

Tutorial

Advanced Modeling and Multi-Objective Optimization / Evaluation of SiC Converter Systems

Ralph M. Burkart & Johann W. Kolar

ETH Zurich, Switzerland Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Outline

- ► Introduction
- Basic Multi-Objective Optimization Approach
 Component Models incl. Costs
- Converter Optimization / Evaluation Example I
- Converter Optimization / Evaluation Example II
- Conclusions

Introduction

Performance Trends Performance Space Pareto Front Design Space

Power Electronics Converters Performance Trends

2015 Wii PD

Performance Improvements (1)

Power Density

 Telecom Power Supply Modules: Typ. Factor 2 over 10 Years

ETH zürich

2015

Performance Improvements (2)

Inefficiency (Losses)...

Efficiency

 PV Inverters: Typ. Loss Red. of Typ. Factor 2 over 5 Years

Performance Improvements (3)

Costs

- Importance of Economy of Scale

Performance Improvements (4)

Source: PCIM 2013

2015

- Costs
- Automotive: Typ. 10% / a Economy of Scale !

Design Challenge

■ Mutual Coupling of Performance Indices → Trade-Off Analysis (!)

9/110

Design Challenge

■ Mutual Coupling of Performance Indices → Trade-Off Analysis (!)

 For Optimized Systems Several Performance Indices Cannot be Improved Simultaneously

Power Electronic Systems Laboratory

Graphical Representation of Performance

Mutual Coupling of Performances (1)

Experimental Exploration of the Power Density Improvement of a Three-Phase PFC Rectifier System with Increasing **Switching Frequency** $f_{P} = 50 \text{ kHz}$ ρ = 3 kW/dm³ f_P = 72 kHz ρ = 4.6 kW/dm³ w/o Heat Sink 18 16 -VR500 14 VR1000 ρ (kW/dm³) 12 f_P = 250 kHz ρ = 10 kW/dm³ 10 VR250 8 **VR72** 6 4 $f_P = 1 \text{ MHz}$ 2 $\rho = 14.1 \text{ kW/dm}^3$ 0 10 30 100 300 1000 $f_{\rm P}$ (kHz)

Mutual Coupling of Performances (2)

 Experimental Exploration of the Power Density Improvement of a Three-Phase PFC Rectifier System with Increasing Switching Frequency

ETH zürich

Consideration of a Single Performance Index is NOT Sufficient (!) f_P = 72 kHz ρ = 4.6 kW/dm³

 f_P = 250 kHz ρ = 10 kW/dm³

 f_P = 1 MHz ρ = 14.1 kW/dm³

Mutual Coupling of Performances (3)

Without Cooler

1000

14

16

500

η-ρ-Performance Space

12

500

- Consideration of a Single Performance Index is NOT Sufficient (!)
- **Trade-Off of Performances Must be** Considered $\rightarrow \eta$ - ρ -Performance Limit

Water Cooled

10

 ρ (kW/dm³)

72

250

Forced Air Cooled

8

 $f_P = 50 \text{ kHz}$ $\rho = 3 \text{ kW/dm}^3$ $f_P = 72 \text{ kHz}$ $\rho = 4.6 \text{ kW/dm}^3$

 f_P = 1 MHz ρ = 14.1 kW/dm³

ETH zürich

98

97

96

95

94

93

92

91

90<u>⊢</u>

(%) *u*

VR-72

VR-1000

VR-250

VR-500 🗸 500

6

Example of η - ρ -Trade-Off (2)

- 1-Φ Boost-Type PFC Rectifier
- Si CoolMOSSiC Diodes

 P_0 =3.2kW U_N =230V±10% U_0 =400V

 f_{ρ} =450kHz ±50kHz

Two Interleaved 1.6kW Systems

* Semiconductors / Heatsink * Output Capacitor * Inductor

Analysis of η - ρ -Performance Characteristic (1)

- Specifications / Assumptions

- Rated Output Power P₂
 Const. Input Current Ripple ∆i_L
 Const. Output Capacitance C₀ (Energy Storage)
 Const. T_j of Power Semiconductors ≈ T_s
 Def. Ambient Temperature T_a

- Dependency of Component Losses / Volumes on Switching Frequency f_{P}

- Input Inductor
 Output Capacitor
 Semiconductors /Heatsink

Analysis of η - ρ -Performance Characteristic (2)

$$\Delta i \propto \frac{U_o}{L} T_P \rightarrow \qquad \frac{\Delta i}{I} \propto \frac{U_o}{LI} \frac{1}{f_P} \rightarrow \qquad LI \propto \frac{U_o}{\alpha_{\Delta i}} \frac{1}{f_P} \rightarrow \qquad LI^2 \propto \frac{U_o I}{\alpha_{\Delta i}} \frac{1}{f_P}$$

- Inductor Power Density $\alpha_{\Delta i}$

Power Electronic Systems — Laboratory

$$V_L \propto \frac{1}{2} LI^2 \propto \frac{P_0}{f_P} \rightarrow \rho_L = \frac{P_0}{V_L} \propto f_P$$

- Relative Inductor Losses

$$P_L = P_W + P_C \approx P_0 + k_L f_P^{\alpha_L} \quad \rightarrow \quad \mathcal{E}_L = \frac{P_L}{P_O} \propto (1 + \kappa_L f_P^{\alpha_L})$$

Output Capacitor

$$V_C \propto \frac{1}{2} C U_O^2 = \text{const.} \rightarrow \rho_C = \frac{P_O}{V_C} = \text{const.} \qquad P_C \approx 0 \rightarrow \varepsilon_L \approx 0$$

 $\propto P_O$

Analysis of η - ρ -Performance Characteristic (3)

- Semiconductors & Heatsink Semiconductors & Heatsink Cooling System Performance Index $[CSPI] = \left[\frac{W}{K} \\ dm^3\right]$
- Relative Semiconductor Losses

$$P_{S} = P_{C} + P_{P} \approx P_{C} + k_{P} f_{P} \quad \rightarrow \quad \mathcal{E}_{S} = \frac{P_{S}}{P_{O}} \propto (1 + \kappa_{P} f_{P})$$

- Heatsink Volume / "Power Density"

$$CSPI = \frac{G_{th}}{V_S} = \frac{P_S}{\Delta T_{s-a}} \frac{1}{V_S} \rightarrow \rho_S = \frac{P_O}{V_S} = \Delta T_{s-a} CSPI \frac{P_O}{P_S} = \Delta T_{s-a} CSPI \varepsilon_S^{-1}$$

• Analysis of η - ρ -Performance Characteristic (4)

- **System Efficiency & Power Density in Dependency of** f_{ρ}
- Efficiency

$$\eta = \frac{P_o}{P_i} = \frac{P_i - (P_L + P_S)}{P_i} = 1 - \frac{(P_L + P_S)}{P_i} \approx 1 - \frac{(P_L + P_S)}{P_o} \approx 1 - \frac{(P_L + P_S)}{P_o} = \frac{1 - (\varepsilon_L + \varepsilon_S)}{P_o}$$

- Power Density

• Analysis of η - ρ -Performance Characteristic (5)

• Specific Design \rightarrow Only f_P as Variable Design Parameter

Power Electronic Systems Laboratory

Determination of the η - ρ -Pareto Front

- **Comp.-Level Degrees of Freedom of the Design**
- Core Geometry / Material
- Single / Multiple Airgaps
 Solid / Litz Wire, Foils

- Winding Topology
 Natural / Forced Conv. Cooling
 Hard-/Soft-Switching
- Si / SiC
- etč.
- etc.
- etc.
- System-Level Degrees of Freedom
- Circuit Topology
- Modulation Scheme
- etc.
- etc.
- etc.
- **Only η-ρ-Pareto Front Allows Comprehensive Comparison of Converter Concepts (!)**

Basic Multi-Objective Optimization Approach

Abstraction of Converter Design Component / System Modeling Design / Performance Space Pareto Front

Abstraction of Power Converter Design

2015

Power Electronic Systems Laboratory

Multi-Objective Converter Design Optimization

Pareto Front - Limit of Feasible Performance Space

ETH zürich

Technology Sensitivity Analysis Based on η-ρ-Pareto Front

- Sensitivity to Technology Advancements
- **Trade-off** Analysis

Converter Performance Evaluation Based on η-ρ-Pareto Front

Performance Indicator

$$\tan \alpha_D = \frac{1 - \eta_D}{\rho_D}$$

Design Space Diversity

Design Variables & Constraints Related to Two Adjacent Points of the Pareto Front

Converter Performance Evaluation Based on η-ρ-Pareto Front

Industry Perspective

- 1. Costs **Priorities**
 - 2. Costs
 - 3. Costs
 - 4. Robustness
 - **5.** Power Density
 - 6. Efficiency +
 - Modularity / Scalability / Ease of Intégration into Systems / etc.

- Basic Discrepancy (!)
- * Most Important Industry Figure "Unknown" to Univ.
 * Costs Not Considered in Applic.-Oriented Research

Requirement for Quantitative Cost Models

- Advantages / Competitiveness of SiC Can Only be Revealed Considering Full System Costs
- Considering Only Volumes is Insufficient
- Initial / Manufacturing Costs
- Life Cycle Costs
- Complexity / Reliability
- Functionality

ᠮ៱ѷ៸ᠮᡪᡆ᠉

■ **σ:** kW/\$

Converter Performance Evaluation Based on η - ρ - σ -Pareto Surface

Maximum σ [kW/\$], Related Efficiency and Power Density
 Definition of *"Technology Node"* → (η*,ρ*,σ*,f_p*)

Modeling of Components Efficiency Power Density Costs

Power Semiconductors and Cooling Systems

Conduction Losses

MOSFET Conduction Losses

$$P_{\text{cond}}(i(t), T_{j}) = \underset{\text{Rds,on}}{R_{\text{ds,on}}}(i(t), T_{j}) \cdot i(t)^{2}$$

$$Take \text{ from Data Sheet}$$

$$\int_{\substack{v = 20 \\ v = 20$$

Switching Losses

MOSFET Switching Losses

Semiconductor Costs

- Source of Cost Data
- **Distributors**
- Better: Manufacturer Data @ MOQ = const.
- Cost Model

 $\Sigma_{\rm SC} = \Sigma_{\rm pack} + \sigma_{\rm chip} \cdot A_{\rm chip}$ – Inter-/Extrapolation of Semiconductor Costs

Parameters Based on Fitted Data

Fitted Manufacturer Data for MOQ = 50k

Chip technology:	Si T&FS IGBT	Si PiN diode	Si CoolMos CS7	SiC Schottky diode	SiC MOSFET
σ ^{600V} _{chip,x} (∜cm ²)	5.52	2.46	30.27	46.24	61.14
σ ^{1200 V} _{chip,x} (∜cm ²)	6.57	4.46		86.47	72.01
Package type:	TO-247-3	SOT-227	Module (23.2 cm ²)	Module (29.9 cm ²)	Module (37.6 cm ²)
Σ _{pack,x} (∉unit)	0.55	8.10	7.62	10.01	15.06

MOQ ... Minimum Order Quantity

42/110

2015

Cooling System Modeling

- Fan Costs
- Distributors
- Better: Manufacturer Data @ MOQ = const.
- Cost Model for Heat Sinks

 $\Sigma_{\rm sink} = \Sigma_{\rm sink}^{\rm fc} + \sigma_{\rm sink} \cdot V_{\rm sink}$

- Based on Fitted Manufacturer Data

35 $\overset{(l)}{\bigcirc}$ 30 25 $\Sigma_{\rm sink}$ 20Extruded 15Costs • Extr./anod. 105 Hollow-fin 0 0.51.01.52.02.53.00.0Heat Sink Volume V_{sink} (dm³)

- Fitted Manufacturer Data for MOQ = 10k

Heatsink type:	Extruded	Extruded/ anodized	Hollow-fin
σ _{sink,∞} (∉dm³)	7.69	9.30	11.94
$\Sigma^{\mathrm{fc}}_{\mathrm{sink},x}$ (qunit)	0.23	0.25	0.17

Magnetic Components

* Core/Winding Loss Models * Reluctance Models * Thermal Models * Cost Models

Modeling Tasks and Design Variables

Design Routine

ETH zürich __

Core Losses

Improved² Steinmetz Equation

Winding Losses

Winding Losses

ETH zürich

Verification of Multi-Physics Models

ETH zürich

Test Inductors

Thermal Model Verification

Magnetics Costs

Model

$$\Sigma_{L} = \frac{1}{GM} \left(\Sigma_{\text{core}} + \Sigma_{\text{wdg}} + \Sigma_{\text{lab}} \right)$$

$$\Sigma_{\text{core}} = N_{\text{stack}} \cdot \Sigma_{\text{core}}^{\text{fc}} + \sigma_{\text{core}} W_{\text{core}}$$

$$\Sigma_{\text{wdg}} = \Sigma_{\text{wdg}}^{\text{fc}} + \sigma_{\text{wdg}} W_{\text{wdg}}$$

$$\Sigma_{\text{lab}} = \Sigma_{\text{lab}}^{\text{fc}} + \sigma_{\text{lab}} W_{\text{wdg}}$$

Example: Manufact. Data for Litz Wire for MOQ = 1 Metric Ton

- Core Manufacturers
- Conductor Manufacturers
- Suppliers of Magn. Components

Capacitors * Loss Models * Cost Models

Modeling Tasks & Design Variables

Capacitor Losses

Electrolytic Capacitor Losses

Capacitor Costs

Cost Models

$$\Sigma_{\text{Al-e}} = b_{\text{Al-e}}V_{r} + c_{\text{Al-e}}C_{r}V_{r}^{2}$$

 $\Sigma_{\text{film}} = a_{\text{film}} + b_{\text{film}}V_{r} + c_{\text{film}}C_{r} - Parameters Based on Fitted Data$

Source of Cost Data

- **Distributors**

— Better: Manufact. Data @ MOQ = const.

2018

Converter Optimization Example I

Isolated DC/DC Converter Topologies/Modulation Schemes Materials/Components Optimization η-ρ-σ-Pareto Surface Hardware Prototype

≻

► Application

Next Generation Residential Energy Management System

- Renewable Energy Sources, Local Storage Systems
- DC Distribution Bus
- Intelligent Load Management Algorithm
- Possible Element of Future Smart Grid System
- DC Microgrids Already Employed in Data Centers, Ships, Airplanes

Bidirectional Wide Input Voltage Range Isolated DC/DC Converter

Structure of DC Microgrid

- Universal DC/DC Converter
- **Bidirectional Power Flow**
- Galvanic Isolation

ETH zürich

- Wide Voltage Range
- High Partial Load Efficiency

- Advantages
- Reduced System Complexity
 Lower Overall Development Costs
- Economies of Scale

Converter Topologies

Conv. 3-Level Dual Active Bridge (3L-DAB)

Advanced 5-Level Dual Active Bridge (5L-DAB)

Modulation Schemes

3-Level Dual Active Bridge

- Choose Control Parameters \vec{z} so as to Minimize Transformer RMS Current $I_{ac1,ms}$

ETH zürich

5-Level Dual Active Bridge

3-Level Dual Active Bridge

- Significantly Lower RMS Currents of 5L-DAB Due to Higher DOF of Modulation

Modulation Schemes - Zero Voltage Switching (1)

• $W_{t1} = E_{oss}(V_{dc}) + \frac{1}{2}L_{\sigma}I_1^2$

Modulation Schemes - Zero Voltage Switching (2)

 $i_L(t_2) = 0$ \blacktriangleright $W_{t2} = E_{oss}(V_{dc}) + Q_{oss}(V_{dc}) \cdot V_{dc}$

Modulation Schemes - Zero Voltage Switching (3)

$$\blacktriangleright \quad \frac{1}{2}L_{\sigma}I_1^2 \ge Q_{\rm oss}(V_{\rm dc}) \cdot V_{\rm dc}$$

Modulation Schemes - Zero Voltage Switching (4)

- **Achieving ZVS**

- L_{σ} Usually Provides Not Enough Charge Add L_{m} for Additional (Reactive) Current At Low Power and/or Too Short Dead Time Intervals Still not Sufficient \rightarrow Partial ZVS / Add.

 $I_{
m dc1}$

Switching Losses

5-Level Dual Active Bridge

Components and Materials

- **Power Semiconductors**
- Si IGBT

- Inexpensive
- -1200V

ETH zürich

- Cond. Losses Not Scalable
- No ZVS Possible
- Tail Currents
- ZCS Difficult to Achieve

Si SJ MOSFET

- Conduction Losses Scalable
- ZVS But Non-Zero Sw. Losses (!)
- Large Specific C_{oss}
 Only 650 V
- NPC Half-Bridge Necessary
 Increased Part Count

Sic VD-MOSFET

- Cond. Losses Scalable
- Very Low ZVS Losses
- 12ÕO V
- Low Specific C_{oss}
- Costs

Global Optimization Routine (1)

Power Electronic Systems Laboratory

Global Optimization Routine (2)

- Offline Design Variable Optimization
- L_{σ} , L_{m} and *n* Determine Waveforms - Optimize with Chip Area Distribution
- Minimum Semiconductor Losses
 ZVS for All Operating Points
- Design Frequency: 50 kHz

Optimization Results - Pareto Surfaces (1)

Optimization Results - Pareto Surfaces (2)

ETH zürich

Optimization Results - Component Breakdown (1)

- Lower RMS Currents Overcompensated by Low Chip Utilization
- Higher 5L-DAB Conduction Losses P_c
 Lower 5L-DAB Switching Losses P_{sw} and Incomplete ZVS P_{iZVS} Losses Due to More Uniform Current Waveforms

ETHzürich

Optimization Results - Component Breakdown (2)

- Higher 5L-DAB Volume Mainly Due to Higher Capacitance for Midpoint Balancing
- Increase of Magnetics Volume at High *f*_{sw} Due to High Core Losses Auxiliary Based on Prototype Industrial Auxiliary Approx. Half the Volume

Optimization Results - Component Breakdown (3)

- Higher *f*_{sw} Allows for Lower Volume of Passives However, Magnetics Require More Expensive Litz Wire, Capacitors are Inexpensive
- Main Costs are Semiconductors and Auxiliary
- Auxiliary (incl. Gate Drivers) Based on Prototype Industrial Auxiliary Approx. Half the Costs

Experimental Verification (1)

 Hardware Prototype of Three-Level Dual Active Bridge (3L-DAB)

> P = 5 kW $V_{i} = [100, 700] V$ $V_{o} = 750 V$ $f_{sw} = 50 kHz$ $V_{box} = 2.8 dm^{3} (171 in^{3})$

- Power Density 1.8 kW/dm³
- Peak Efficiency 98.5%
- Average Efficiency 97.6%

2018

Experimental Verification (2)

- Peak Efficiencies of 98.8% (Without Auxiliary) and 98.5% (incl. 10W Aux. Power)
- High Efficiency Over Extremely Wide Parameter Range
- ZVS in Most Operating Points

Experimental Verification (3)

- Widely Varying Mix of Loss Contributions _

2015

Experimental Verification (4)

 High Accuracy of Thermal Modeling

- Supports Calculated Loss Modeling
- Temperatures Generally Underestimated \rightarrow Wiring, Thermal Coupling

2015

Power Electronic Systems Laboratory

Experimental Verification (5)

 Accuracy Prediction of Voltage and Current Waveforms

- Non-Linear Switching-Transitions
- Incomplete ZVS Transitions

Experimental Verification (6)

- Comparison to Pareto Surface
 - Prototype Development
 - * No Optimization Routine
 - Target Power Density of 2.0 kW/dm³

- Improvements with Advanced Multi-Objective Optimization
- * 0.3% Higher Eff. @ Same Volume/Costs
- * 40% Lower Volume and 20% Lower Costs @ Same Efficiency

Conclusions Example I

- 3L-DAB Clearly Superior over 5L-DAB
- More Efficient (Chip Area Utilization)
- Higher Power Density (Capacitors)
- Lower Costs (Gate Drivers)
- Much Simpler \rightarrow Reliability
- High Functionality (Voltage Range, Galv. Isolation, Bidir.) @ High Efficiency
- Could not be Achieved w/o SiC

ZVS

- Difficult to Achieve at Low Load and/or High Switching Frequencies
- Parasitic Capacitances (Semicond. Package (!) to Heat Sink, Magnetics, PCB Layout) Become Highly Important Due to Required Add. Charge
- Usefulness of Multi-Objective Optimization Routine
- High Accuracy of Models
- Improvements for Prototype Revealed

Converter Optimization Example II

DC/AC PV Application Topologies/Modulation Schemes Materials/Components Optimization Pareto Surfaces LCC Post-Processing

► Motivation (1)

- Advancements in PV Converter **Design and Development**
- 1990s 2000s

 - * Main Focus on Efficiency* Improvements from 90% to >98%
- 2010s
 - Econom. Downturn and Slower Market Growth
 - Main Focus on Costs (!)
- Ongoing Discussion on Whether and How SiC Can Improve PV-Inv. Performance (!)

Motivation (2)

Opportunities of SiC in PV Applications

- (1) Same Sw. Frequ. and Higher Eff. @ Same Volume \rightarrow Costs?
- (2) Higher Sw. Frequ. and Lower Volume @ Same Eff. \rightarrow Costs?
- (3) Other Topologies/Modul. Schemes (e.g. Higher Voltages, ZVS Operation, 2-Level, etc...)

Systematic Multi-Objective Optimization Imperative!

State of Research

- Only Very Few Contributions with Multi-Objective Optimization
- Mostly Case Studies of Single Prototype and Single Frequency, Main Inductance etc.

Application and Goals

- Single-Input/Single-MPP-Tracker Multi-String PV Converter
- DC/DC Boost Converter for Wide MPP Voltage Range
- Output EMI Filter
- Typical Residential Application

- Systematic Multi-Objective η - ρ - σ -Comparison of Si vs. SiC
- **Exploit Excellent Hard-** AND Soft-Switching Capabilities of SiC
- Find Useful Switching Frequency and Current Ripple Ranges
- Find Appropriate Core Material

Topologies - Converter Stages

Topologies - Filter Stages

 \mathbf{PE}

는

Modulation Schemes - PWM Converters

- Three-Level PWM Inverter (3L-PMW)
- Symmetric Boost Converter
- Interleaved Operation
- Part. Compensation of LF DC-Link Midpoint Variation

- 3-Level T-Type Converter
- 3-Level PWM Modulation
- 3rd Harmonic Injection

Two-Level PWM Inverter (2L-PMW)

Modulation Schemes - TCM Converter

- Two-Level TCM Inverter (2L-TCM)
- 2-Level/Double Interleaved Booster
 Interleaved TCM Operation
 Turn-Off of Branch in Partial Load

- 2-Level/Double Interleaved
- Interleaved TCM Operation
 Turn-Off of Branch in Partial Load

Global Optimization Routine

- Independent Design Variables
- 3L-PWM

 $\vec{\Pi}_{\text{sys}}^{3\text{LPWM}} : f_{\text{sw}} \in [6, 36] \text{ kHz}, \quad \Delta I_{L,\text{max}}^{\text{pp}} \in [5, 60] \%$

— 2L-PWM

 $\vec{\Pi}_{\text{sys}}^{2\text{LPWM}}: f_{\text{sw}} \in [12, 72] \text{ kHz}, \ \Delta I_{L,\text{max}}^{\text{pp}} \in [5, 60] \%$

- **2L-TCM** $\vec{\Pi}_{sys}^{2\text{LTCM}} : f_{sw,min} \in [12, 84] \text{ kHz}, \quad k_{f_{sw}} \in [4, 12]$
- Dependent Design Variables
- Main Inductances Function of f_{sw} and $\Delta I_{L,max}^{pp}$
- Filter Components Based on CISPR Class B
- European Efficiency

$$\begin{split} \eta_{\text{euro}} = & 0.05 \cdot \eta_{0.03 \cdot P_{\text{r}}} + 0.1 \cdot \eta_{0.1 \cdot P_{\text{r}}} + 0.2 \cdot \eta_{0.2 \cdot P_{\text{r}}} + \\ & 0.3 \cdot \eta_{0.3 \cdot P_{\text{r}}} + 0.5 \cdot \eta_{0.5 \cdot P_{\text{r}}} + 1 \cdot \eta_{1.0 \cdot P_{\text{r}}} \end{split}$$

- Add. Weighted for {525, 575, 625} V MPP Voltage

Optimization Results - Pareto Surfaces (1)

- No Pareto-Optimal Designs for f_{sw,min}> 60 kHz
- No METGLAS Amorphous Iron Designs

- Pareto-Optimal Designs for Entire Considered f_{sw} Range
- No METGLAS Amorphous Iron Designs
- Pareto-Optimal Designs for Entire Considered f_{sw} Range
- METGLAS Amorphous Iron and Ferrite Designs

Optimization Results - Pareto Surfaces (2)

- **3L-PWM Core Material**
- Compact Designs with Amorphous Core Material @ Low Ripples
- Cheap Designs with Ferrite @ High Ripples Despite Larger Volume
- 2L-TCM Core Material
- Only Ferrite for 2L-TCM Due Large HF Excitations
- Expected Result

- 2L-PWM Core Material
- Ferrite @ High Ripples Cheaper AND Smaller - Unexpected Result (!)
- Amorphous Core Material too High Losses Already @ Low Ripples, High Flux Density Not Exploited

Optimization Results – Component Breakdowns (1)

Semiconductor Losses Clearly Dominating (35 to 70%)

Optimization Results – Component Breakdowns (2)

DC Caps of 3L-PWM Largest Because of Midpoint Variation / Balancing

Optimization Results – Component Breakdowns (3)

■ Higher Gate Driver Costs (incl. in Aux.) of 3L-PWM Compensates Lower Si Semicond. Costs

Optimization Results - Semiconductor Losses

 Sensitivities of Semiconductor Losses

- 2L-TCM
- * Wide Sw. Frequency Range / Lower I_{min} Results in Lower Conduction Losses
- 2L-PWM
- * High Ripple Operation Lower Switching Losses Due ZVS
- 3**L-PW**M
- * No ZVS for IGBTs
- * High Ripples are Causing Higher Cond. Losses

Extension to Multi-Objective Optimization Approach

Performance Space Analysis

- LCC Analysis
- Post-Processing of Pareto-Optimal Designs 3 Performance Measures: η, ρ, σ
 Reveals Absolute Performance Limits / - Determination of Min.-LCC Design **Trade-Offs Between Performances** Arbitrary Cost Function Possible System $\eta_{
 m euro}$ (%) $LCC ~(\in)$ Model Cost Function Pareto Surface $\mathcal{P}(\sigma_{P}, \eta_{\mathrm{euro}}, \rho_{\mathrm{box}})$ $ho_{
 m box}$ (kW/dm^3) Design Performance Cost Component Space Space Models Space $\sigma_P(W/ \in)$
- Which is the Best Solution Weighting η , ρ , σ , e.g. in Form of Life-Cycle Costs (LCC)?
- How Much Better is the Best Design?
- **Optimal Switching Frequency?**

Post-Processing

LCC – Analysis (1)

- Simple Life-Cycle Costs (LCC) Function for Mapping into 1D Cost Space Initial Costs, Capital Costs and Lost Revenue (=Losses) Based on Net-Present-Value (NPV) Analysis ΛT

$$LCC = \Sigma_{\text{tot}} + \sum_{n=1}^{N} \left\{ q \cdot \Sigma_{\text{tot}} + \Sigma_{\text{losses}}(\eta_{\text{euro}}) \right\} \cdot \frac{1}{(1+q)^n}$$
Assumptions $q = 5\%/\text{year}$ $N = 10 \text{ years}$

Post-Processing

LCC – Analysis (2)

- Best System
 2L-PWM @ 44kHz & 50% Ripple
- 22% Lower LCC than 3L-PWM
- 5% Lower LCC than 2L-TCM
- Simplest Design
- Probably Highest Reliability
- Volume Advantage Not Considered Yet (Housing!)

Conclusions - Example II

- SiC Systems Superior to State-of-The-Art Si System
- Generally Higher Efficiency and Power Density of SiC
- Initial Costs only Marginally Lower (SiC 2L-PWM) or Higher (SiC 2L-TCM)
- TCM Operated System More Complex but With Highest Potential for Further Improvements
- LCC Analysis to Determine Optimal Design
- SiC 2L-PWM @ 44 kHz vs. Si 3L-PWM @ 18 kHz \rightarrow 22% Lower LCC of SiC
- Initial Costs 5% Lower
- Smaller Housing and Higher Reliability Not Considered Yet
- Usefulness of Multi-Objective Optimization Routine
- SiC can Improve $\eta, \rho,$ and σ Simultaneously
- Optimal Switching Frequencies Lower than in Previous Publications
- Results/Findings Not Possible with $\eta\text{-},\rho\text{-}$ or $\eta\text{-}\rho\text{-}\text{Optimizations}$ or Single Prototypes

Conclusions _____

Overall Summary

- Only Full System Level η-ρ-σ-Optimization Reveals Full Adv. of SiC (!)
 * Adv. Cannot be Identified for 1:1 Replacement or only 1D-Optimization
- Rel. Low Optimum SiC Sw. Frequencies Calculated Compared to Literature
- * 44kHz for 2L-SiC Inverter vs. 18kHz for 3L-Si-IGBT Inverter
- * Frequently Incomplete Models Employed in Publications
- Advantages of SiC Concerning Efficiency, Power Density & Costs
- * Lower System Complexity (2L vs. 3L) / Higher Reliability
- * Saving in Passives Overcompensates Higher SiC Costs
- **SiC** Allows Massive η-ρ-Gain vs. 1200V Si for High-Frequ. DC/DC Converters
- * Design for Minim. Parasitic Cap. to Ensure ZVS @ Low Effort
- * Research on HF Magnetics / TCM ZVS Schemes / Packaging Mandatory

SiC → - Higher Efficiency / Power Density @ Same Costs - Lower Complexity / Higher Reliability - Higher Functionality

Future Design Process

Main Challenges: Modeling (EMI, etc.) & Transfer to Industry

- Reduces Time-to-Market
- More Application Specific Solutions (PCB, Power Module, and even Chips)
- Only Way to Understand Mutual Dependencies of Performances / Sensitivities (!)
 Simulate What Cannot Any More be Measured (High Integration Level)

Future Challenges

- Consider Converters like "Integrated Circuits"
- **Extend Analysis to Converter Clusters / Power Supply Chains / etc.**
- "Converter" "Time"
- → "Systems" (Microgrid) or "Hybrid Systems" (Autom. / Aircraft)
 → "Integral over Time"

t

— "Power"

 \rightarrow "Energy"

$$p(t) \rightarrow \int_{0}^{t} p(t) dt$$

- Power Conversion
- Converter Analysis
- Converter Stability
- Cap. Filtering
- Costs / Efficiency
- etc.

- → Energy Management / Distribution
- → System Analysis (incl. Interactions Conv. / Conv. or Load or Mains)
 → System Stability (Autonom. Cntrl of Distributed Converters)
- → Energy Storage & Demand Side Management
- \rightarrow Life Cycle Costs / Mission Efficiency / Supply Chain Efficiency

New Power Electronics Systems Performance Figures/Trends

ETH zürich

Power Electronic Systems Laboratory

References

- [1] J. W. Kolar, J. Biela, S. Waffler, T. Friedli, U. Badstübner, "Performance Trends and Limitations of Power Electronic Systems," Invited Plenary Paper at the 6th International Conference on Integrated Power Electronics Systems (CIPS 2010), Nuremberg, Germany, March 16-18, 2010.
- [2] J. W. Kolar, F. Krismer, H. P. Nee, "What are the "Big CHALLENGES" in Power Electronics?, " Presentation at the 8th Intern. Conf. of Integrated Power Electronics Systems (CIPS 2014), Nuremberg, Germany, February 25-27, 2014.
- [3] J. W. Kolar, U. Drofenik, J. Biela, M. L. Heldwein, H. Ertl, T. Friedli, S. D. Round, "PWM Converter Power Density Barriers," Proceedings of the 4th Power Conversion Conference (PCC 2007), Nagoya, Japan, CD-ROM, ISBN: 1-4244-0844-X, April 2-5, 2007.
- [4] R. M. Burkart, J. W. Kolar, "Comparative Evaluation of SiC and Si PV Inverter Systems Based on Power Density and *Efficiency as Indicators of Initial Costs and Operating Revenue,*" Proceedings of the 14th IEEE Workshop on Control and Modeling for Power Electronics (COMPEL 2013), Salt Lake City, USA, June 23-26, 2013.
- [5] R. M. Burkart, J. W. Kolar, "Component Cost Models for Multi-Objective Optimizations of Switched-Mode Power Converters," Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE USA 2013), Denver, Colorado, USA, September 15-19, 2013.
- [6] R. M. Burkart, H. Uemura, J. W. Kolar, "Optimal Inductor Design for 3-Phase Voltage-Source PWM Converters Considering Different Magnetic Materials and a Wide Switching Frequency Range," Proceedings of the International Power Electronics Conference ECCE Asia (IPEC 2014), Hiroshima, Japan, May 18-21, 2014.
- [7] P. A. M. Bezerra, F. Krismer, R. M. Burkart, J. W. Kolar, "Bidirectional Isolated Non-Resonant DAB DC-DC Converter for Ultra-Wide Input Voltage Range Applications," Proceedings of the IEEE International Power Electronics and Application Conference and Exposition (PEAC 2014), Shanghai, China, November 5-8, 2014.
- [8] M. Kasper, R. M. Burkart, G. Deboy, J. W. Kolar, "ZVS Condition and ZVS Switching Losses Revisited," IEEE Transactions on Industrial Electronics, submitted for review.
- [9] **R. M. Burkart, J. W. Kolar**, " η - ρ - σ Pareto-Optimization of All- SiC Multi-Level Dual Active Bridge Topologies with Ultra-Wide Input Voltage Range," IEEE Transactions on Power Electronics, submitted for review.
- [10] R. M. Burkart, C. Dittli, J. W. Kolar, "Comparative Life-Cycle-Cost Analysis of Si and SiC PV Converter Systems Based on Advanced η-ρ-σ Multi-Objective Optimization Techniques," IEEE Transactions on Power Electronics, submitted for review.

About the Speakers

Johann W. Kolar is a Fellow of the IEEE and is currently a Full Professor and the Head of the Power Electronic Systems Laboratory at the Swiss Federal Institute of Technology (ETH) Zurich. He has proposed numerous novel PWM converter topologies, and modulation and control concepts and has supervised over 50 Ph.D. students. He has published over 650 scientific papers in international journals and conference proceedings and 3 book chapters, and has filed more than 120 patents. He received 21 IEEE Transactions and Conference Prize Paper Awards, the 2014 IEEE Middlebrook Award, and the ETH Zurich Golden Owl Award for excellence in teaching. The focus of his current research is on ultra-compact and ultraefficient SiC and GaN converter systems, wireless power transfer, Solid-State Transformers, Power Supplies on Chip, and ultra-high speed and bearingless motors.

Ralph M. Burkart received his M.Sc. degree in electrical engineering from the Federal Institute of Technology (ETH), Zurich, Switzerland, in 2011. During his studies, he majored in power electronics, electrical machines and control engineering. In the framework of his Master Thesis he designed and implemented a high-dynamic inverter system for active magnetic bearings in an ultra-high speed electrical drive system. Since 2011, he has been a Ph.D. student at the Power Electronic Systems Laboratory at ETH Zurich. His main research area is multi-domain modeling of power electronics components and multi-objective optimization of photovoltaic DC/DC and DC/AC converter systems employing SiC power semiconductors.

109/110 —

_

Thank You!

110/110 —

