt})

Zero Voltage Switching – <u>Triangular Current Mode</u> (TCM) Operation

65/114

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

Zero Voltage Switching – <u>Triangular Current Mode</u> (TCM) Operation

12kW TCM Buck+Boost DC/DC Converter

 Overlapping Input and Output Voltage Ranges
 U₁=150...450V U₂=150...450V
 Max. Eff. = 99.3% @ 30kW/l

н

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Measures for Efficiency Improvement

Further Concepts

- Partial Power Conversion
- Ride-Through Boost Converter
 Series/Parallel Rearrangement

Partial Power

$$U_{2} = U_{1} - U_{c}$$

Reduces Rated Power of PPC

$$p_{c} = \frac{P_{c,1}}{P_{1}} = \frac{\frac{U_{c}}{U_{2}}}{1 + \frac{U_{c}}{U_{2}}}$$

Limited Influence of PPC Efficiency on Total Efficiency

$$\eta = \frac{P_2}{P_1} = \frac{(1 + \frac{U_c}{U_2} \eta_c)}{(1 + \frac{U_c}{U_2})}$$

Voltage / Topology Preconditioning -

Power Electronic Systems Laboratory

Voltage / Topology Preconditioning

■ S/P Reconfiguration also Applicable for 3-Phase System (Star → Delta Rearrangement)

Mixed Interleaving

Numerous Combinations (ISOP, ISIS, IPOS, IPOP, etc.)

- Low Inp. Voltage / Output Curr. Harmonics
 Low Input / Output Filter Requirement
 Impedance Matching

Highly Accurate Efficiency Measurement

Concepts

Power Analyzer Calorimeter

Power Analyzer

Power Electronic Systems Laboratory

Maximum Admissible Power Measurement Error

Admissible Error of Loss Determination NOT Efficiency Determination

Calorimeter

Two-Chamber Calorimeter

 Measurements up to 85°C Ambient Temp.
 Relative Error of Loss Measurements < 3.5%@10 < 1.0%@10

<3.5%@10W <1.0%@100W <0.5%@200W

Ultra-High Efficiency Converters

Concepts @ 3.3kW

Research Projects of ETH Zurich Partly Supported by the European Center for Power Electronics

- 2x Interleaved CCM Bridgeless PFC Rectifier
 6x Interleaved TCM PFC Rectifier
- Telecom Rectifier Module

81/114 -

3.3kW CCM PFC Rectifier System

3.3kW TCM PFC Rectifier System

★ 99.36% @ 1.2kW/dm³

- Bidirectional Supports V2G Concepts
- Employs <u>NO</u> SiC Power Semiconductors -- Si SJ MOSFETs only

83/114 -

3.3kW TCM PFC Rectifier System

3.3kW TCM PFC Rectifier System

Measurement Results

3.3kW TCM PFC Rectifier System

Employs NO SiC Power Semiconductors -- **Si SJ MOSFETs only**

Ultra-Compact/Efficient TCM PFC Rectifier System

Input Voltage Output Voltage Rated Power •

•

- 184...264V_{AC} 420V_{DC} 3.3kW
- •

 P_{O}/W

Converter Performance Evaluation Based on η - ρ -Pareto Front

KEYS for Achieving the Performance Improvement

- **Only Basic Topology Employed**
- ZVS Achieved by Only Modifying Operation Mode
- Active ZVS
- Triangular Current Mode (TCM)
- Variable Switching Frequency
- No Diode On-State Voltage Drop
- Continuously Guided u, i Waveforms
- Interleaving
- Utilization of Low Superjunct. R_{DS,(on)} Utilization of Digital Signal Processing

- ... despite Using "Old" Si Technology
 - Low Complexity
 - No Aux, Circuits
- No (Low) Switching Losses
- No Direct Limit of # of Parallel Trans.
- Simple Symm. of Loading of Modules
- No Current Sensor (only i=0 Detection) Spread & Lower Ampl. EMI Noise
- Synchr. Rectification
- No Free Ringing → Low EMI Filter Vol.
 Low EMI Filter Vol. & Cap. Curr. Stress
- Low Cond. Losses despite TCM
- Low Control Effort despite 6x Interl.

... the Basic Concept is Known since 1989 (!)

Alternative Converter Concepts (?)

Minimum Performance Difference for Best Matching of Topology/Semicond./Modulation
 Only Use BASIC Topologies - Costs are THE Deciding Criteria (!)

Is Another Step of Massive Improvement Possible ?

Telecom Rectifier Employing Series Multi-Cell Approach

Specifications

Input Voltage Nominal Output Voltage Output Voltage Range Rated Power Target Efficiency Target Power Density Hold-Up Time Switching Frequency EMI Standard

230 V_{rms} (180 V_{rms} - 270 V_{rms}) 48 V_{DC} 40-60 V_{DC} 3.3 kW 98.5% 3 kW/dm³ 10ms at Rated Power ≥20 kHz (per Module) CISPR Class A and Class B

■ <u>Input Series Output Parallel (ISOP)</u> Connection

First Optimization Results

- Calculation of Opt. Maximum Admissible DC-Link Voltage Drop during Hold-Up Time (10ms)
- Pareto-Optimal for N = 6 Cells (PFC Rectifier + Phase-Shift Full-Bridge)

• Optimal Performance for 20% Hold-up DC-Link Voltage Drop

"Conventional" 3.3kW Telecom Rectifier Module

3x Interleaved TCM PFC Rectifier Stages
 Full-Bridge Phase-Shift DC/DC Converter / Full Bridge Synchr. Rectifier

Next Gen. "Conventional" 3.3kW Telecom Rectifier Module

- 3x Interleaved TCM PFC Rectifier Stages 2x Interleaved Full-Bridge Phase-Shift DC/DC Conv. / Full-Bridge Synchr. Rectifier

★ 97% @ 3.3kW/dm³

 P_O/W

Scaling Laws of Series Interleaving

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Series Interleaving of Converter Cells

Characteristics

$$\frac{\Delta U_{\max,N}}{U} = \frac{\pi^2}{32} \left[\frac{f_0}{f_S}\right]^2 \cdot \frac{1}{N^3}$$

- Breaks the Frequency Barrier
 Breaks the Silicon Limit 1+1=2 NOT 4 (!)
 Breaks Cost Barrier Standardization
- Extends LV Technology to HV

Series Interleaving of Converter Cells

Series Interleaving of LV MOSFETs (LV Cells) Effectively *SHIFTS the Si-Limit* (!)

Excellent Opportunity for Extreme Efficiency Ultra-Compact Converters

Series Interleaving of Converter Cells

Interleaved Series Connection Dramatically Reduces Switching Losses (or Harmonics)

Converter Cells Could Operate at VERY Low Switching Frequency (e.g. 5kHz)
 Minimization of Passives (Filter Components)

Remarks on _____ Performance Indices → Couplings & Limits

Power Electronics Converters Performance Indices

Design Challenge

■ Mutual Couplings of Performance Indices → Trade-Offs

 For Optimized System Several Performance Indices Cannot be Improved Simultaneously

Abstraction of Power Converter Design

Power Electronic Systems Laboratory

Multi-Objective Optimization

- Identifies Performance Limits → Pareto Front
- **Sensitivities to Technology Advancements (Example:** η-ρ-Pareto Front)
- Trade-off Analysis

► Analysis of Performance Limits → Pareto Front

 Clarifies Influence of Main Components and Operating Parameters

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

Efficiency vs. Power Density

FOM = Ratio of Relative Losses and Power Density

Observation

Observation

Very Limited Room for Further Performance Improvement !

Efficiency

- **General Challenge in Power Electronics**
- Cost Models are Becoming Mandatory Even for University Research(!)

Conclusions

- No Magic New Topology
 Technological Limits (Magnetics!)
- ► Light-Load Efficiency → Ohmic Characteristics / ZVS / Interleaving !
- Modern Semiconductor Technology
- Modern Digital Control Technology

System Oriented Analysis
 Architecture & Energy Management
 Adv. Packaging & Thermal Manag. for High Eff. AND Power Density

Questions

References

J. W. Kolar, F. Krismer, Y. Lobsiger, J. Mühlethaler, T. Nussbaumer, J. Miniböck, *Extreme Efficiency Power Electronics*, Proc. of International Conf. of Integrated Power Electronics Systems (CIPS), Nuremberg, Germany, March 6-8, 2012.

U. Badstuebner, J. Miniböck, J. W. Kolar, *Experimental Verification of the Efficiency/Power-Density (n-p) Pareto Front of Single-Phase Double-Boost and TCM PFC Rectifier Systems*, Proc. of 28th IEEE Applied Power Electronics Conf. (APEC), Long Beach, California, USA, March 17-21, 2013.

Acknowledgement

F. Krismer Y. Lobsiger J. Mühlethaler Th. Nussbaumer J. Miniböck M. Kasper

Power Electronic Systems Laboratory

About the Instructor

Johann W. Kolar (F'10) received his M.Sc. and Ph.D. degree (summa cum laude / promotio sub auspiciis praesidentis rei publicae) from the University of Technology Vienna, Austria. Since 1984 he has been working as an independent international consultant in close collaboration with the University of Technology Vienna, in the fields of power electronics, industrial electronics and high performance drives. He has proposed numerous novel converter topologies and modulation/control concepts, e.g., the VIENNA Rectifier, the SWISS Rectifier, the Delta-Switch Rectifier, the isolated Y-Matrix AC/DC Converter and the three-phase AC-AC Sparse Matrix Converter. Dr. Kolar has published over 450 scientific papers at main international conferences, over 180 papers in international journals, and 2 book chapters. Furthermore, he has filed more than 110 patents. He was appointed Assoc. Professor and Head of the Power Electronic Systems Laboratory at the Swiss Federal Institute of Technology (ETH) Zurich on Feb. 1, 2001, and was promoted to the rank of Full Prof. in 2004. Since 2001 he has supervised over 60 Ph.D. students and PostDocs.

The focus of his current research is on AC-AC and AC-DC converter topologies with low effects on the mains, e.g. for data centers, More-Electric-Aircraft and distributed renewable energy systems, and on Solid-State Transformers for Smart Microgrid Systems. Further main research areas are the realization of ultra-compact and ultra-efficient converter modules employing latest power semiconductor technology (SiC and GaN), micro power electronics and/or Power Supplies on Chip, multi-domain/scale modeling/simulation and multi-objective optimization, physical model-based lifetime prediction, pulsed power, and ultra-high speed and bearingless motors. He has been appointed an IEEE Distinguished Lecturer by the IEEE Power Electronics Society in 2011.

He received 9 IEEE Transactions Prize Paper Awards, 8 IEEE Conference Prize Paper Awards, the PCIM Europe Conference Prize Paper Award 2013 and the SEMIKRON Innovation Award 2014. Furthermore, he received the ETH Zurich Golden Owl Award 2011 for Excellence in Teaching and an Erskine Fellowship from the University of Canterbury, New Zealand, in 2003.

He initiated and/or is the founder/co-founder of 4 spin-off companies targeting ultra-high speed drives, multidomain/level simulation, ultra-compact/efficient converter systems and pulsed power/electronic energy processing. In 2006, the European Power Supplies Manufacturers Association (EPSMA) awarded the Power Electronics Systems Laboratory of ETH Zurich as the leading academic research institution in Power Electronics in Europe.

Dr. Kolar is a Fellow of the IEEE and a Member of the IEEJ and of International Steering Committees and Technical Program Committees of numerous international conferences in the field (e.g. Director of the Power Quality Branch of the International Conference on Power Conversion and Intelligent Motion). He is the founding Chairman of the IEEE PELS Austria and Switzerland Chapter and Chairman of the Education Chapter of the EPE Association. From 1997 through 2000 he has been serving as an Associate Editor of the IEEE Transactions on Industrial Electronics and from 2001 through 2013 as an Associate Editor of the IEEE Transactions on Power Electronics. Since 2002 he also is an Associate Editor of the Journal of Power Electronics of the Korean Institute of Power Electronics and a member of the Editorial Advisory Board of the IEEJ Transactions on Electrical and Electronic Engineering.

