

Mains Interfaces for Future 400 V_{DC} Distribution Systems and Electric Vehicle Battery Charging

Johann W. Kolar, Roman Bosshard

Power Electronic Systems Laboratory, ETH Zurich, Switzerland www.pes.ee.ethz.ch

Outline

Introduction

 \rightarrow

400V_{DC} **Distribution Systems**

Future Datacenters

Future Hybrid AC & DC Microgrids

► AC vs. Facility-Level DC Systems for Datacenters

- Reduces Losses & Footprint
- Improves Reliability & Power Quality
- Conventional US 480V_{AC} Distribution

- Facility-Level 400 V_{DC} Distribution

Proposal for Public +380V_{DC}/-380V_{DC} Systems by Philips, @Merge*, etc.

Smart Grid Concept

- Hierarchically Interconnected Hybrid Mix of AC and DC Sub-Grids
 - Distr. Syst. of Contr. Conv. Interfaces
 - Source / Load / Power Distrib. Conv.
 - Picogrid-Nanogid-Microgrid-Grid Structure
 - Subgrid Seen as Single Electr. Load/Source
 - ECCs provide Dyn. Decoupling
 - Subgrid Dispatchable by Grid Utility Operator
 - "Virtual Power Plants"
 - Integr. of Ren. Energy Sources
- ECC = <u>Energy</u> <u>Control</u> <u>Center</u>
- Energy Routers
- Continuous Bidir. Power Flow Control
- Enable Hierarchical Distr. Grid Control
- Load / Source / Data Aggregation
- Up- and Downstream Communication
- Intentional / Unintentional Islanding for Up- or Downstream Protection
- etc.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Smart Home / Microgrid

Energy Gateway – Functional diagram

Distributed Control of Power Electronic Interfaces in Smart Picrogrids

Source: P. Tenti ECPE

EV Charging

- Charging Levels
 AC/DC Power Conversion Partitioning
 Operating Range of 3-Φ PFC Rectifier Systems

Electrical Ratings of EV Chargers

- **SAE J1772 Definition (USA)**
- AC Level 1: 120 V, 16 A
- AC Level 2: 204-240 V, 80 A
- AC Level 3: n/a
- DC Level 1: 200-450 V, 80 A
- DC Level 2: 200-450 V, 200 A
- DC Level 3: 200-600 V, 400 A

→ 1.92 kW → 19.2 kW

- → ≥ 20 kW
- \rightarrow 36 kW
- \rightarrow 90 kW \rightarrow 240 kW

- ► IEC 62196 Definition (Europe, Int.)
- Mode 1: 1x230 V / 3x400 V, 16 A → 7.68 kW
- Mode 2: 1x230 V / 3x400 V, 32 A
- Mode 3: 3x400 V, 32-250 A
- Mode 4: ≤ 1000 V, 400 A (DC) →

```
ightarrow 240 kW
```

→ 15.36 kW

 $\rightarrow \geq 20 \text{ kW}$

for AC or DC (Level 1-2)

EV Battery Charging – Requirements

- Plug-in Hybrid EV (Toyota Prius)
 - 23 km El. Range @ 4.4 kWh Capacity
 - Battery Voltage: 200 V
 - Charging Time: 2.5 h (L2, 3.8 kW)
- Passenger EV (Nissan Leaf)
 - 200 km Range @ 24 kWh Capacity
 - Battery Voltage: 360 V
 - Charging Time: 6-8 h (L2, 3.3 kW) 0.5 h (L3, 50 kW)

- **Electric Passenger Bus (TOSA 2013)**
 - 19 m / 133 Passengers
 - 40 kWh Battery Capacity
 - Charging:
- 15 sec @ 400 kW 3-4 min @ 200 kW

EV Charging – Basic Power Electronics Topologies (1)

Basic Requirements

- Wide Input/Output Voltage Range Voltage Adaption
- Mains Side Sinusoidal Current Shaping
- Isolation of Mains and Battery (?)
- Output Battery Current Control
- Maintainability (No Inverter/Motor Integration)

Basic Topologies

- Non-Isolated
- Isolated Single-Stage (Matrix-Type)
- Isolated Two-Stage
- Battery could Integrate a DC/DC Conv. & Communication Interface (Monitoring, Distributed Control) – SMART Battery

3- Φ **Rectifier Common-Mode Output Voltage Remark:**

Output shows Low-Frequency Common Mode Voltage;
 Load/Battery Cannot be Connected to Ground (Isolation Required)

EV Charging – AC/DC Power Conversion Partitioning

Operating Range of $3-\Phi$ **PFC Rectifier Systems**

- Boost Type
- Buck Type

V_B Battery Voltage V_{N,ll,rms} ... RMS Value of Mains Line-to-Line Voltage

Potential Ancillary Grid Services of EV Chargers / EVs

Bi-Directional Grid Interface Required

Grid-Code / Standardization Required

Economic Models Need to be Developed

- **Peak Power / Failure Mode Grid Support Utilizes Storage of Charging Station / EVs**
- **Reactive Power Compensation / Supply** No Storage Required / No Battery Wearout Active Filtering of Grid Side Harmonics No Storage Required / No Battery Wearout

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

J. W. Kolar, T. Friedli,

The Essence of Three-Phase PFC Rectifier Systems - Part I, IEEE Transactions on Power Electronics, Vol. 28, No. 1, pp. 176-198, January 2013.

T. Friedli, M. Hartmann, J. W. Kolar, The Essence of Three-Phase PFC Rectifier Systems - Part II, IEEE Transactions on Power Electronics, Vol. 29, No. 2, February 2014.

Boost-Type $- 3-\Phi$ **PFC Rectifier Systems**

- Unidirectional - Bidirectional

Classification of Unidirectional Rectifier Systems

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

18/223

Classification of Unidirectional Rectifier Systems

• Passive Rectifier Systems	 Line Commutated Diode Bridge/Thyristor Bridge - Full/Half Controlled Low Frequency Output Capacitor for DC Voltage Smoothing Only Low Frequency Passive Components Employed for Current Shaping, No Active Current Control No Active Output Voltage Control
• Hybrid Rectifier Systems	 Low Frequency and Switching Frequency Passive Components and/or Mains Commutation (Diode/Thyristor Bridge - Full/Half Controlled) and/or Forced Commutation Partly Only Current Shaping/Control and/or Only Output Voltage Control Partly Featuring Purely Sinusoidal Mains Current
• Active Rectifier Systems	 Controlled Output Voltage Controlled (Sinusoidal) Input Current Only Forced Commutations / Switching Frequ. Passive Components
Phase-Modular Systems	 Phase Rectifier Modules of Identical Structure Phase Modules connected in Star or in Delta Formation of Three Independent Controlled DC Output Voltages
Direct Three-Phase Syst.	 Only One Common Output Voltage for All Phases Symmetrical Structure of the Phase Legs Phase (and/or Bridge-)Legs Connected either in Star or Delta

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich PEDG 2014 —

Phase-Modular Systems

Y-Rectifier \triangle -Rectifier

Classification of Unidirectional Rectifier Systems

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

1- Φ **PFC Rectifier Topologies**

Three Basic Topologies

- For High Efficiency Systems the "Bridgeless" Concept has been Paid High Attention Focus has Shifted to the *Extended* Bridgeless Converter featuring ZVS TCM Operation

Zero Voltage Switching – Triangular Current Mode (TCM) Operation

► Ultra-Efficient 1-Φ TCM Boost-Type PFC Rectifier

★ 99.36% @ 1.2kW/dm³

- Bidirectional Supports V2G Concepts
- Employs <u>NO</u> SiC Power Semiconductors -- Si SJ MOSFETs only

► Ultra-Efficient 1-Φ TCM Boost-Type PFC Rectifier

★ 99.36% @ 1.2kW/dm³

Research Project of ETH Zurich Supported by European Center for Power Electronics

- Bidirectional Supports V2G Concepts
- Employs <u>NO</u> SiC Power Semiconductors -- Si SJ MOSFETs only

Ultra-Compact 1- Φ **TCM Boost-Type PFC Rectifier**

- Input Voltage 184...264V_{AC} •
- Output Voltage Rated Power 420V_{DC} 3.3kW
- •

 P_{O}/W

KEYS Benefits of the TCM Concept

- Very High Performance Despite Using "Old" Si-Technology
- **Only Basic Topology Employed**
- ZVS Achieved by Only Modifying Operation Mode
- **Active ZVS**
- Triangular Current Mode (TCM)
- Variable Switching Frequency No Diode On-State Voltage Drop
- Continuously Guided u, i Waveforms
- Interleaving
- Utilization of Low Superjunct. R_{DS,(op)} Utilization of Digital Signal Processing

- Low Complexity
- No Aux. Circuits
- No (Low) Switching Losses No Direct Limit of # of Parallel Trans.
- Simple Symm. of Loading of Modules
 No Current Sensor (only i=0 Detection)
 Spread & Lower Ampl. EMI Noise
- Synchr. Rectification
- No Free Ringing → Low EMI Filter Vol.
 Low EMI Filter Vol. & Cap. Curr. Stress
 Low Cond. Losses despite TCM

- Low Control Effort despite 6x Interl.

... the Basic Concept is Known since 1989 (!)

2/3-Control \rightarrow Symm. AC Currents also for Unequal Loading of the DC Outputs

- Symmetric Loading P_a = P_b = P_c = 1000 W
 Asymmetric Loadng P_a = 730 W, P_b = P_c = 1000 W

 $U_{\rm N} = 3 \times 230 \text{ V} (50 \text{ Hz})$ $P_{\rm o} = 3 \times 1 \text{ kW}$ $U_{0} = 400 V$ $f_{s} = 58 \text{ kHz}$ *L* = 2.8 mH (on AC-side) $C = 660 \, \mu F$

Symm. Loading

i_{N,i}: 1 A/div V_{DC} : 100 V/div

Asymm. Loading

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Δ -Rectifier

Experimental Results

 $U_{LL} = 3 \times 480 \text{ V} (50 \text{ Hz})$ $P_0 = 5 \text{ kW}$ $U_0 = 800 \text{ V}$ $f_s = 25 \text{ kHz}$ L = 2.1 mH (on AC-Side)

 $i_{a},\,i_{\bar{a}b},\,i_{\bar{c}a}\!\!:\,5\text{ A/div};\qquad i_{a}\!\!-\!\!i_{a,(1)},\,i_{0}\!\!:\,2\text{ A/div}$

- Formation of Input Phase Current $i_a = i_{\overline{a}b} i_{\overline{c}a}$
- Circulating Zero Sequence Current i_0

<u>Hybrid</u> 3- Φ Boost-Type **PFC Rectifier Systems**

3rd Harmonic Injection Rectifier Active Filter-Type Rectifier

Classification of Unidirectional Rectifier Systems

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Diode Bridge + DC/DC Boost Converter

Controllable Output Voltage
 Low-Frequency Mains Current Distortion

$3-\Phi$ DCM (PFC) Boost Rectifier

Controllable Output Voltage
 Low-Frequency Mains Current Distortion

Classification of Unidirectional Rectifier Systems

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich 34/223

3- Φ Hybrid 3rd Harmonic Inj. PFC Boost-Rectifier

■ Independent Control of *i*+ and *i*-

3- Φ Hybrid 3rd Harmonic Inj. PFC Boost-Rectifier

3- Φ Hybrid 3rd Harmonic Inj. PFC Boost-Rectifier

Sinusoidal Mains Current Control
 Output Voltage Control

 \rightarrow Limited to Ohmic Mains Behavior \rightarrow High Minimum Output Voltage Level

Remark #1

Alternative Active 3rd Harmonic Injection

- No Output Voltage Control
- Mains Current Close to Sinusoidal Shape

- Active 3rd Harmonic Injection into All Phases

• Current Control Implementation with Boost-Type DC/DC Converter (*Minnesota Rectifier*) or with Buck-Type Topology (!)

- No Output Voltage Control
- Bulky Passive (Low-Frequency) Injection Device

Remark #2

Purely Passive 3rd Harmonic Injection

- Minimum THD of Phase Current for i_y = 1/2 I
 THD_{min} = 5 %

3- Φ Active Filter Type PFC Rectifier

Sinusoidal Mains Current

→ Requires Constant Power Load P_0 = const. → NO (!) Output Voltage Control

 ωt

 ωt

 ωt

-ωt

 ωt

 $-\omega t$

 $(1-k)i_{\rm y}$

3- Φ Active Filter Type PFC Rectifier

- Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Sinusoidal Mains Current $i + \bar{i}_{T_+} = G \cdot u_{a0} = i_a$
- =

- Condition $i_{a} + i_{b} + i_{c} = 0$
- u_{a0} Ò (1-k) $u_{\rm c0}$
- $\overline{u}_L \approx 0$ and/or $\overline{u}_{20} = u_{b0}$ $\overline{u}_{20} = u_{b0} = k \cdot u_{a0} + (1 - k)u_{c0}$ $u_{b0} = k \cdot u_{ac} + u_{c0}$ $k - \frac{u_{bc}}{d}$
- $i_v = -i_b$

Proof of Sinusoidal Mains Current Shape for $\omega t \in \left[0, \frac{\pi}{3}\right]$

- Current to be Inj. into Phase b
- Local Avg. Ind. Voltage / Bridge Leg (T_+, T_-) Output Voltage
- Bridge Leg Voltage Formation

- Bridge Leg Current Formation

- Constant Power Load Current

 $\bar{i}_{T_+} = k \cdot i_y = -k \cdot G \cdot u_{b0} = -G \cdot u_{b0} \frac{u_{bc}}{u_{ac}}$

u_{ac}

 $i = \frac{P}{1} = \frac{u_{ac} \cdot i_a + u_{bc} \cdot i_b}{1}$

$$= G \frac{u_{ac}}{u_{ac}} = G \left(u_{a0} + u_{b0} \frac{u_{bc}}{u_{ac}} \right)$$

PEDG 201

 $i_a = G \cdot u_{a0}$

 $i_b = G \cdot u_{b0}$

 $i_c = G \cdot u_{c0}$

Remark Auto-XFRM-Based 12-Pulse Passive Rectifier Systems

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Remark Auto-XFRM-Based 12-Pulse Passive Rectifier Systems

■ AC-Side Interphase-XFRM (Impr. DC Voltage)

DC-Side Interphase-XFRM (Impr. DC Current)

DC-Side Interphase-XFRM can be omitted in Case of Full XFRM Isolation of Both Diode Bridges

Remark Auto-XFRM-Based 12-Pulse Hybrid Rectifier Systems

Modulated Rectifier Output Current Impressed by DC/DC Boost Converter

- + Output Voltage Controlled
- + Sinusoidal Mains Current Shaping Possible
- Active Converter Stage Processes Full Output Power
- Low Frequency Magnetics Employed

$\begin{array}{c} \textbf{Active 3-} \Phi \text{ Boost-Type} \\ \textbf{PFC Rectifier Systems} \end{array}$

∆-Switch Rectifier Vienna-Rectifier — Six-Switch Rectifier

Classification of Unidirectional Rectifier Systems

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

■ Derivation of 3-Ф Topology

→ Phase-Symmetry / Bridge-Symmetry

Modulation of Diode Bridge Input Voltages / Conduction States

- Output Voltage Control
 Sinusoidal Mains Current Control
- Φ = (-30°,+30°)

Experimental Analysis

Advanced Control for Low Common-Mode Output Voltage

Vienna Rectifier

- Replace △-Switch by Y-Switch
 Connect Y-Switch to Output Center Point
 Maximum Phase/Bridge Symmetry

PEDG 2014

Vienna Rectifier

- Output Voltage Control
 Sinusoidal Mains Current Control
 Φ = (-30°,+30°)

Vienna Rectifier

Three-Level Characteristic

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Time Behavior of the Components of Voltages $u_{\overline{a}}$, $u_{\overline{b}}$, $u_{\overline{c}}$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich 57/223

Control Structure

Output Voltage Control & Inner Mains Current Control & NPP Control

Experimental Results

60/223

Half-Controlled Bridge Rectifier

■ Derivation starting from 1-Φ Bridgeless PFC Rectifier

61/223

Half-Controlled Bridge Rectifier

- Output Voltage Control
- \rightarrow Phase- but NO Bridge-Symmetry \rightarrow NO Sinusoidal Mains Current Control

Fully-Controlled (Six-Switch) Bridge Rectifier

- Output Voltage Control
- → Phase- & Bridge-Symmetry
 → Sinusoidal Mains Current Control
- $\rightarrow \Phi$ = (-180°,+180°) Bidirectional (!)

Evaluation of Boost-Type Systems

3rd Harmonic Inj. Rectifier ∆-Switch Rectifier Vienna-Rectifier Six-Switch Rectifier

Boost-Type PFC Rectifiers

- 3rd Harmonic Inj. Type
 Diode Bridge Conduction Modulation

Boost-Type PFC Rectifiers

■ 3rd Harmonic Inj. Type → Limited Operating Range

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

PEDG 2014

Boost-Type PFC Rectifiers

■ △-Switch Rectifier → System Complexity

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Vienna Rectifier vs. Six-Switch Rectifier

Performance Indices

Diodes

Diode VA - Rating =	$\frac{1}{\mu_D} =$	$\frac{\sum_{n} V_{D,\max,n} I_{D,\max,n}}{P_o}$
Diode Conduction	Losses	$S = \frac{\sum_{n} I_{D,avg,n}}{I_{o}}$

Transistors

Transistor VA - Rating =
$$\frac{1}{\mu T} = \frac{\sum_{n} V_{T, \max, n} I_{T, \max, n}}{P_{o}}$$

Transistor Conduction Losses = $\frac{\sum_{n} I_{T, rms, n}}{I_{o}}$
Transistor Sw. Losses Boost = $\frac{\sum_{n} I_{T, avg, n} V_{T, n}}{P_{o}}$
Transistor Sw. Losses Buck = $\frac{\sum_{n} I_{T, n} V_{T, avg, n}}{P_{o}}$

Power Passives

Percentage Reactance =
$$\frac{2\pi f_N I_N L_N}{V_N}$$

Rated Inductor Power =
$$\frac{I_L \Delta I_{L, pkpk} L f_s}{P_o}$$

Capacitive Current Stress =
$$\frac{\sum_{n} I_{C,rms,n}}{I_{o}}$$

► Conducted Noise (DM, CM)

$$V_{Noise} = V_{DM} + V_{CM}$$

$$V_{CM} = \frac{V_a + V_b + V_c}{3}$$

$$V_{DM}^2 = V_{DM,tot}^2 - V_{N,rms}^2$$

$$V_{CM}^2 = V_{CM,tot}^2 - V_{CM,LF}^2$$

EV Charging DC/DC Power Transfer

Isolation TransformerIPT (WPT)

ACKNOWLEDGEMENT

The authors would like to express their sincere appreciation to ABB Switzerland Ltd. for the support of research on IPT whose results are partly presented in this Tutorial

EV Charging – Power Electronics Topologies

▲ Structure of a 3-Φ Isolated 2-Stage High-Power Battery Charging System with MF XFRM or IPT Transmission Coils

PEDG 2014

EV Charging – Wireless / Inductive Power Transfer

▲ Structure of a 3-Φ 2-stage IPT charging system

- ► Inherent Galvanic Isolation
- High Convenience, Usability & Safety
 - High Market Potential
 - Driver for Future Development
- More Frequent Recharging
 - Reduced Battery Stress
 - Long Lifetime/Small Volume

71/223

IPT Worldwide Demonstration / Research Activities

Realization Examples _____

Source: Bombardier PRIMOVE Website, http://primove.bombardier.com, 2.6.2014 / D. Dilba, «Die Tram oben ohne», in *Technology Review*, Heise Online, 8.6.2011.

Bombardier: PRIMOVE

Source: Bombardier PRIMOVE Website, http://primove.bombardier.com, 2.6.2014 / D. Dilba, «Die Tram oben ohne», in Technology Review, Heise Online, 8.6.2011.

- Wireless Charging at Bus Stops
- Extended Battery Life, Lower Battery Weight
- No Battery Exchange, No Additional Dwell Time
- **Fewer Fleet Vehicles**
- Lower Total Cost of Ownership

Test Track Braunschweig (2014): 200 kW, (?) cm

J. Kim et al., «Coil design and shielding methods for a magnetic resonant wireless power transfer system," Proc. IEEE, vol. 101, no. 5, pp. 1332 – 1342, 2013.

Dynamic EV Charging on Highways

Image: James Provost for IEEE Spectrum

Electrified IPT Lanes on Highways allow Charging In-Motion

- ► No More «Fuel Stops» Needed
- No Time Lost during Charging
- No «Range Anxiety»

But, Realization is Challenging

Simplified Calculation (1)

- 20 km of Highway @ avg. 25 kW¹, 120 km/h \rightarrow 20/120 h x 25 kW = 4.2 kWh used
- 200 m IPT-Lane per 20 km of Highway (=1%)
- Speed while Charging 50 km/h \rightarrow 14 s for Charging
- Charging 4.2 kWh in 14 s:
 - \rightarrow 1 MW / Vehicle **Required Charging Power**
 - Slowing Down to 50 km/h every 20 km?

¹ T. Bütler and H. Winkler, «Energy consumption of battery electric vehicles (BEV),» EMPA, Dübendorf, Switzerland, 2013.

- High Cost for Infrastructure
- Medium Voltage Supply
- Battery that Handles 1 MW?

Image: James Provost for IEEE Spectrum

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

But, Realization is Challenging

Simplified Calculation (2)

- 1 MW / Vehicle at an Ultra-Fast Charging Station
- ► Re-Charging in 10 min

 \rightarrow 167 kWh Delivered Energy \rightarrow 6.6 h Driving Possible

- Stopping for 10 min every 7 h?
- Large Cost for Infrastructure
- Medium Voltage Supply
- Battery that Handles 1 MW?

Dynamic (EV) Charging: Possible Applications

Electrify Spots where Vehicles Stop, e.g. Traffic Lights, Bus Stop,...

Source: Qualcomm

▲ Contatless power supply of automatic guided vehicles in industrial sites

Main Design Challenges

Magnetic Coupling

- Physical Efficiency Limit
- Sensitivity to Coil Misalignment
- Magnetic Stray Field
 Limited by Standards (e.g. 27 µT @ 100 kHz)
- Power Density
 - Coil Size / Air Gap Ratio
 - Weight of Shielding & Core

- Magnetic Coupling
 - Physical Efficiency Limit
 - Sensitivity to Coil Misalignment

Magnetic Stray Field

- Limited by Standards
 (e.g. 27 μT @ 100 kHz)
- Power Density
 - Coil Size / Air Gap Ratio
 - Weight of Shielding & Core

▲ ICNIRP 1998 & 2010 reference values for mag. fields

- Magnetic Coupling
 - Physical Efficiency Limit
 - Sensitivity to Coil Misalignment

Magnetic Stray Field

- Limited by Standards
 (e.g. 27 μT @ 100 kHz)
- Power Density
 - Coil Size / Air Gap Ratio
 - Weight of Shielding & Core

- ▲ PRIMOVE bus lowers receiver coil to road surface
- Increased Coupling / Efficiency
- Reduced Magnetic Stray Field
- Mechanical Positioning Aids

- Magnetic Coupling
 - Physical Efficiency Limit
 - Sensitivity to Coil Misalignment
- Magnetic Stray Field
 - Limited by Standards
 (e.g. 27 μT @ 100 kHz)

- Coil Size / Air Gap Ratio
- Weight of Shielding & Core

Source: Lexus

Inductive Power Transfer

- **Requirements & Interface**
 - Charging Power + Air Gap
 - **Electrical Interface**
- Coil Design
 - Low Stray Field
 - High Misalignment Tolerance
 - Small Size, Low Weight
- Optimization
 - High Transmission Efficiency
 - High Power Density
 - Cost, Reliability, ...

- → Despite High Power Transmission
- → Limited Parking Accuracy
- → Incl. Core and Shielding Materials
- → Thermal Limitations / Energy Cost
- → Automotive Application!

Inductive Power Transfer

- **Requirements & Interface**
 - Charging Power + Air Gap
 - **Electrical Interface**
- Coil Design
 - Low Stray Field
 - High Misalignment Tolerance
 - Small Size, Low Weight
- ► Optimization
 - High Transmission Efficiency
 - High Power Density
 - Cost, Reliability, ...

Multi-Objective Optimization!

IPT System Components

Basic Design Principles Transmission Coil Design Stray Field & Shielding Coil Modeling & Power Loss Estimation

Inductive Power Transfer – Working Principle (1)

1-Phase E-core Transformer

- Flux Concentrated in
 Low Reluctance Iron-Path
- Magnetic Coupling k > 95%
- **—** Efficiency $\eta > 99\%$

• Transformer with Large Air Gap

- Flux not Concentrated, due to High Reluctance of Air Gap
- Magnetic Coupling $k \approx 10..35\%$

Inductive Power Transfer – Working Principle (2)

Losses Modeled as Parasitic Winding Resistances

- Flux not Concentrated, due to High Reluctance of Air Gap
- Magnetic Coupling $k \approx 10..35\%$

Inductive Power Transfer – Working Principle (3)

- High Magnetization Current, Delivers Zero Output Power
- High Copper Losses in Transmitter Coil (+ Losses in Core Material)

- ► Transformer with Large Air Gap
 - Flux not Concentrated, due to High Reluctance of Air Gap
 - Magnetic Coupling $k \approx 10..35\%$

Series Compensation of Receiver

▲ Series compensated receiver - equivalent circuit

- Reduce Receiver Impedance
 Reduced Magnetization Current

 More Current in Receiver Circuit
- Current Source: Best for Low Impedance Loads (e.g. High Power Level)

Power Converter – Topology

- ▲ Series compensated resonant converter topology
- Resonant Capacitor at Transmitter to Reduce Inverter Current
- **•** Tuned to Same Frequency $\omega_0 = 1/(L_1C_1)^{\frac{1}{2}}$

- ▲ Bode diagram of input impedance
- Switching above Resonance
 - Minimum Conduction Losses
 - Zero Voltage Switching of MOSFETs

Power Converter – Prototype System

R. Bosshard, J. W. Kolar et al., "Modeling and η - α -Pareto optimization of inductive power transfer coils for electric vehicles," *IEEE J. Emerg. Sel. Topics Power Electron*. (accepted for publication), 2014.

- ▲ 5 kW prototype power converter
- ► Full-Bridge Inverter 5 kW @ 100 kHz
- Cree 1.2 kV SiC MOSFETs (42 A)
- DSP/FPGA-based Control

▲ Measured waveform & spectrum

Frequency (Hz)

Frequency (Hz)

ET.

- ▲ Current and voltage waveforms at resonant circuit output / diode rectifier input
- Fundamental-Frequency Model of Load: (Valid at a Single Operating Point)

$$R_{\rm L} = \frac{8}{\pi^2} \frac{U_{2,\rm dc}^2}{P_2}$$

R. Steigerwald, "A comparison of half-bridge resonant converter topologies," IEEE Trans. Power Electron., vol. 3, no. 2, pp. 174-182.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Effect of *High* Equivalent Load Resistance

▲ Calculated waveforms of transmitter, mutual and receiver currents for different load resistances

Effect of Low Equivalent Load Resistance

▲ Calculated waveforms of transmitter, mutual and receiver currents for different load resistances

Load Matching Condition (1)

- **Converter Characteristic Exhibit an Loss Minimum / Efficiency Maximum**
- Minimum is given by «Matching» of Receiver Coil Reactance $\omega_0 L_2$ and Load R_L

▲ Power losses for given power, frequency, inductance and *k* = 0.35

frequency, load resistance and k = 0.35

Load Matching Condition (2)

- ► Simple Approximation for *Q* > 100:
 - Series Comp. $\left(\frac{R_{\rm L}}{\omega_0 L_2}\right)_{\rm opt,SS} \approx k$
 - ► Parallel Comp. $\left(\frac{R_{\rm L}}{\omega_0 L_2}\right)_{\rm opt,SP} \approx \frac{1}{k}\sqrt{1+k^2}$
- Whenever Possible, Design ω₀L₂ According to «Matching Condition»

Maximum Transmission Efficiency

- ▲ Power losses mainly occur in coil windings (core losses are neglected here)
- Physical Limit on Transmission Efficiency

$$\eta_{\text{max}} = \frac{k^2 Q_1 Q_2}{\left(1 + \sqrt{1 + k^2 Q_1 Q_2}\right)^2}$$
Figure-of-Merit: $k \sqrt{Q_1 Q_2} = kQ$

- Magnetic Coupling k ≈ 10..35%
- Coil Quality Factors Q_1, Q_2
- Matching is Needed to Reach η_{max}

▲ Efficiency vs. FOM for resonant and non-resonant receiver circuits

K. van Schuylenbergh and R. Puers, Inductive Powering: Basic Theory and Application to Biomedical Systems, 1st ed., Springer-Verlag, 2009.

Alternative Options: Parallel Circuit Topologies

Large Number of Alternative

Performance Criteria Apply!

Same Figure-of-Merit and

Topologies Exist

▲ Further possible topologies for the resonant tank

Alternative Options: Unity-Gain Resonant Circuit

Inductive Power Transfer

- Resonant Circuit Design
 - **—** Series/Series Resonance
 - **—** Load Matching
- **Coil Modeling**
 - Power Loss Estimation
 - Calculation of Stray Field
- ► Optimization
 - High Transmission Efficiency
 - High Power Density
 - Cost, Reliability, ...

Coffee Break until 15:30

IPT Transmission Coil Design

Structures of Single-Phase Transformers

▲ Available ferrite parts for power transformers

Source: Huigao Megnetics

- **E** and Pot-Core Transformer
- ► U-Core Transformer
- Toroidal Transformer not Suitable for IPT

 $i_1(t)$

 $u_1(t)$

 $\delta_{\mathbf{k}}^{\dagger}$

▲ Common structures for single-phase transformers

Structures for IPT Coils (2)

E-Type IPT Coils - Examples

Structures for IPT Coils (3)

Structures for IPT Coils (4)

U-Type IPT Coils - Examples

F. Turki et al., "Impact of the working frequency on wireless power transfer systems," in *Proc. Int. Exhibition and Conf. for Power Electronics (PCIM Europe)*, pp. 1378-1383, 2014.

C.-Y. Huang, "Design of IPT EV Battery Charging Systems for Variable Coupling Applications," PhD Dissertation, Univ. of Auckland, 2011.

Performance Comparison of Typical Coil Structures _____

Required Performance

- **Efficiency** \rightarrow *FOM* = *kQ* Magnetic Coupling Quality Factor
- **Coil Misalignment / Freedom-of-Position**
- Coil Size / Power Density
 - Area-related Power Density: $\alpha = P_{out}/A_{coil}$
- Stray Field Compliance
- Material / Manufacturing Cost

Comparison of Basic Coil Geometries

- Almost Equal Coupling for Circular, Square, Rectangular coil
- ► Main Factor is the Enclosed Area of the Coil → Maximize!

Power Electronic Systems Laboratory

Coupling - Advanced Designs

- The Best Besign ... does not Exist. Main Factor for Coupling: Enclosed Area of the Coil!
- Cooling Capability of Power Electronics and Coil Determine «Misalignment Performance»

▲ Magnetic coupling vs. air gap for 4 coil geometries

M. Lu and K. D. T. Ngo, "Comparison of coil designs for wireless inductive power transfer," in *Proc. CPES Power Electron. Conf.*, 2011.

▲ Measured coupling of a circular pad (700 mm diam.) and a double-D charging pad (740 x 400 mm)

C.-Y. Huang, "Design of IPT EV Battery Charging Systems for Variable Coupling Applications," PhD Dissertation, Univ. of Auckland, 2011.

117/223

Freedom-of-Position: Multiple Coils

▲ Array of overlapping transmitter coils improve freedomof-position of the Philips inductive charging pad

E. Waffenschmidt and T. Staring, "Limitation of inductive power transfer for consumer applications," in *Proc. 13th European Conf. on Power Electron. and Applications (EPE Europe)*, pp. 1-10, 2009.

(c) Horizontal offset

Tx.

▲ Improvement of the double-D with additional coil which is used only in «misaligned» position

M. Budhia, J. Boys, G. Covic et al., "Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems," *IEEE Trans. Ind. Electron.*, vol. 60, no. 1, pp. 318-328, 2011.

118/223

Freedom-of-Position: Parking Assistant

▲ Parking assistant with image recognition Source: Toyota

▲ IPT charging station with parking guides

- Latest Assistants Achieve 5 cm Parking Accuracy
- Dimensioning of Electronics for Worst-Case Parking Position
- Control must Provide Compensation

Freedom-of-Position: High-Q Coils

► Physical Limit on Transmission Efficiency

$$\eta_{\max} = \frac{k^2 Q_1 Q_2}{\left(1 + \sqrt{1 + k^2 Q_1 Q_2}\right)^2}$$

Figure-of-Merit: $k\sqrt{Q_1Q_2} = kQ$

- Freedom-of-Position: Compensation of Low k with High Q
- ► High-*Q* Systems: no Fundamental Difference!

- «Highly Resonant Wireless Power Transfer»
 - Operation of «High-Q Coils» at Self-Resonance (Maximum of Q)
 - High Frequency Operation (kHz ... MHz)

Stray Field & Shielding

Magnetic Shielding with *Magnetic* Materials (1)

- Low Reluctance / High Permeability Materials Allow Guiding Magnetic Field
- Careful: Frequency Dependency!

▲ High permeability material diverts magnetic field

C. Paul, "Shielding," in *Introduction to Electromagnetic Compatibility*, 2nd ed., Jon Wiley & Sons, Hoboken, 2006, ch. 10, sec. 4, pp. 742-749.

▲ Frequency dependency of ferromagnetic materials

H. W. Ott, *Noise Reduction Techniques in Electronic Systems*, 2nd ed., Wiley- Interscience, New York, 1988.

Magnetic Shielding with *Magnetic* Materials (2)

- Low Reluctance / High Permeability Materials Allow Guiding Magnetic Field
- ► Not Possible in the Air Gap!

▲ High permeability material diverts magnetic field

C. Paul, "Shielding," in *Introduction to Electromagnetic Compatibility*, 2nd ed., Jon Wiley & Sons, Hoboken, 2006, ch. 10, sec. 4, pp. 742-749.

 $u_2(t)$

 $i_2(t)$

PEDG 201

Magnetic Shielding with *Magnetic* Materials (3)

Coil Design Must Provide a Return Path for the Flux:

Alternative Methods:

- Higher Frequency for Same Power allows Lower Flux in Air Gap (shown later)
- Smaller Coils, Field follows approx. $1/r^2$
- But: Reduces Magnetic Coupling → Trade-Off with Efficiency!

Magnetic Shielding with *Conductive* Materials

Current in conductor produces opposing magnetic field C. Paul, "Shielding," in Introduction to Electromagnetic Compatibility, 2nd ed., Jon Wiley & Sons, Hoboken, 2006, ch. 10, sec. 4, pp. 742-749.

Image: M. Budhia et al.

- May Cancel Coupled Flux
 Boducos Magnetic Couplin
- Reduces Magnetic Coupling
- High Eddy Current Losses!

▲ Selective shielding with additional resonant circuit

J. Kim et al., «Coil design and shielding methods for a magnetic resonant wireless power transfer system," *Proc. IEEE*, vol. 101, no. 5, pp. 1332 – 1342, 2013.

Coil Modeling & Power Loss Estimation ____

Finite-Element Modeling of IPT Coils

- ► Circular Spiral Coil
 - High Coupling / Area Ratio
 - Simplified Modeling & Verification
- Axis-Symmetric Design
 Frequency Domain Model at Resonant Frequency

- 2D-Finite Element Solvers:
 - FEMM (free, www.femm.info)
 - Ansys Maxwell, COMSOL, ...

FE-Assisted Winding Loss Calculation

 J. Mühlethaler, "Modeling and multi-objective optimization of inductive power components,"
 Ph.D. dissertation, Swiss Federal Institute of Technology (ETH) Zurich, 2012.

Proximity-Effect Calculation Requires External Field

FE-Assisted Core Loss Calculation

- ▲ Ferrite core segment (Kaschke K2004)
- Core Loss Integration with FE-Tool
 - Assumption: Sinusoidal Current, Calculation with Steinmetz Equation

$$p_{\rm core} = \kappa \cdot f_0^\alpha \cdot \hat{B}^\beta$$

- ▲ Schematic drawing of BH-loop
- Flux Density Low, due to High Air Gap Reluctance
- Core Losses have Minor Effect, 24% Core Losses @ 100 kHz

Verification of FEM Field Calculations

Verification of FEM Field Calculations

- ▲ Commercial field probe Narda ELT-400
- **Commercial Field Probe**
 - 12 cm Probe-Head Diameter
 - High Bandwidth
 - High Cost

Design of Custom Field Probe

- ▲ Custom field probe for verification
- Probe for Magnetic Field Measurements
 - Optimized for 100 kHz, High Accuracy
 - Sensitivity: 14.5 mV/µT @ 100 kHz
 - Accuracy: < 5% Error (Compared to Narda ELT-400)</p>
 - Size: 30x30x30 mm

▲ Comparison to commercial product

Measurement of the Stray Field @ 5kW

- ▲ Custom field probe for verification
- ► FE Models for Prediction of Stray Field Accurate: < 10% error
- Prototype Complies with ICNIRP 2010 at 300 mm

▲ Measured stray field @ 5 kW

Inductive Power Transfer

- Resonant Circuit Design
 - **—** Series/Series Resonance
 - Load Matching
- **Coil Modeling**
 - Power Loss Estimation
 - Calculation of Stray Field
- ► Optimization
 - High Transmission Efficiency
 - High Power Density
 - Cost, Reliability, ...

η - α -Pareto Optimization

Multi-Objective Optimization Design of Scaled Prototype System Experimental Verification

DESIGN TASK *Transfer of 5 kW Across Air Gap of 52 mm*

- Specifications:
 Output Power 5 kW
 Air Gap 52 mm
 Input Voltage 400 V
 Output Voltage 350 V
- Degrees-of-Freedom:
 - Type of Litz Wire
 - Core Shape and Material
 - Transmission Frequency
 - Coil Size / Area
 - (Compensation Method)

- Performance Measures:
 - Transfer Efficiency: $\eta = P_{out}/P_{in}$ [%]
 - Area-Related Power Density: $\alpha = P_{out}/A_{coil}$ [kW/dm²]

R. Bosshard, J. W. Kolar et al., "Modeling and η - α -Pareto optimization of inductive power transfer coils for electric vehicles," IEEE J. Emerg. Sel. Topics Power Electron. (accepted for publication), 2014.

η - α -Pareto Optimization of IPT Coils

η - α -Pareto Optimization – Results (1)

η - α -Pareto Optimization – Results (2)

η - α -Pareto Optimization – Results (3)

- Higher Transmission Frequency Leads Reduced Coil Losses!
 - Reason:
 - Matching
Condition: $\left(\frac{R_L}{\omega_0 L_2}\right)_{opt,SS} \approx k$ Higher $\omega_0 \Rightarrow$ Lower $L_2 \Rightarrow$ Lower N \Rightarrow Shorter Windings \Rightarrow Lower R_{ac}

▲ Calculated efficiency vs. power density, divided by transmission frequency

Selection of a Transmission Frequency

Benefit from Ideal Components

(power density of prototype)

for ideal capacitors and core material

ET

Transmission Frequency – Further Limitations

▲ Power loss breakdown at 1.47 kW/dm² (power density of prototype) Other Limiting Factors:

- Availability / Cost of Litz Wire
- Frequency Dependent Losses of Power Electronic Converter (e.g. Gate Driver)
- Parasitics of Coil and Converter (Coil Self-Resonance)
- Switching Speed of Semiconductors

Trade-Off: Efficiency vs. Stray Field

▲ Calculated efficiency vs. stray field at 30 cm distance from coil center

- Smaller Coils have Higher Losses
 ... and Lower Stray Field
 Trade-off!
- Higher Frequency Allows Lower Flux in Air Gap for Equal Power
 Trade-off!
 - High Frequency Preferred for
 Low Stray Field & High Efficiency

• Matching
$$\left(\frac{R_{\rm L}}{\omega_0 L_2}\right)_{\rm opt,SS} \approx k$$

- Higher $\omega_0 \rightarrow \text{Lower } L_2 \rightarrow \text{Lower } N$ $\rightarrow \text{Lower } R_{ac}$ $\rightarrow \text{Lower Flux!}$

Designed 5 kW Prototype IPT Coil

Coil Diameter	210 mm*
Transm. Efficiency	98.25%
Power Density	1.47 kW/dm²
Stray Field	26.16 µT
* Air Gap 52 mm, Ratio ≈ 4	

▲ Scaled 5 kW prototype IPT coil

DC-to-DC Power Loss Measurement

▲ Breakdown of power losses at 5 kW output power

- ► FE-Based Power Loss Models are Accurate: < 14% error
- **DC-to-DC Efficiency > 96.5%** (incl. Capacitors & Semiconductors)

Thermal Model & Verification

▲ Thermal simulation of prototype IPT coil

- Thermal Modeling with FE tool for Design Verification
- Accuracy: < 5% Error of Steady-State Temperature

▲ Thermal measurements with thermocouples (with and without forced air cooling)

Control Methods for IPT Systems

Frequency Control Methods Controlled DC-Link Voltages Measured Performance Comparison

Frequency Control Methods

Power Electronic Systems Laboratory

Frequency Control Method

- Frequency Control Above Resonance
 - Regulation of Output Voltage / Power
 - Zero Voltage Switching of Inverter in Inductive Region of Input Impedance
 - Simplicity & Robustness
- Most Widely used Control Method for High-Power IPT Systems

▲ Voltage transfer function / input phase angle

Dual / Self-Oscillating Control Method

▲ Working principle of self-oscillating controller

- Tracking of Transmitter Coil Current Zero Crossings
 - Automatically Follow Resonance
 - Guaranted Zero Voltage Switching

▲ Current zero crossing detection and control-diagram

J. A. Sabate, M. M. Jovanovic, F. C. Lee, and R. T. Gean, "Analysis and design-optimization of LCC resonant inverter for high-frequency AC distributed power system," in *IEEE Trans. Ind. Electron.*, vol. 42, no. 1, pp. 63–71, 1995.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Power Electronic Systems Laboratory

Dual / Self-Oscillating Control – Measured Performance

- ▲ Measured waveforms for dual control at duty cycles *D* = 0.95 / 0.65
- Small Reduction of Transmitter Coil Current
- Transition from Active to Reactive Power
 - Due to Increased Frequency into Inductive Region
 - Partial-Load Efficiency?

(same is Observerd for Frequency Control)

Variable DC-Link Voltage Control Method ____

Hard Switching!

Variable Amplitude Control

Duty-Cycle Control

Control of the DC-link Voltage

Proposed System Topology (1)

▲ Structure of a 3-phase 2-stage IPT charging system

- **Controlled DC-Link on Both Sides**
 - Buck-Type PFC: Controls $U_{1,dc}$ from Grid Side
 - DC-DC-Converter: Controls $U_{2,dc}$ from Battery Side

Calculated Output Power

$$P_2 = \frac{8}{\pi^2} \frac{U_{1,\mathrm{dc}} \mathrm{U}_{2,\mathrm{dc}}}{\omega_0 L_\mathrm{h}}$$

Several Options for Optimization!

155/223

Proposed System Topology (2)

▲ Structure of a 3-phase 2-stage IPT charging system

- **Buck-Type PFC Rectification**
 - Controls Charging Power
 - Power Factor Correction
- ► IPT Link: Operation at Resonance
 - Only Active Power Transmitted
 - Operation at Efficiency Maximum
- Vehicle-Side DC-DC Converter
 - Monitoring/Control of Battery Current and Voltage (SoC)
 - «Active Impedance Matching»

Proposed System Topology (3)

▲ Structure of a 3-phase 2-stage IPT charging system

Buck-Type PFC Rectification

- **—** Controls Charging Power
- Power Factor Correction
- ► IPT Link: Operation at Resonance
 - Only Active Power Transmitted
 - Operation at Efficiency Maximum
- Vehicle-Side DC-DC Converter
 - Monitoring/Control of Battery Current and Voltage (SoC)
 - «Active Impedance Matching»

PEDG 2014

157/223

Proposed System Topology (4)

▲ Structure of a 3-phase 2-stage IPT charging system

Buck-Type PFC Rectification

- **—** Controls Charging Power
- Power Factor Correction
- ► IPT Link: Operation at Resonance
 - Only Active Power Transmitted
 - Operation at Efficiency Maximum
- Vehicle-Side DC-DC Converter
 - Monitoring/Control of Battery Current and Voltage (SoC)
 - «Active Impedance Matching»

PEDG 2014

Measured Voltage/Current Waveforms

Comparison to Existing Control Methods

Reduced Current in Transmitter Coil due to Operation at Resonance

▲ Calculated transmitter and receiver coil currents

Misalignment: «Active Impedance Matching»

▲ Tracking of efficiency optimum under misalignment

- Impedance Matching is Needed for Max. Transmission Efficiency
- ► «Apparent» Load Depends on U_{2,dc}
- Active Impedance Matching with Vehicle-Side DC-DC Converter
- On-Line Efficiency Optimization e.g. with Tracking Algorithm

R. Bosshard, J. W. Kolar et al., "Control Method for Inductive Power Transfer with High Partial-Load Efficiency and Resonance Tracking," in *Proc. Int. Power Electron. Conf. (IPEC, ECCE Asia)*, pp. 260–271, 2014.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

DC-to-DC Power Loss Measurement

▲ Efficiency measurement setup with electronic load

- **DC-to-DC** Measurement with ...
 - **—** DC-Supply to Control U_{1,dc}
 - Electronic Load to Control U_{2,dc}
- **Efficiency > 96%** down to 1 kW

▲ Efficiency measurement @ 52 mm air gap

Requirements for DC-DC-Converter

Control of IGBT Switching Conditions

Measured transmitter coil current and

- ▲ Calculated stored charge in IGBT junction
- System Structure Allows Full Control of IGBT Switching Conditions
- Switching Loss due to Stored Charge in IGBT Junction Minimized

P. Ranstad and H.-P. Nee, "On dynamic effects influencing IGBT losses in soft-switching converters," IEEE Trans. Power Electron., vol. 26, no. 1, pp. 260–271, 2011.

G. Ortiz, H. Uemura, D. Bortis, J. W. Kolar, and O. Apeldoorn, "Modeling of soft-switching losses of IGBTs in high-power high-efficiency dualactive-bridge dc/dc converters," *IEEE Trans. Electron Devices*, vol. 60, no. 2, pp. 587–597, 2013.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Summary: IPT for EV

Image: ddpavumba FreeDigitalPhotos.net

Inductive Power Transfer Applications ... on the Hype Cycle

Time

Power Electronic Systems Laboratory

Inductive Power Transfer for **Dynamic EV Charging**

- Large & Expensive Installation vs. Improving Battery Technology
- Medium-Voltage Supply & Distribution of Power along 1% of all Highways
- Efficiency of Dynamic IPT vs. Increasing Energy Cost?
- Possible Applications: Electrification @ Traffic Lights, Bus Stops, Transportation Vehicles @ Industrial Sites ...

Inductive Power Transfer for Stationary EV Charging

- **Stationary EV Charging for Private Domestic Use**
 - Simplified / Safer Charging Process
 - **—** Large Market Potential
- **Stationary EV Charging for Public Transportation Systems**
 - Simplified Quick-Charging at Bus Stops
 - Reduced Battery Volume
 - Reduced Number of Fleet Vehicles
 - → Reduced Investments & Operating Costs!

3-PBuck-Type PFCRectifierSystems

Unidirectional
 Bidirectional

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

 \rightarrow

PEDG 2014 —

Classification of Unidirectional Rectifier Systems

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Active 3- Φ Buck-Type PFC Rectifier Systems

Three-Switch Rectifier Six-Switch Rectifier –

172/223

Three-Switch PFC Rectifier

Derivation of Rectifier Topology

- → Controllability of Conduction State
 → Phase-Symmetry / Bridge-Symmetry

173/223

Three-Switch PFC Rectifier

- Output Voltage Control
 Sinusoidal Mains Current Control
- Φ = (-30°,+30°)

Three-Switch PFC Rectifier

- Output Voltage Control
 Sinusoidal Mains Current Control
- Φ = (-30°,+30°)
- \rightarrow Relatively High Conduction Losses

175/223

Six-Switch PFC Rectifier

Derivation of Rectifier Topology

- $\begin{array}{l} \rightarrow & {\rm Controllability\ of\ Conduction\ State} \\ \rightarrow & {\rm Phase-Symmetry\ /\ Bridge-Symmetry\ } \end{array}$

176/223

Six-Switch PFC Rectifier

Output Voltage Control
 Sinusoidal Mains Current Control

Control Structure

Output Voltage Control & Inner Output Current Control

Detailed Functional Analysis

- Modulation
- Input Current Formation
 Output Voltage Formation
 Demonstrator System

Power Electronic Systems Laboratory

Modulation Scheme

- Consider 60°-Wide Segment of the Mains Period; Suitable Switching States Denominated by (s_a, s_b, s_c)
- Clamping to Phase with Highest Absolute Voltage Value, i.e.
- Phase *a* for $\omega t \in \left(-\frac{\pi}{6}, +\frac{\pi}{6}\right)$,
- Phase *c* for $\omega t \in \left(+\frac{\pi}{6}, +\frac{\pi}{2}\right)$ etc.
- Assumption: $\omega t \in \left(0, +\frac{\pi}{6}\right)$

• Clamping and "Staircase-Shaped" Link Voltage in Order to Minimize the Switching Losses

Input Current and Output Voltage Formation (1)

Input Current and Output Voltage Formation (2)

- Output Voltage Formation:

$$\overline{u} = u_{ab} \cdot \alpha_b + u_{ac} \cdot \alpha_c$$

$$P_{\text{link}} = P_{\text{input}}$$

$$\overline{u} \cdot I = \frac{3}{2} \cdot \hat{U} \cdot \hat{I}^*$$

$$\overline{u} = \frac{3}{2} \cdot \hat{U} \cdot \frac{\hat{I}^*}{I} = \frac{3}{2} \cdot \hat{U} \cdot M$$

- Output Voltage is Formed by Segments of the Input Line-to-Line Voltages
- Output Voltage Shows Const. Local Average Value

PEDG 201L

Experimental Results

Ultra-Efficient Demonstrator System

 $U_{LL} = 3 \times 400 \text{ V} (50 \text{ Hz})$ $P_0 = 5 \text{ kW}$ $U_0 = 400 \text{ V}$ $f_s = 18 \text{ kHz}$ $L = 2 \times 0.65 \text{ mH}$

η = 98.8% (Calorimetric Measurement)

Experimental Results

Ultra-Efficient Demonstrator System

 $U_{LL} = 3 \times 400 \text{ V} (50 \text{ Hz})$ $P_0 = 5 \text{ kW}$ $U_0 = 400 \text{ V}$ $f_{\rm s} = 18 \text{ kHz}$ L = 2 x 0.65 mH

η = 98.8% (Calorimetric Measurement)

PEDG 2014

Remark: Matrix-Type Approaches

Integrated Isolation / Single-Stage Energy Conversion

- Higher Control Complexity / Limited Control Flexibility Typ. Lower (!) Efficiency Compared to Two-Stage Concepts

3rd Harmonic Inj. Buck-Type PFC Rectifier Systems

SWISS Rectifier

3rd Harmonic Inj. Concept

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Output Voltage ControlSinusoidal Current Control

PEDG 2014

- Output Voltage Control
 Sinusoidal Current Control
- \rightarrow Low Complexity

Control Structure

Gating of T_+, T_- :

- Synchronous Control Minimizes i_v -Ripple / Maximizes Ripple of i_L - Interleaving Minimizes Ripple of i_L / Maximizes i_v -Ripple

Comparison of Buck-Type Systems

Six-Switch Rectifier SWISS-Rectifier

Buck-Type PFC Rectifiers

3rd Harmonic Inj. Type
 Diode Bridge Cond. Modulation

Buck-Type PFC Rectifiers

PEDG 2014

SWISS Rectifier vs. Six-Switch Rectifier

Bidirectional PFC Rectifier Systems

- Boost-Type Topologies
 Buck-Type Topologies

≻

Boost-Type Topologies

Classification of Bidirectional Boost-Type Rectifier Systems

Bridge-Leg Inductor (BLI) Converter

Derivation of Two-Level Boost-Type Topologies

• Output Operating Range

Derivation of Three-Level Boost-Type Topologies

PEDG 2014

Comparison of Two-Level/Three-Level NPC Boost-Type Rectifier Systems

- Two-Level Converter Systems
- + State-of-the-Art Topology for LV Appl.
- + Simple, Robust, and Well-Known
- + Power Modules and Auxiliary Components Available from Several Manufacturers
- Limited Maximum Switching Frequency
- Large Volume of Input Inductors

- Two-Level \rightarrow Three-Level Converter Systems
- + Reduction of Device Blocking Voltage Stress
- + Lower Switching Losses
- + Reduction of Passive Component Volume
- Higher Conduction Losses
- Increased Complexity and Implementation Effort

Active Neutral Point Clamped (ANPC) Three-Level Boost-Type System

- + Active Distribution of the Switching Losses Possible
 + Better Utilization of the Installed Switching Power Devices
- Higher Implementation Effort Compared to NPC Topology

T-Type Three-Level Boost-Type Rectifier System

- + Semiconductor Losses for Low Switching Frequencies Lower than for NPC Topologies
- + Can be Implemented with Standard Six-Pack Module
- Requires Switches for 2 Different Blocking Voltage Levels

► Three-Level Flying Capacitor (FC) Boost-Type Rectifier System

- + Lower Number of Components (per Voltage Level)
 + For Three-Level Topology only Two Output Terminals

- Volume of Flying Capacitors
 No Standard Industrial Topology

Three-Level Bridge-Leg Inductor (BLI) Boost-Type Rectifier System

- + Lower Number of Components (per Voltage Level)
 + For Three-Level Topology only Two Output Terminals
- Additional Volume due to Coupled Inductors
- Semiconductor Blocking Voltage Equal to DC Link Voltage

Pros and Cons of Three-Level vs. Two-Level Boost-Type Rectifier Systems

- + Losses are Distributed over Many Semicond.
 Devices; More Even Loading of the Chips →
 Potential for Chip Area Optimization for Pure Rectifier Operation
- + High Efficiency at High Switching Frequency
- + Lower Volume of Passive Components
- More Semiconductors
- More Gate Drive Units
- Increased Complexity
- Capacitor Voltage Balancing Required
- Increased Cost

Power Electronic Systems Laboratory

• Moderate Increase of the Component Count with the T-Type Topology

Consideration for 10kVA/400V_{AC} Rectifier Operation; Min. Chip Area, $T_{j,max}$ = 125°C

Multi-Level Topologies are Commonly Used for Medium Voltage Applications but Gain Steadily in Importance also for Low-Voltage Renewable Energy Applications

Buck-Type Topologies

Derivation of Unipolar Output Bidirectional Buck-Type Topologies

• Output Operating Range

- i p i p i p $C = u_{pn} R$ $C = u_{pn} R$ i p $C = u_{pn} R$ i p $C = u_{pn} R$ i p
- System also Features Boost-Type Operation

'n

 u_{pn} U $-I_{max}$ $+I_{max}$

Derivation of Unipolar Output Bidirectional Buck-Type Topologies

EMI Filtering

Vienna Rectifier Six-Switch Buck-Type Rectifier

Power Electronic Systems Laboratory

EMI Filtering of Active 3- Φ **PFC Rectifier Systems**

Internal CM EMI Filtering

Summary of Unidirectional PFC Rectifier Systems

- Block Shaped Input Current Systems
- Sinusoidal Input Current Systems

Power Electronic Systems Laboratory

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

PEDG 2014

Power Electronic Systems Laboratory

Sinusoidal Input Current Rectifier Systems (1)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich **Power Electronic Systems** Laboratory

Sinusoidal Input Current Rectifier Systems (2)

Appendix A

3-⊕ Active PFC ── Rectifier Design ─── Equations

Current Stresses – VIENNA Rectifier

Current Stresses – Δ -Switch Rectifier

Current Stresses – Integrated Active Filter Rectifier

Current Stresses – SWISS Rectifier

218/223

PEDG 201

Current Stresses – 6S Buck-Type Rectifier (1)

Modulation Index:
$$M = \frac{\hat{I}_N}{I_{DC}}$$

PEDG 2014

Current Stresses – 6S Buck-Type Rectifier (2)

Modulation Index:
$$M = \frac{\hat{I}_N}{I_{DC}}$$

Thank you!

Contact

kolar@lem.ee.ethz.ch bosshard@lem.ee.ethz.ch

Power Electronic Systems Laboratory

About the Instructors

Johann W. Kolar (F'10) received his M.Sc. and Ph.D. degree (summa cum laude / promotio sub auspiciis praesidentis rei publicae) from the University of Technology Vienna, Austria. Since 1984 he has been working as an independent international consultant in close collaboration with the University of Technology Vienna, in the fields of power electronics, industrial electronics and high performance drives. He has proposed numerous novel converter topologies and modulation/control concepts, e.g., the VIENNA Rectifier, the SWISS Rectifier, the Delta-Switch Rectifier, the isolated Y-Matrix AC/DC Converter and the three-phase AC-AC Sparse Matrix Converter. Dr. Kolar has published over 450 scientific papers at main international conferences, over 180 papers in international journals, and 2 book chapters. Furthermore, he has filed more than 110 patents. He was appointed Assoc. Professor and Head of the Power Electronic Systems Laboratory at the Swiss Federal Institute of Technology (ETH) Zurich on Feb. 1, 2001, and was promoted to the rank of Full Prof. in 2004. Since 2001 he has supervised over 60 Ph.D. students and PostDocs.

The focus of his current research is on AC-AC and AC-DC converter topologies with low effects on the mains, e.g. for data centers, More-Electric-Aircraft and distributed renewable energy systems, and on Solid-State Transformers for Smart Microgrid Systems. Further main research areas are the realization of ultra-compact and ultra-efficient converter modules employing latest power semiconductor technology (SiC and GaN), micro power electronics and/or Power Supplies on Chip, multi-domain/scale modeling/simulation and multi-objective optimization, physical model-based lifetime prediction, pulsed power, and ultra-high speed and bearingless motors. He has been appointed an IEEE Distinguished Lecturer by the IEEE Power Electronics Society in 2011.

He received 9 IEEE Transactions Prize Paper Awards, 8 IEEE Conference Prize Paper Awards, the PCIM Europe Conference Prize Paper Award 2013 and the SEMIKRON Innovation Award 2014. Furthermore, he received the ETH Zurich Golden Owl Award 2011 for Excellence in Teaching and an Erskine Fellowship from the University of Canterbury, New Zealand, in 2003.

He initiated and/or is the founder/co-founder of 4 spin-off companies targeting ultra-high speed drives, multidomain/level simulation, ultra-compact/efficient converter systems and pulsed power/electronic energy processing. In 2006, the European Power Supplies Manufacturers Association (EPSMA) awarded the Power Electronics Systems Laboratory of ETH Zurich as the leading academic research institution in Power Electronics in Europe.

Dr. Kolar is a Fellow of the IEEE and a Member of the IEEJ and of International Steering Committees and Technical Program Committees of numerous international conferences in the field (e.g. Director of the Power Quality Branch of the International Conference on Power Conversion and Intelligent Motion). He is the founding Chairman of the IEEE PELS Austria and Switzerland Chapter and Chairman of the Education Chapter of the EPE Association. From 1997 through 2000 he has been serving as an Associate Editor of the IEEE Transactions on Industrial Electronics and from 2001 through 2013 as an Associate Editor of the IEEE Transactions on Power Electronics. Since 2002 he also is an Associate Editor of the Journal of Power Electronics of the Korean Institute of Power Electronics and a member of the Editorial Advisory Board of the IEEJ Transactions on Electrical and Electronic Engineering.

About the Instructors (Cont'd)

Roman Bosshard received the M.Sc. degree from the Swiss Federal Institute of Technology (ETH) Zurich, Switzerland, in 2011. During his studies, he focused on power electronics, electrical drive systems, and control of mechatronic systems. As part of his M.Sc. degree, he participated in a development project at ABB Switzerland as an intern, working on a motor controller for traction converters in urban transportation applications. In his Master Thesis, he developed a sensorless current and speed controller for a ultrahigh-speed electrical drive system with CELEROTON, an ETH Spin-off founded by former Ph.D. students of the Power Electronic Systems Laboratory at ETH Zurich.

In 2011, he joined the Power Electronic Systems Laboratory at the Swiss Federal Institute of Technology (ETH) Zurich, where he is currently pursuing the Ph.D. degree. His main research area is inductive power transfer systems for electric vehicle battery charging, where he published five papers at international IEEE conferences and one paper in the IEEE Journal of Emerging and Selected Topics in Power Electronics.

