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Outline 

►  Trends of Efficiency  Improvement  
►  Converter Loss Components    
►    Efficiency  Improvement by 
      *  Design   
      *  Control   
      *  Topology & Control   
►    Highly Accurate Efficiency Measurement  
►    η > 99%  Converter Demonstrators 
►     Conclusions 
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Power Electronics  
Performance Trends 

─  Power Density       [kW/dm3] 
─  Power per Unit Weight    [kW/kg] 
─  Relative Costs    [kW/$] 
─  Relative Losses  [%] 
─  Failure Rate              [h-1] 

 

■  Performance  Indices 
►
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Drivers for High Efficiency 

< 2000   Increase of Power Density / 
                 Thermal Limitation / Max. Full 
                 Load Efficiency      
 
> 2000   Mostly Voluntary Efficiency 
              Requirements for Entire Power  
              Range (100%, 50%, 20%) 

►
 ► 
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Efficiency / Power Factor Limits  
(5%)…20%...100% Load 

►
 



7/114 

Inefficiency (Losses)… 

─   PV Inverters: Typ. Loss Reduction 
      of Factor 2 over 5 Years 

General Efficiency Trends  
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Efficiency Basics 

Converter Loss Components  
Efficiency Maximum 

Efficiency vs. Power Factor  
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Non-Idealities of Converter Circuits 

2 2 21
, 2 2 ( ) 22
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Non-Idealities of Converter Circuits 

► 2

,0 , , 0 2 2V V V I V II I II
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 ►  Only Constant Losses 

►
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 ►  Only Power Proportional  Losses 
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 ►  Quadratically Power Dependent  Losses 
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@ Maximum:     Equal Constant and Quadratic Losses 
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Efficiency vs. Power Factor 
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 ►  Sensible Compromise e.g. for Three-Phase Systems 
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Measures for Efficiency Improvement 

Design           - Power Semiconductors 
                      - Inductive Components / EMI-Filter 
     - Auxiliaries 
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Power Semiconductors 
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Power Semiconductors 

 

►  On-State Losses 
►  Capacitive Switching Losses 
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Power Semiconductors 

 

►  On-State Losses 
►  Capacitive Switching Losses 

2 2
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Power Semiconductors 
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►  Silicon Area Related Resistance / Capacitance 
►

 

►
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Power Semiconductors 
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►  Optimum Silicon Area - Minimum Losses  
►
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Power Semiconductors -  Efficiency Barrier 
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Power Semiconductors 

 

►  Selection of  ASi > ASi,opt   Leads to Lower Efficiency in Whole Operating Range 
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Inductive Components / EMI Filter 
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Inductive Components – Efficiency  vs. Volume 
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►  Iron and Copper Losses are Decreasing with Increasing Linear Dimensions 

 

-  Iron Losses 

 

-  Copper Losses 

4 
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Selection of the Switching Frequency 

 

►  Example of  Single-Phase PFC Rectifier Systems 
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Selection of the Switching Frequency 
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-  Consider Boost Inductor as Part of EMI Filter 
-  Calculate Equivalent Noise Voltage @ Switching Frequency 

Limited Influence of Higher Order Harmonics 
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Selection of the Switching Frequency 

 

-  Consider Boost Inductor as Part of EMI Filter 
-  Calculate Equivalent Noise Voltage @ Switching Frequency 
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Selection of the Switching Frequency 

 

►  Equivalent Noise Voltage @ Switching Frequency 
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Required EMI Filter 
Attenuation 

 

►  Higher Switching Frequency 
      Increases Required Attenuation 
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Required EMI Filter 
Attenuation 

 

►  Higher Switching Frequency Increases Required Attenuation 
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Minimize Required EMI 
Filter Attenuation 

 

►  Distribute Harmonic Power  
      Equal over Frequency Range 
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EMI Filter Optimization 
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►  Equal Partitioning of Total Inductance Provides Max. Attenuation 
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EMI Filter Optimization 
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►  Equal Partitioning of Total Volume between L &  C  Provides Max. Attenuation 


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EMI Filter Optimization 

 

►  Impact of Switching Frequency and 
      Ripple Ratio on Volume 
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EMI Filter Optimization 

 

►  Impact of Switching Frequency and 
      Ripple Ratio on Volume (PN=1.5kW) 
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EMI Filter Optimization 

 

►  Optimization for Minimum Losses at 
      Given Maximum Filter Volume 

 

►  Optimum Values ki and fP are  
      Close to Volume Optimal Design   
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Measures for Efficiency Improvement 

Control           - Intermittent Operation 
                      - Interleaving 
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Intermittent Operation 
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Intermittent Operation 

 

►  Operate Converter ONLY at Maximum 
      Efficiency Power Level  
  
 

►  Adjust Delivered Power by Proper 
      Selection of the Duty Cycle 
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►  Energy Storage Requirement ! 
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Parallel  
Interleaving 
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Mechanical Version of  
“Parallel Interleaving” 
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Parallel Operation of Multiple Sub-Systems 

 

►  Features Phase-Shedding (Equivalent to Adjustable Silicon Area!) 
►  Features Cancellation of Harmonics 
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Parallel Operation of Multiple Sub-Systems 

 

►  Equal Sharing of Total Power for Minimal Losses 
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Efficiency Optimum Phase-Shedding 

 

►  Maximization of Part-Load Efficiency 
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Efficiency Optimum Phase-Shedding 

 

►  Deactivation of “Cylinders” 
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►  Operation of n =2 Systems 
     180° Out of Phase 

Ripple Cancellation 
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Ripple Cancellation 
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►  Possible Red. of Input Capacitance  C → C/8    –or–   Inductance  2L → L/4 

►
 



 

Doubling of Effective 
Switching Frequ. @ Same 

Switching Losses 

►
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Scaling Laws of  
Parallel Interleaving 
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► Parallel Interleaving (Homogeneous Power) 

■   Characteristics   

■  Fully Benefits from Digital IC Technology  (Improving in Future) 
■  Redundancy  Allows Large Number of Units without Impairing Reliability   

─ Breaks the Frequency Barrier  
─ Breaks the Impedance Barrier 
─ Breaks Cost Barrier - Standardization  
─ High Part Load Efficiency 

H. Ertl, 2003 
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─ Multiplies Frequ.  /  Red. Ripple @ Same (!) Switching Losses  &  Incr. Control Dynamics 

■  Fully Benefits from Digital IC Technology  (Improving in Future) 
■  Redundancy  Allows Large Number of Units without Impairing Reliability   

H. Ertl, 2003 

! ! 

N = 3 

► Parallel Interleaving (Homogeneous Power) 
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   Minimum Volume for 100%  Current Ripple (DCM)   

► Remark #1         Volume of Cell-Inductors 

■   Harmonics Cancellation Allows Large ripple of Cell Currents  

►
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■   Allowed Ls Directly Related to Switching Time ts       i i

s s
L L

Z
s

U U
L t

I I

t


 

  Parallel Interl. Allows to Split-Up Large Currents  Increase of Z / Allows Faster Swtchg 

► Remark #2           Impedance Matching 
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► Remark #3       Efficiency/Power Density (Pareto) Limit 

■       Parallel Interleaving -  Shift of the Pareto Limit  Higher Power Densities  
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EMI Reduction due to  
Parallel Interleaving 
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Reduction of EMI  
Filter Volume   

 

►  Symm.   Interleaving – 180° 
►  Asymm. Interleaving –   90° 
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Measures for Efficiency Improvement 

Topology & Control          - Single-Stage vs. Two-Stage Conversion 
    - Synchronous Rectification 
    - Resonant Transition Mode Switching 
                         - Interleaving   
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Single-Stage vs.  
Two-Stage Conversion 
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►  Single-Stage  Integration of Functions 
─   Examples:                    *  Matrix Converters 
         *  Multi-Functional Utilization (Machine as Inductor of DC/DC Conv.) 
                             *  etc.  

■    Integration Restricts Controllability / Overall Functionality (!) 
■    Typ. Lower Efficiency / Higher Control Compl. of Integr. Solution  
■    Basic Physical Properties remain Unchanged (e.g. Filtering Effort)  
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■    Highly Optimized  Specific Functionality    High Performance for Specific Task  
■    Restriction of Functionality   Lower Costs 

■    Example of Wide Input Voltage Range Isolated DC/DC Converter 

► Two-Stage  Optimal Splitting of Functionality 
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■   Resonant Frequ. ≈ Switching Frequ.   Input/Output Voltage Ratio = N1/N2    

─   Example:                    DC-Transformer     Isolation @ Constant (Load Ind.) Voltage Transfer Ratio 

  E.g. adopted by VICOR –  
“Sine Amplitude Converter” for  
  Fact. Power Architecture  
  Very High Efficiency 

► Two-Stage  Optimal Splitting of Functionality 
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Resonant Transition Mode 
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Technological Limits of  
Hard-Switched CCM Converters 

 

►  On-State Voltage of Freewheeling Diodes  (UF) 
►  Capacitive Switching Losses of MOSFETs  (ASi,opt) 
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■    Synchronous Rectification 
■    Negative Current Ensures ZVS 

Zero Voltage Switching – Triangular Current Mode (TCM) Operation 
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Zero Voltage Switching – Triangular Current Mode (TCM) Operation 

 

■    Synchronous Rectification 
■    Negative Current Ensures ZVS 

► 
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12kW TCM Buck+Boost 
DC/DC Converter 

 

►  Overlapping Input and 
      Output Voltage Ranges 
 
      U1=150…450V 
      U2=150…450V 

 

►  Max. Eff. = 99.3% @ 30kW/l 
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■    Instead of Adding Aux. Circuits 
      Change Operation of BASIC (!) Structure – 
     “Natural” Performance Limit  

99.3% Efficiency  
30 kW/dm3    

”Snubbers” vs. TCM 

─   Non-Isolated Buck+Boost 
      DC-DC Converter for 
      Automotive  Applications 
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Measures for Efficiency Improvement 

Further Concepts                         - Partial Power Conversion 
    - Ride-Through Boost Converter 
    - Series/Parallel Rearrangement 
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Partial Power 
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Partial Power Converter 

 

►  Reduces Rated Power of PPC 

 

►  Limited Influence of PPC 
      Efficiency on Total Efficiency 
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Voltage / Topology  Preconditioning 
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► Voltage / Topology Preconditioning  

 

►  Ride-Through  
      Boost Converter 

 

►  Series-Parallel 
      Reconfiguration 
      (Voltage:2 AND 
      Current x2  
      Advantage Comp. to 
      Multi-Level Conv.)  

■   S/P Reconfiguration also Applicable for 3-Phase System (Star       Delta Rearrangement)   
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*  Conventional 

* ISOP =  
   Input Series /  
   Output Parallel 
   Topology    

 
●  Low Inp. Voltage / Output Curr. Harmonics 
●  Low Input / Output Filter Requirement 
●  Impedance Matching 

■    Numerous Combinations 
      (ISOP, ISIS, IPOS, IPOP, etc.)   
 

*  Input Series 

► Mixed Interleaving 
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Highly Accurate Efficiency Measurement 

Concepts                         - Power Analyzer 
    - Calorimeter 
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Power Analyzer 
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Maximum Admissible Power 
Measurement Error 
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►  Admissible Error of Loss Determination NOT  
      Efficiency Determination  
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Calorimeter 
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Two-Chamber Calorimeter 

 

►  Relative Error of Loss Measurements    < 3.5%@10W 
                  < 1.0%@100W 
                                 < 0.5%@200W 

►  Measurements up to 85°C Ambient Temp. 
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Ultra-High Efficiency Converters 

Concepts          - 2x Interleaved CCM Bridgeless PFC Rectifier 
@ 3.3kW        - 6x Interleaved TCM PFC Rectifier 
       - Telecom Rectifier Module 

Research Projects of 
ETH Zurich Partly Supported 

by  the European Center 
for Power Electronics 
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3.3kW  CCM PFC Rectifier System 
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99.36% @ 1.2kW/dm3 

■   Bidirectional – Supports V2G Concepts  
■   Employs  NO  SiC Power Semiconductors  --  Si  SJ MOSFETs only 

3.3kW  TCM PFC Rectifier System 
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3.3kW  TCM PFC Rectifier System 
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3.3kW  TCM PFC Rectifier System 

 

►  Measurement Results 
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99.36% @ 1.2kW/dm3 

► Employs  NO  SiC Power Semiconductors  --  Si  SJ MOSFETs only 

230 Vrms 

3.3kW  TCM PFC Rectifier System 
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98.6% @ 4.5kW/dm3 

Ultra-Compact/Efficient TCM PFC Rectifier System 

•  Input Voltage  184…264VAC 
•  Output Voltage 420VDC 
•  Rated Power 3.3kW 
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Converter Performance Evaluation 
Based on η-ρ-Pareto Front 

►
 

 

Triple-Interleaved 
TCM Rectifier (56kHz) 
 

 

Double-Interleaved 
Double-Boost CCM 
Rectifier (450kHz) 
 
 

 

Double-Interleaved 
Double-Boost CCM 
Rectifier (33kHz) 
 
 

 

Triple-Interleaved 
TCM Rectifier (33kHz) 
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KEYS for Achieving  the Performance Improvement 

…  despite Using “Old”  
         Si Technology 

■     Only Basic Topology Employed             –  Low Complexity 
■    ZVS Achieved by Only Modifying Operation Mode           –  No Aux. Circuits 
■    Active ZVS                                       –  No (Low) Switching Losses 
               –  No Direct Limit of # of Parallel Trans. 
■    Triangular Current Mode (TCM)                                          –  Simple Symm. of Loading of Modules 
                 –  No Current Sensor (only i=0 Detection)  
■    Variable Switching Frequency               –  Spread & Lower Ampl. EMI Noise 
■    No Diode On-State Voltage Drop                                       –  Synchr. Rectification 
■    Continuously Guided u, i Waveforms                                –  No Free Ringing  Low EMI Filter Vol. 
■    Interleaving                                                                    –  Low EMI Filter Vol. & Cap. Curr. Stress  
■    Utilization of Low Superjunct. RDS,(on)                                          –       Low Cond. Losses despite TCM 
■    Utilization of Digital Signal Processing                            –      Low Control Effort despite 6x Interl. 

…  the Basic Concept is Known since 1989 (!) 
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Alternative Converter Concepts (?) 

■    Minimum Performance Difference for Best Matching of Topology/Semicond./Modulation 
■    Only Use BASIC Topologies - Costs are THE Deciding Criteria (!) 

Source: 
 

Dr. Gerald Deboy 
Plenary Presentation @  

IECON 2013, Vienna  

─  Indication  for a  
      “Natural”  Performance 
        Limit  
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►  Is Another Step of Massive Improvement Possible ? 

►
 

 

Triple-Interleaved 
TCM Rectifier 
(56kHz) 
 

 

Double-Interleaved 
Double-Boost CCM 
Rectifier (450kHz) 
 
 

 

Double-Interleaved 
Double-Boost CCM 
Rectifier (33kHz) 
 
 

 

Triple-Interleaved 
TCM Rectifier 
(33kHz) 99% @ 6kW/dm3 
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  Multi-Cell Approach  
  Series Interleaving 
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Telecom Rectifier Employing Series Multi-Cell Approach 

■   Input Series Output Parallel (ISOP) Connection 

■   Specifications   Input Voltage    230 Vrms (180 Vrms – 270 Vrms) 
   Nominal Output Voltage 48 VDC 
   Output Voltage Range  40-60 VDC     
   Rated Power   3.3 kW 
   Target Efficiency  98.5% 
   Target Power Density  3 kW/dm3 

   Hold-Up Time  10ms at Rated Power 
   Switching Frequency ≥20 kHz (per Module) 
   EMI Standard   CISPR Class A and Class B 
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► First Optimization Results 

■   Calculation of Opt. Maximum Admissible DC-Link Voltage Drop during Hold-Up Time (10ms) 
■   Pareto-Optimal  for N = 6 Cells (PFC Rectifier + Phase-Shift Full-Bridge) 

■   Optimal Performance for 20% Hold-up DC-Link Voltage Drop   

10% 

20% 

30% 

40% 

98% @ 3kW/dm3 
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“Conventional” 3.3kW Telecom Rectifier Module 

 

►  3x Interleaved TCM PFC Rectifier Stages 
►  Full-Bridge Phase-Shift DC/DC Converter / Full Bridge Synchr. Rectifier 

 

96.8% @ 2.5kW/dm3 
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Next Gen. “Conventional” 3.3kW Telecom Rectifier Module 

 

►  3x Interleaved TCM PFC Rectifier Stages 
►  2x Interleaved Full-Bridge Phase-Shift DC/DC Conv. / Full-Bridge Synchr. Rectifier 

 

97% @ 3.3kW/dm3   
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Scaling Laws of  
Series Interleaving 
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■   Characteristics   ─ Breaks the Frequency Barrier  
─ Breaks the Silicon Limit 1+1=2 NOT  4 (!) 
─ Breaks Cost Barrier - Standardization  
─ Extends LV Technology to HV 

H. Ertl, 2003 

Series Interleaving of Converter Cells  
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Series Interleaving of Converter Cells  

■   Excellent Opportunity for Extreme Efficiency Ultra-Compact Converters 

■  Series Interleaving of LV MOSFETs (LV Cells) Effectively  SHIFTS the Si-Limit (!) 

DS,on eff DS,on1 5

1
( ) ( )

.
R A R A

N
  

► 
►

 

–  Scaling of Specific  
    On-State Resistance 

Assumption:  
 
Chip Area of each LV 
Chip Equal to the Chip 
Area of the HV Chip 
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■  Interleaved Series Connection Dramatically Reduces Switching Losses (or Harmonics) 

■   Converter Cells Could Operate at VERY Low Switching Frequency (e.g. 5kHz) 
■   Minimization of Passives (Filter Components)  

S,N S,N= 1 2 3

1 1
 ( )

2
P P ...

N N
 

– Scaling of Switching  
   Losses for Equal Δi/I 
   and dv/dt   

S
p

t t t

tt
t

►
 

1N 

t

t

Series Interleaving of Converter Cells  
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Remarks on 
Performance Indices 

 

 Couplings & Limits 
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►  Power Electronics Converters  
                        Performance Indices 

─  Power Density       [kW/dm3] 
─  Power per Unit Weight    [kW/kg] 
─  Relative Costs    [kW/$] 
─  Relative Losses  [%] 
─  Failure Rate              [h-1] 

 

■  Performance  Indices 

[kgFe    /kW] 
[kgCu    /kW] 
[kgAl         /kW] 
[cm2

Si     /kW] 

►
 

► 
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►  Design Challenge 
 

■   Mutual Couplings of Performance Indices    Trade-Offs 

─   For Optimized System Several 
      Performance Indices Cannot be 
      Improved Simultaneously 
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 ►    Mapping of Design 
               Space into System 
                      Performance Space 

Abstraction of Power 
Converter Design 

Performance Space 

Design Space 
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Mathematical Modeling 
and Optimization of  
Converter Design 
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■   Identifies Performance Limits     Pareto Front  

─   Sensitivities to Technology Advancements (Example: η-ρ-Pareto Front) 
─   Trade-off Analysis 

Multi-Objective Optimization 
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►  Analysis of Performance Limits  Pareto Front 

■       Clarifies Influence of Main  
      Components  and Operating  
      Parameters 
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► η-ρ-σ-Pareto Surface 

 

 ■   σ:  kW/$ 
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Efficiency vs. Power Density 

 

►  FOM  =  Ratio of Relative Losses and Power Density 
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Observation 

► Very Limited Room for Further  
     Performance Improvement ! 
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Efficiency Power  
Density 

Observation 

► Very Limited Room for Further  
     Performance Improvement ! 

■   General Challenge in Power Electronics 
■   Cost Models are Becoming Mandatory – Even for University Research(!) 
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Conclusions 

► No Magic New Topology 
► Technological Limits (Magnetics!) 
 
► Light-Load Efficiency → Ohmic Characteristics / ZVS / Interleaving ! 
► Modern Semiconductor Technology 
► Modern Digital Control Technology 
 
► System Oriented Analysis → Architecture & Energy Management   
► Adv. Packaging & Thermal Manag. for High Eff.  AND  Power Density 
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Questions 
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