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Outline 

► Introduction   
► Basic Multi-Objective Optimization Approach 
► Component Models incl. Costs 
► Converter Optimization / Evaluation – Example I   
► Converter Optimization / Evaluation – Example II  
► Conclusions 



3/110 

    2015 
 

WiPDA 

 

Introduction   
Performance Trends 
Performance Space  

Pareto Front  
Design Space 
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► Power Electronics Converters  
     Performance Trends 

─  Power Density       [kW/dm3] 
─  Power per Unit Weight    [kW/kg] 
─  Relative Costs    [kW/$] 
─  Relative Losses  [%] 
─  Failure Rate              [h-1] 

 

■  Performance  Indices 

[kgFe    /kW]  
[kgCu    /kW] 
[kgAl         /kW] 
[cm2

Si     /kW] 

►
 

► 

Environmental Impact… 
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► Performance Improvements (1) 

─  Telecom Power Supply Modules: 
     Typ. Factor 2 over 10 Years 

 

■  Power Density 
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► Performance Improvements (2) 

Inefficiency (Losses)… 

 

■  Efficiency 

─   PV Inverters: Typ. Loss Red. of 
      Typ. Factor 2 over 5 Years 
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Source:                         2006 

►  Performance Improvements (3) 

 

■     Costs 

─  Importance of Economy of Scale 
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►  Performance Improvements (4) 

 

■      Costs 

─   Automotive: Typ. 10% / a 
─   Economy of Scale ! 

Source:    PCIM 2013 
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► Design Challenge 
 

■   Mutual Coupling of Performance Indices    Trade-Off Analysis  (!) 

─   For Optimized Systems Several 
      Performance Indices Cannot be 
      Improved Simultaneously 
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► Design Challenge 
 

■   Mutual Coupling of Performance Indices    Trade-Off Analysis  (!) 

─   For Optimized Systems Several 
      Performance Indices Cannot be 
      Improved Simultaneously 



11/110 

    2015 
 

WiPDA 

 

■   Design for Specific  
      Performance Profiles / 
      Trade-Offs Dependent on 
      Application 

► Graphical Representation of Performance  
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► Mutual Coupling of Performances (1) 
 

■    Experimental Exploration of the   
       Power Density Improvement of a Three-Phase 
       PFC Rectifier System with Increasing  
       Switching Frequency 

w/o Heat Sink 

fP = 50 kHz 
ρ = 3 kW/dm3 

fP = 72 kHz 
ρ = 4.6 kW/dm3 

fP = 250 kHz 
ρ = 10 kW/dm3 

fP = 1 MHz 
ρ = 14.1 kW/dm3 
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► Mutual Coupling of Performances (2) 
 

■    Experimental Exploration of the   
       Power Density Improvement of a Three-Phase 
       PFC Rectifier System with Increasing  
       Switching Frequency 

Consideration 
of a  Single 
Performance 
Index is NOT 
Sufficient (!) 

fP = 50 kHz 
ρ = 3 kW/dm3 

fP = 72 kHz 
ρ = 4.6 kW/dm3 

fP = 250 kHz 
ρ = 10 kW/dm3 

fP = 1 MHz 
ρ = 14.1 kW/dm3 
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► Mutual Coupling of Performances (3)  
 

■    Consideration of a Single Performance 
       Index is NOT Sufficient (!)  
 
 
 

■    Trade-Off of Performances Must be 
       Considered  η-ρ-Performance Limit 

 η-ρ-Performance Space   

fP = 50 kHz 
ρ = 3 kW/dm3 

fP = 72 kHz 
ρ = 4.6 kW/dm3 

fP = 250 kHz 
ρ = 10 kW/dm3 

fP = 1 MHz 
ρ = 14.1 kW/dm3 
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► Si   CoolMOS, 99mΩ/600V 
► SiC Diodes, 10A/600V  

PO=3.2kW 
UN=230V±10% 
UO=365V 
 
fP=33kHz ±3kHz 
 
Two Interleaved 
1.6kW Systems 

 

99.2% @ 1.1kW/dm3 

► Example of η-ρ-Trade-Off (1)  
 

■  1-Ф Boost-Type PFC Rectifier 

►
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PO=3.2kW 
UN=230V±10% 
UO=400V 
 
fP=450kHz ±50kHz 
 
Two Interleaved 
1.6kW Systems 

► Si    CoolMOS 
► SiC  Diodes 

 

5.5kW/dm3 @ 95.8% 

► Example of η-ρ-Trade-Off (2)  
 

■  1-Ф Boost-Type PFC Rectifier 

►
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   Derivation of the 
η-ρ-Performance Characteristic  

* Semiconductors / Heatsink 
* Output Capacitor  

* Inductor 
 

 fP 
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► Analysis of η-ρ-Performance Characteristic (1) 

 

■   Specifications / Assumptions       

─  Rated Output Power  P2 
─  Const. Input Current Ripple ΔiL    
─  Const. Output Capacitance CO  (Energy Storage) 
─  Const. Tj of Power Semiconductors ≈  Ts 
─  Def. Ambient Temperature Ta  

 

■   Dependency of Component Losses / Volumes on Switching Frequency  fP       

─  Input Inductor 
─  Output Capacitor 
─  Semiconductors /Heatsink    
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■   Input Inductor       
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 ─  Inductor Power Density 

► Analysis of η-ρ-Performance Characteristic (2) 

 ─  Relative Inductor Losses 
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■   Output Capacitor       
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■   Semiconductors & Heatsink        

► Analysis of η-ρ-Performance Characteristic (3) 

 ─  Relative Semiconductor Losses 
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 ─  Heatsink Volume / “Power Density” 
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■   System Efficiency  & Power Density in Dependency of  fP        

► Analysis of η-ρ-Performance Characteristic (4) 

 ─  Efficiency 

 ─  Power Density 
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 ─   fP  as  Parameter of  η     =     η｛ρ｝- Characteristic  

 fP 
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■   Only the Consideration of  
      All Possible Designs / Degrees 
      of Freedom Clarifies the  
      Absolute η-ρ-Performance  
      Limit  

► Analysis of η-ρ-Performance Characteristic (5) 
 

■   Specific Design   Only  fP  as Variable Design Parameter        

fP =100kHz 

“Pareto Front”  
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► Determination of the η-ρ-Pareto Front 

─  Core Geometry / Material 
─  Single / Multiple Airgaps 
─  Solid / Litz Wire, Foils 
─  Winding Topology 
─  Natural / Forced Conv. Cooling 
─  Hard-/Soft-Switching 
─  Si / SiC 
─  etc. 
─  etc. 
─  etc. 

─  Circuit Topology 
─  Modulation Scheme 
─  etc. 
─  etc. 
─  etc. 

 

■   System-Level Degrees of Freedom    

 

■   Comp.-Level Degrees of Freedom of the Design   

■   Only η-ρ-Pareto Front Allows Comprehensive 
        Comparison of Converter Concepts (!) 
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Basic Multi-Objective  
Optimization Approach   

Abstraction of Converter Design 
Component / System Modeling   

Design / Performance Space 
Pareto Front 
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 ►    Mapping of Design 
               Space into System 
                      Performance Space 

Performance Space 

Design Space 

► Abstraction of Power Converter Design 
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► Modeling and Multi- 
     Objective Optimization 
     of Converter Design 
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► Multi-Objective Converter 
     Design Optimization 

 ■  Pareto Front -  Limit of Feasible Performance Space    

►
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■   Sensitivity to Technology Advancements 
■   Trade-off Analysis 

► Technology Sensitivity Analysis 
     Based on η-ρ-Pareto Front 
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► Converter Performance Evaluation 
     Based on η-ρ-Pareto Front 

■    Performance Indicator     








►
 

■   Design Space Diversity     

Design Variables & Constraints 
Related to Two Adjacent Points  
of the Pareto Front 
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► Converter Performance Evaluation 
     Based on η-ρ-Pareto Front 

►
 

 

Triple-Interleaved 
TCM Rectifier (56kHz) 
 

 

Double-Interleaved 
Double-Boost CCM 
Rectifier (450kHz) 
 
 

 

Double-Interleaved 
Double-Boost CCM 
Rectifier (33kHz) 
 
 

 

Triple-Interleaved 
TCM Rectifier (33kHz) 
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3D-Performance Space 
Including Costs   



32/110 

    2015 
 

WiPDA 

 

■   Priorities    1. Costs 
                        2. Costs 
  3. Costs 
 
 

  4.  Robustness 
  5.  Power Density 
                                    6.  Efficiency ………… 

─ Basic Discrepancy (!) 
                                       
*  Most Important Industry Figure ”Unknown” to Univ.   
*  Costs Not Considered in Applic.-Oriented Research 

► Industry Perspective 

+     Modularity /  
      Scalability /  
      Ease of Integration into Systems / 
      etc.   
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► Requirement for Quantitative Cost Models 

─   Considering Only Volumes is Insufficient 
─   Initial / Manufacturing Costs  
─   Life Cycle Costs 
 
 

─   Complexity / Reliability  
─   Functionality 

  State-of-the-Art  
 Si IGBTs 

Advanced  
 SiC MOSFETs 

■       Advantages / Competitiveness of SiC 
             Can Only be Revealed Considering Full 
      System Costs   
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 ■   σ:  kW/$ 

► Converter Performance Evaluation  
     Based on η-ρ-σ-Pareto Surface 
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► Converter Performance Evaluation  
     Based on η-ρ-σ-Pareto Surface 

■   Maximum σ [kW/$], Related Efficiency and Power Density  
■   Definition of  “Technology Node”  (η*,ρ*,σ*,fP*) 

►
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Modeling of  
Components  

Efficiency  
Power Density  

Costs 
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 Power Semiconductors and 
Cooling Systems 

*  Cond./Switching Loss Models 
*  Thermal Models  

*  Cost Models 
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► Modeling Tasks and Design Variables 

■    Thermal Model 

■   Design Routine 
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► Conduction Losses 

■   MOSFET Conduction Losses 

Source:    CREE 

 Take from Data Sheet 
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► Switching Losses 

■   Measurement Results    Layout-Dependent /  
 Measurements Required 

■   MOSFET Switching Losses 
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► Semiconductor Costs 

Fitted Manufacturer Data for MOQ = 50k 

─  Distributors 
─  Better:   Manufacturer Data @ MOQ = const. 

 

■  Source of Cost Data 

 

■  Cost Model 

─  Parameters Based on Fitted Data 
─  Inter-/Extrapolation of Semiconductor Costs 

MOQ … Minimum Order Quantity 
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► Cooling System Modeling 

Geometry, Fans 

─  Experimental Verification 

► 
─  Fluid Dynamics Models 
─  Thermodynamics Models 

─  Heat Sink Dimensions 
─  Heat Sink Material 
─  Fan Type 
─  # of Fans 
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► Cooling System Costs 

─  Distributors 
─  Better:  Manufacturer Data @ MOQ = const. 

 

■  Fan Costs 

 

■  Cost Model for Heat Sinks 

─  Based on Fitted Manufacturer Data 

► 

─  Fitted Manufacturer Data for MOQ = 10k 
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 Magnetic Components 
*  Core/Winding Loss Models 

*  Reluctance Models 
*  Thermal Models  

*  Cost Models 
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► Modeling Tasks and Design Variables 

■   Design Routine 

www.pack-feindraehte.de 
www.jiricek.de 

http://www.ferroxcube.com/prod/assets/ecores.htm
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► Core Losses 

■   Improved2 Steinmetz Equation 

─  Improvement (1):  Arbitrary Waveforms 
─  Improvement (2):  Operating Point-Dependent 
                                    Parameters 

─  Requires Extensive Measurements 
─  Sweeps:  f, Bac, Bdc, Tcore, lag 
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► Winding Losses 

■   Winding Losses 

─  Skin and Proximity Effects 
     Contribute to Winding Losses 
 
 
 

─  Frequency-, Temperature- and 
     Geometry-Dependency 
 
 
 
 

─  Analytical Formulas for 
     Fskin, Gprox and Hext Available 

50 Hz 5 kHz 20 kHz 100 kHz 

Skin Effect ►
 

Proximity Effect ►
 

Hext 
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► Thermal Models 

■  3D Equiv. Thermal Network 

─  Conduction 
─  Radiation 
─  Natural Convection 

 

■  Heat Transfer Mechanisms  
─  Avoid Overheating 
─  Improve Loss Calculation 

 

■  Significance 
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► Verification of Multi-Physics Models 

■   Setup ■    Test Inductors 

■   Loss Model Verification ■   Thermal Model Verification 
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► Magnetics Costs 

Example: Manufact. Data for  
Litz Wire for MOQ = 1 Metric Ton 

 

■  Source of Data 
─  Core Manufacturers 
─  Conductor Manufacturers 
─  Suppliers of Magn. Components 

■   Model 
►
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 Capacitors 
 * Loss Models 
* Cost Models 
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► Modeling Tasks  &  Design Variables 
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► Capacitor Losses 

■   Electrolytic Capacitor Losses 

─  Take from Data Sheet 
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► Capacitor Costs 
►

 

Fitted Manufact. Data for MOQ = 50k 
─  Distributors 
─  Better:  Manufact. Data @ MOQ = const. 

 

■  Source of Cost Data 

 

■  Cost Models 

─  Parameters Based on Fitted Data 
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 Converter Optimization 
Example I 

 Isolated DC/DC Converter 
Topologies/Modulation Schemes 

Materials/Components 
Optimization 

η-ρ-σ-Pareto Surface 
Hardware Prototype 
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► Application 

─  Renewable Energy Sources, Local Storage Systems 
─  DC Distribution Bus 
─  Intelligent Load Management Algorithm 
─  Possible Element of Future Smart Grid System 
─  DC Microgrids Already Employed in Data Centers, Ships, Airplanes 

 

■   Next Generation Residential Energy Management System 



57/110 

    2015 
 

WiPDA 

 

► Bidirectional Wide Input Voltage Range 
     Isolated DC/DC Converter  

─  Bidirectional Power Flow 
─  Galvanic Isolation 
─  Wide Voltage Range 
─  High Partial Load Efficiency 

 

■  Universal DC/DC Converter 

►
 

Structure of DC Microgrid ►
 

Universal DC/DC Converter 

─  Reduced System Complexity 
─  Lower Overall Development Costs 
─  Economies of Scale 

 

■  Advantages 
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► Converter Topologies 

■   Conv. 3-Level Dual Active Bridge (3L-DAB) 

■   Advanced 5-Level Dual Active Bridge (5L-DAB) 
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►  Modulation Schemes 
■  3-Level Dual Active Bridge ■  5-Level Dual Active Bridge 
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►  Modulation Schemes 

■  3-Level Dual Active Bridge ■  5-Level Dual Active Bridge 

─  Significantly Lower RMS Currents of 5L-DAB Due to Higher DOF of Modulation   
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►  Modulation Schemes  -  Zero Voltage Switching (1) 

► 
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►  Modulation Schemes  -  Zero Voltage Switching (2) 

► 

► 
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►  Modulation Schemes  -  Zero Voltage Switching (3) 

► 

► 

► ► 



64/110 

    2015 
 

WiPDA 

 

─   Lσ Usually Provides Not Enough Charge 
─   Add Lm for Additional (Reactive) Current 
─   At Low Power and/or Too Short Dead Time Intervals Still not  Sufficient     Partial ZVS / Add. 
            Switching Losses 

 

■   Achieving ZVS 

►  Modulation Schemes  -  Zero Voltage Switching (4) 

■  3-Level Dual Active Bridge 

■  5-Level Dual Active Bridge 



65/110 

    2015 
 

WiPDA 

 

► Components and Materials 

─  Inexpensive 
─  1200 V 
 
─  Cond. Losses Not Scalable 
─  No ZVS Possible 
─  Tail Currents 
─  ZCS Difficult to Achieve 

 

■  Si IGBT 

─  Conduction Losses Scalable 
─  ZVS But Non-Zero Sw. Losses (!) 
 
─  Large Specific Coss 
─  Only 650 V  
─  NPC Half-Bridge Necessary  
─  Increased Part Count 

■  Si SJ MOSFET 

─  Cond. Losses Scalable 
─  Very Low ZVS Losses 
─  1200 V 
─  Low Specific Coss 
 
─  Costs 

■  SiC VD-MOSFET 

■   Power Semiconductors 
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► Overview of Components and Materials  

─  CREE SiC MOSFET 80 m 1200 V 
─  2 x on Variable Voltage Side 
─  1 x on Fixed Voltage Side 

─  CREE SiC MOSFET 80 m 1200 V 
─  Scaled 600 V SiC Switch 
─  Variable Chip Sizes 
─  Same Total Semicond. Cost as 3L-DAB 

─  Optimized Aluminum Heat Sinks 
─  Range of Low Power DC Fans 

─  EPCOS N87 Ferrite E & ELP Cores 
─  Litz Wire with Range of Strand Diameters 

─  EPCOS MKP DC Film Capacitors 
─  575 V and 1100 V Rated 

■  3-Level Dual Active Bridge ■  5-Level Dual Active Bridge 
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► Global Optimization Routine (1) 

► Local Component 
Optimization 

Global System 
Optimization 

► 

► Dependent Global 
Design Variables 
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► Global Optimization Routine (2) 

─  Lσ ,Lm  and n Determine Waveforms 
─  Optimize with Chip Area Distribution 
 
 
 
 
 
 

► Minimum Semiconductor Losses 
► ZVS for All Operating Points 
► Design Frequency:  50 kHz 

 

■   Offline Design Variable Optimization 
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► Optimization Results - Pareto Surfaces (1) 

■  3-Level Dual Active Bridge 
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► Optimization Results - Pareto Surfaces (2) 

■  5-Level Dual Active Bridge 
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► Optimization Results - Component Breakdown (1) 
► 5L-DAB ► 3L-DAB   

■   Lower RMS Currents Overcompensated by Low Chip Utilization 
■   Higher 5L-DAB Conduction Losses Pc 
■   Lower 5L-DAB Switching Losses Psw and Incomplete ZVS PiZVS Losses 
     Due to More Uniform Current Waveforms 
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■   Higher 5L-DAB Volume Mainly Due to Higher Capacitance for Midpoint Balancing 
■   Increase of Magnetics Volume at High fsw Due to High Core Losses 
■   Auxiliary Based on Prototype – Industrial Auxiliary Approx. Half the Volume 

► Optimization Results - Component Breakdown (2) 
► 5L-DAB ► 3L-DAB   
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■   Higher fsw Allows for Lower Volume of Passives 
■   However, Magnetics Require More Expensive Litz Wire, Capacitors are Inexpensive 
■   Main Costs are Semiconductors and Auxiliary 
■   Auxiliary (incl. Gate Drivers) Based on Prototype – Industrial Auxiliary Approx. Half  
     the Costs 
 

► 5L-DAB ► 3L-DAB   

► Optimization Results  -  Component Breakdown (3) 
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► Experimental Verification (1) 

■   Hardware Prototype of  
         Three-Level Dual Active  
          Bridge (3L-DAB) 

P =   5 kW 
Vi =  [100, 700] V 
Vo=  750 V 
fsw = 50 kHz 
Vbox = 2.8 dm3 (171 in3)  

■   Power Density  1.8 kW/dm3 

■   Peak Efficiency        98.5% 
■   Average Efficiency   97.6% 
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─  Peak Efficiencies of 98.8% (Without Auxiliary) and 98.5% (incl. 10W Aux. Power) 

─  High Efficiency Over Extremely Wide Parameter Range 
─  ZVS in Most Operating Points  

► Experimental Verification (2) 

■    Very High Efficiency  
      Despite High Functionality 
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─  Average Error     2.5% 
─  Maximum Error  7.8% 
─  Widely Varying Mix of Loss Contributions 

► Experimental Verification (3) 

■    Very High Model 
      Accuracy 
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─  Supports Calculated Loss Modeling 
─  Temperatures Generally Underestimated  Wiring, Thermal Coupling 

► Experimental Verification (4) 

■    High Accuracy of  
        Thermal Modeling 
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─  Non-Linear Switching-Transitions 
─  Incomplete ZVS Transitions 

► Experimental Verification (5) 

■    Accuracy Prediction of 
        Voltage and Current  
      Waveforms 
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─  Prototype Development 

*   No Optimization Routine 
*   Target Power Density of  
     2.0 kW/dm3 

 

─  Improvements with Advanced  
     Multi-Objective Optimization 
*   0.3% Higher Eff. @ Same Volume/Costs 
*   40% Lower Volume and 20% Lower 
     Costs @ Same Efficiency 

► Experimental Verification (6) 

■    Comparison to Pareto Surface 
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► Conclusions Example I 
 

■  3L-DAB Clearly Superior over 5L-DAB 

─  More Efficient (Chip Area Utilization)  
─  Higher Power Density (Capacitors) 
─  Lower Costs (Gate Drivers) 
─  Much Simpler  Reliability 
─  High Functionality (Voltage Range, Galv. Isolation, Bidir.) @ High Efficiency 
─  Could not be Achieved w/o SiC 

 

■  ZVS  

─  Difficult to Achieve at Low Load and/or High Switching Frequencies 
─  Parasitic Capacitances (Semicond. Package (!) to Heat Sink, Magnetics,  
     PCB Layout) Become Highly Important Due to Required Add. Charge 

 

■  Usefulness of Multi-Objective Optimization Routine 

─  High Accuracy of Models 
─  Improvements for Prototype Revealed 
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 Converter Optimization 
Example II 

 DC/AC PV Application 
Topologies/Modulation Schemes 

Materials/Components 
Optimization 

Pareto Surfaces 
LCC Post-Processing 
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■  Advancements in PV Converter 
    Design and Development 

─  1990s – 2000s 
 
 
 

    *  Main Focus on Efficiency 
    *  Improvements from 90% to >98% 
 
─  2010s 
 
 
 

    *  Econom. Downturn and Slower Market Growth 
    *  Main Focus on Costs (!) 

1992 
η=93% 

2007 
η=96% 

2011 
η=99% 

Future? 

■   Ongoing Discussion on Whether and How  
     SiC Can Improve PV-Inv. Performance (!) 

► Motivation (1) 
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■  Opportunities of SiC in PV Applications 

(1)  Same Sw. Frequ. and Higher Eff. @ Same Volume  Costs? 
(2)  Higher Sw. Frequ. and Lower Volume @ Same Eff.  Costs? 
(3)  Other Topologies/Modul. Schemes (e.g. Higher Voltages, ZVS Operation, 2-Level, etc…) 

5kW 2-Level w/o DC/DC 
η=96.8% @ 48kHz 
η=93.0% @ 144kHz 
 = 0.83 kW/dm3 

■  State of Research 

─  Only Very Few Contributions with Multi-Objective Optimization 
─  Mostly Case Studies of Single Prototype and Single Frequency, Main Inductance etc. 

► Systematic Multi-Objective Optimization Imperative! 

Source: SMA Source: Fraunhofer ISE 

► Optimal? 

20.5kW 3-Level w/o DC/DC 
η=98.6% @ 16kHz 
 = 0.17 kW/dm3 @ 52kg 

► Motivation (2) 

► Optimal? 
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► Application and Goals 

─  Single-Input/Single-MPP-Tracker Multi-String PV Converter 
─  DC/DC Boost Converter for Wide MPP Voltage Range 
─  Output EMI Filter 
─  Typical Residential Application 

■   Systematic Multi-Objective η-ρ-σ-Comparison of Si vs. SiC 
■   Exploit Excellent Hard- AND  Soft-Switching Capabilities of SiC 
■   Find Useful Switching Frequency and Current Ripple Ranges 
■   Find Appropriate Core Material 
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■    All Si IGBT  
     3-Level PWM  
     Inverter 
     (3L-PWM)  

► Topologies  -  Converter Stages 

■  All SiC MOSFET  
     2-Level Double- 
     Interleaved TCM- 
     Inverter 
     (2L-TCM)  

■    All SiC MOSFET  
     2-Level PWM  
     Inverter 
     (2L-PWM)  
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► Topologies  -  Filter Stages 

■    2-Stage DM & CM 
        Filter for 2L-PWM  
        and 3LP-WM 

■   2-Stage DM & CM 
      Filter for 2L-TCM  
■   TCM Inductor Acting    
     as DM & CM Inductance 
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► Modulation Schemes  -  PWM Converters 
■   Three-Level PWM Inverter (3L-PMW) 

─  Symmetric Boost Converter 
─  Interleaved Operation 
─  Part. Compensation of LF DC-Link 
     Midpoint Variation 

─  3-Level T-Type Converter 
─  3-Level PWM Modulation 
─  3rd Harmonic Injection 

─  Standard DC/DC Booster 
─  Standard Modulation 

─  2-Level Converter 
─  2-Level PWM Modulation 
─  3rd Harmonic Injection 

■   Two-Level PWM Inverter (2L-PMW) 
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► Modulation Schemes  -  TCM Converter 

─  2-Level/Double Interleaved Booster 
─  Interleaved TCM Operation 
─  Turn-Off of Branch in Partial Load 

─  2-Level/Double Interleaved 
─  Interleaved TCM Operation 
─  Turn-Off of Branch in Partial Load 

─  ZVS for All Sw. 
     Transitions 
─  Variable fsw 
 
 
─  Imin to Limit fsw  
─   Losses Due to Imin       

                                @ Low Loads 

■   Two-Level TCM Inverter (2L-TCM) 

■   TCM  
     Operating 
     Principle  
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► Components and Materials 
►

 2L-TCM 

─  16 x CREE SiC MOSFET 
     80 m 1200 V 

─  Optimized Al Heat Sinks 
─  Range of Sanyo Low Power Long Life DC Fans 

─  METGLAS 2605SA1  
     Amorphous Iron C Cores 
─  Solid Round Wire 

─  EPCOS MKP DC Film Capacitors 575V and 1100 V for MPP Cap. 
─  EPCOS Long Life Al Electrolytic Capacitors 500 V for DC-Link Cap. 

►
 2L-PWM 

─  7 x CREE SiC MOSFET 
     80 m 1200 V 
─  1 x CREE SiC Schottky 
     Diode 20 A 1200 V 

3L-PWM 

─  6 x Infineon Si IGBT H3 
     25 A 1200 V / PiN Diode 
─  6 x Infineon Si IGBT T&F 
     30 A 600 V / PiN Diode 
─  2 x Infineon Si IGBT T&F 
     30 A 600 V  
─  Infineon Si PiN Diode 
     45 A 600 V 

─  EPCOS N87 Ferrite E Cores 
─  Litz Wire With Range of 
     Strand Diameters 

Or 

─  EPCOS X2 (DM/CM) and Y2 (CM) EMI Capacitors  
─  Magnetics KoolMu Gapless Powder Cores / Solid Round Wire (DM) 
─  VAC Vitroperm 250F/500F Nanocrystalline Toroid 
     Cores / Solid Round Wire (CM) 

Fi
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► Global Optimization Routine 

 

■  Dependent Design Variables 

─  Main Inductances Function of fsw and IL,max
pp  

─  Filter Components Based on CISPR Class B 

 

■  European Efficiency 

v 
─  Add. Weighted for {525, 575, 625} V MPP Voltage 

 

■  Independent Design Variables 
─  3L-PWM  

─  2L-PWM  

─  2L-TCM  
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► Optimization Results  -  Pareto Surfaces (1) 

─  No Pareto-Optimal Designs 
     for fsw,min> 60 kHz 
 
─  No METGLAS Amorphous  
     Iron Designs 

─  Pareto-Optimal Designs for  
     Entire Considered  fsw Range 
 
─  No METGLAS Amorphous  
     Iron Designs 

─  Pareto-Optimal Designs for  
     Entire Considered  fsw Range 
 
─  METGLAS Amorphous Iron     
     and  Ferrite Designs 
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─  Compact Designs with Amorphous 
     Core Material @ Low Ripples 
 
 
 

─  Cheap Designs with Ferrite @ High 
     Ripples Despite Larger Volume 

 

■  3L-PWM Core Material 

─  Only Ferrite for 2L-TCM Due 
     Large HF Excitations 
 
 
 

─  Expected Result 

 

■  2L-TCM Core Material 

─  Ferrite @ High Ripples Cheaper  
        AND  Smaller - Unexpected Result (!) 
 
 
 

─  Amorphous Core Material too High  
       Losses Already @ Low Ripples, High  
       Flux Density Not Exploited 

 

■  2L-PWM Core Material 

► Optimization Results  -  Pareto Surfaces (2) 
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► Optimization Results  –  Component Breakdowns (1) 

 

■  Semiconductor Losses Clearly Dominating (35 to 70%) 
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► Optimization Results  –  Component Breakdowns (2) 

 

■  DC Caps of 3L-PWM Largest Because of Midpoint Variation / Balancing 
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■  Higher Gate Driver Costs (incl. in Aux.) of 3L-PWM Compensates Lower Si Semicond. Costs  

► Optimization Results  –  Component Breakdowns (3) 
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► Optimization Results  -   Semiconductor Losses 

─  2L-TCM   
 
 

*   Wide Sw. Frequency Range / 
     Lower Imin Results in Lower  
     Conduction Losses 
 
─  2L-PWM   
 

*   High Ripple Operation 
     Lower Switching Losses Due ZVS  
 
─  3L-PWM  
 

*   No ZVS for IGBTs 
*   High Ripples are Causing 
     Higher Cond. Losses 

 

■   Sensitivities of  
     Semiconductor Losses 
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► Extension to Multi-Objective Optimization Approach 

►  Which is the Best Solution  Weighting , , σ,  e.g. in Form of Life-Cycle Costs (LCC)? 
►  How Much Better is the Best Design? 
►  Optimal Switching Frequency? 

■  Performance Space Analysis 

─  3 Performance Measures: , , σ 
─  Reveals Absolute Performance Limits / 
         Trade-Offs Between Performances    

■  LCC Analysis 

─  Post-Processing of Pareto-Optimal Designs 
─  Determination of Min.-LCC Design 
─  Arbitrary Cost Function Possible   
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─   Simple Life-Cycle Costs (LCC) Function for Mapping into 1D Cost Space 
─   Initial Costs, Capital Costs and Lost Revenue (=Losses) Based on Net-Present-Value (NPV)  
      Analysis 

► Post-Processing 
 

■   LCC – Analysis (1) 

─   Assumptions 
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► Post-Processing 

─  22% Lower LCC  than 3L-PWM 
─  5%  Lower LCC  than 2L-TCM 
─  Simplest Design 
─  Probably Highest Reliability 
─  Volume Advantage Not  
       Considered Yet (Housing!) 

■    Best System  
     2L-PWM @ 44kHz & 50% Ripple 

 

■   LCC – Analysis (2) 
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► Conclusions - Example II 
 

■   SiC Systems Superior to State-of-The-Art Si System 
─   Generally Higher Efficiency and Power Density of SiC 
─   Initial Costs only Marginally Lower (SiC 2L-PWM) or Higher (SiC 2L-TCM) 
─   TCM Operated System More Complex but With Highest Potential for 
      Further Improvements 

 

■   LCC Analysis to Determine Optimal Design   
─   SiC 2L-PWM @ 44 kHz vs. Si 3L-PWM @ 18 kHz  22% Lower LCC of SiC 
─   Initial Costs 5% Lower 
─   Smaller Housing and Higher Reliability Not Considered Yet 

 

■   Usefulness of Multi-Objective Optimization Routine 
─   SiC can Improve , , and σ Simultaneously  
─   Optimal Switching Frequencies Lower than in Previous Publications  
 
 
 

─   Results/Findings Not Possible with -, -  or --Optimizations or 
        Single Prototypes  



101/110 

    2015 
 

WiPDA 

 

Conclusions  ■ 
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► Overall Summary  
 

■  Only Full System Level η-ρ-σ-Optimization Reveals Full Adv. of SiC (!)  
*  Adv. Cannot be Identified for 1:1 Replacement or only 1D-Optimization 
 
■  Rel. Low Optimum SiC Sw. Frequencies Calculated Compared to Literature  
*  44kHz for 2L-SiC Inverter  vs.  18kHz for 3L-Si-IGBT Inverter 
*  Frequently Incomplete Models Employed in Publications 
 
■  Advantages of SiC Concerning Efficiency, Power Density & Costs 
*  Lower System Complexity (2L vs. 3L) / Higher Reliability 
*  Saving in Passives Overcompensates Higher SiC Costs  
 

■ SiC Allows Massive η-ρ-Gain vs. 1200V Si for High-Frequ. DC/DC Converters 
*  Design for Minim. Parasitic Cap. to Ensure ZVS @ Low Effort 
*  Research on HF Magnetics / TCM ZVS Schemes / Packaging Mandatory 

 

  
 

─ Higher Efficiency / Power Density @ Same Costs 
─ Lower Complexity / Higher Reliability 
─ Higher Functionality  SiC 
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Multi-Domain 
Modeling / 

Simulation/ 
Optimization 

Hardware 
Prototyping  

20%  

80%  

2015  

2025 

80%  

20%  

► Future Design Process 

■   Main Challenges:  Modeling (EMI, etc.)  &  Transfer to Industry  

■  Reduces Time-to-Market 
■  More Application Specific Solutions  (PCB, Power Module, and even Chips) 
■  Only Way to Understand Mutual Dependencies of Performances / Sensitivities (!) 
■  Simulate What Cannot Any More be Measured (High Integration Level) 



104/110 

    2015 
 

WiPDA 

 

Future  
Research    
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■   Consider Converters like “Integrated Circuits” 
■   Extend Analysis to Converter Clusters /  Power Supply Chains / etc.   

─   “Converter”        “Systems” (Microgrid) or “Hybrid Systems” (Autom. / Aircraft) 
─   “Time”                “Integral over Time” 
─   “Power”              “Energy”    

 

─  Power Conversion         Energy Management / Distribution  
─  Converter Analysis            System Analysis (incl. Interactions  Conv. / Conv. or Load or Mains)   
─  Converter Stability          System Stability  (Autonom. Cntrl of Distributed Converters) 
─  Cap. Filtering                Energy Storage  & Demand Side Management 
─  Costs  / Efficiency             Life Cycle Costs / Mission Efficiency / Supply Chain Efficiency 
─  etc. 

► Future Challenges 
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►  New Power Electronics Systems  
                    Performance Figures/Trends 

─  Power Density                                     [kW/m2] 
─  Environm. Impact     [kWs/kW] 
─  TCO                            [$/kW] 
─  Mission Efficiency  [%] 
─  Failure Rate                                             [h-1] 

 

■  Complete Set of New 
    Performance  Indices 

►
 

►
 

Supply Chain  
& 

►
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Thank  You! 
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Questions 


