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Abstract

INEAR and linear-rotary machines (motors or actuators) are used in many
L applications that require controlled linear or combined linear and rotary
motion. In particular, those are pick-and-place robots used in packaging lines
for very precise component mounting on printed circuit boards or die placing
into integrated circuit cases, surgery robots, active suspension of vehicles,
wave electric power generation or linear compressors, to mention a few.
These machines have been built for years and always improved and adjusted
to application requirements. The most simple linear-rotary actuator (LiRA)
is built by mechanically connecting individual linear and rotary actuators,
which results in the linear and rotary degrees of freedom of an end effector.
Such actuator is bulky and renders limited dynamics. In order to suffice higher
dynamics and extreme compactness, a wave of research has been initiated
and many new LiRA topologies with linear and rotary feature integrated into
a single machine volume have been proposed in literature.

In this thesis, a step further in the actuator area is taken by proposing
a LiRA with integrated magnetic bearings (MBs). Typically, MBs are added
as two independent standalone machines at each axial end of the actuator,
which would increase the length of the actuator. Therefore, in this thesis, MBs
are integrated into the existing actuator volume, resulting in a so called bear-
ingless actuator. Such actuator in certain applications has superior properties
compared to a LiRA with conventional bearings. For example, tilting control
of the rotor/mover would be only possible in a LiRA with MBs, which allows
pick-and-place robots to place smaller and more brittle electronic components,
i.e. allowing further size reduction of PCB components. In particular, two
actuators with MBs are proposed in this thesis: (1) a magnetically levitated
tubular actuator (MALTA) and (2) a double stator linear-rotary actuator (DS
LiRA).

Both of the proposed actuators, the MALTA and the DS LiRA, are op-
timized using FEM simulations and built in hardware. In order for MBs to
function, it is necessary to “close the loop” between the position measurement,
control system and an amplifier. Therefore, for the MALTA and the DS LiRA,
a dedicated position sensor and an inverter are built and a control system
is developed. Their operation is verified with measurements taken on the
hardware prototypes.

Even though LiRAs with MBs would have great advantages over the ones
with conventional bearings, they have not been extensively analyzed in litera-
ture. Consequently, the models that provide understanding of their operation
and give basis for the control system implementation are not entirely covered.

ix



Abstract

Therefore, in this thesis an enhanced complex space vector based model of
the LiRA with MBs is derived and expressions for the torque, thrust force and
MB force are given. The LiRA complex space vector of the voltage, current or
flux linkage, is defined using the proposed transformation with two complex
frames, one related to the rotation and the MBs and another to the linear
motion. This results in complex space vectors having components in two
complex frames, where each of them is defined with a dedicated complex
unit.

For the control system design, a full nonlinear dynamic mechanical model
of the LiRAs rotor/mover is derived and afterwards linearized. The functioning
of two kinds of control systems is presented, a MIMO one based on the LQR
tuning method and structure, and a SISO one based on the decentralized
control system strategy.

The performed experiments verify the tilting control capability of the
MALTA and, therefore, confirm its applicability in high-precision applications.
The MALTA control system is implemented as MIMO and SISO system, and
the operation of both approaches is verified with measurements. The DS LiRA
controller is implemented as SISO system and its operation is verified with
measurements.



Kurzfassung

INEARE und linear-rotatorische Motoren/Aktuatoren werden in Anwen-
L dungen eingesetzt, die kontrollierte lineare bzw. translatorische, rota-
torische oder kombiniert linear-rotatorische Bewegungen erfordern. Dies
sind insbesondere Pick-and-Place-Roboter, die in Verpackungslinien zur hoch-
préazisen Bestiickung von Leiterplatten oder zum Einlegen von Chips in die
Gehiuse integrierter Schaltungen eingesetzt werden, Operationsroboter, die
aktive Federung von Fahrzeugen, Linearkompressoren oder die Stromerzeu-
gung in Wellenkraftwerken. Der einfachste Aufbau eines linear-rotatorischen
Aktuators (LiRA) ist das mechanische Verbinden separierter Linear- und Rota-
tionsaktuatoren, wodurch sich die linearen und rotatorischen Freiheitsgrade
eines Endeffektors ergeben. Ein solcher Aktuator ist jedoch sperrig und weist
eine begrenzte Dynamik auf. Gegenwértige Forschungen zielen daher auf
hohere Dynamik und extreme Kompaktheit und in der Literatur werden neue
LiRA-Konzepte vorgeschlagen bei welchen die Erzeugung der Linear- und
Rotationsbewegung in einem einzigen Aktivteil integriert wird. Ziel der vor-
liegenden Dissertation ist es, einen nachsten massgeblichen Verbesserungss-
chritt zu setzen und ein LiRA-Konzept mit integrierten Magnetlagern (MBs)
incl. Sensorik und Regelung zu konzipieren und experimentell zu verifizieren.

Typischerweise werden MBs als eigenstandige Einheiten an den Enden
der Achse des Aktuators hinzugefiigt, was die Baulinge erhoht. Demge-
geniiber werden in dieser Arbeit MBs in das vorhandene Aktuatorvolu-
men integriert, wodurch ein sogenannter lagerloser Aktuator entsteht und
Vorteile bzgl. Baugrosse resultieren. Ein Aktuator mit integrierten MBs ist
einem LiRA mit herkémmlichen Lagern in zahlreichen Anwendungen tiber-
legen. Beispielsweise ist fiir MB-LiRA eine Neigesteuerung des Rotors/Movers
moglich, die es Pick-and-Place-Robotern erlaubt kleinere spréde elektron-
ische Bauteile exakt platzieren und somit letztlich eine weitere Grossenre-
duktion elektronischer Komponenten unterstiitzt. In dieser Arbeit werden
zwei neue Aktuatorkonzepte mit integrierten MBs vorgeschlagen: (1) ein
magnetgelagerter rohrenférmiger Aktuator (MALTA) und (2) ein Doppel-
Stator-Lineardrehantrieb (DS LiRA).

Sowohl MALTA als auch DS LiRA werden mittels FEM-Simulationen
optimiert und nachfolgend praktisch realisiert. Dies schliesst auch die Po-
sitionssensorik und eine Inverterstufe samt Ansteuerelektronik ein. Die
Funktion beider Aktuatoren wird durch Messungen an Hardware-Prototypen
iberprift.

Obwohl MB-LiRA massgebliche Vorteile gegeniiber Losungen mit kon-
ventionellen Lagern aufweisen, fehlt bisher eine ausfiithrliche Analyse. Daher
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Kurzfassung

werden in der Arbeit Modelle, welche das Verstandnis ihrer Funktionsweise
unterstiitzen und die Grundlage fiir die Implementierung des Regelsystems
bilden entwickelt. Insbesondere wird ein neues raumzeigerbasiertes Modell
vorgeschlagen welches die Basis fiir die Ableitung mathematischer Ausdriicke
fur das Drehmoment, die Schubkraft und die MB-Kraft bildet. Der komplexe
LiRA-Raumzeiger der Spannungs-, Strom- oder Flussverkettung wird unter
Verwendung der vorgeschlagenen Transformation in zwei komplexen Ko-
ordinatensystemen definiert, von denen sich eines auf die Rotation und die
Magnetlager und das andere auf die Linearbewegung bezieht. Dies fiithrt zu
komplexen Raumzeigern mit Komponenten in zwei Koordinatensystemen,
wobei jedem Koordinatensystem einer dedizierte komplexe Einheit zugeord-
net ist. Fiir das Design des Regelsystems wird ein vollstdndiges nichtlineares
dynamisches Modell des LiRA-Rotors/Movers abgeleitet und anschlieflend
linearisiert. Weiters werden zwei Regelkonzepte, ein MIMO-System basierend
auf der LQR-Tuning-Methode und Struktur und ein SISO-System basierend
auf einer dezentralen Regelsystemstrategie analysiert. Die Funktion beider
Ansitze wird durch Messungen tiberpriift. Der DS LiRA Controller ist als
SISO-System implementiert und auch seine Funktion wird durch Messungen
verifiziert.

Abschliessende Experimente verifizieren die Neigungssteuerungs-
fahigkeit des MALTA und bestitigen dessen Potential zum Einsatz in hoch-
prazisen Anwendungen.
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Introduction

1.1 Motivation and Applications

Linear-Rotary Actuator (LiRA)

Linear-rotary machines/motors/actuators' (LiRAs) are used in many indus-
trial areas where combined linear and rotary motion is necessary to allow
and automatize manufacturing and packaging of different products. Those
industries are: food industry, automotive industry (assembling of parts), semi-
conductor and electronics industries, medical and pharmaceutical industries,
to mention a few. Even though, coupled linear and rotary motion addresses
many needs in industry, still the motion systems are built from separate linear
and rotary motors/actuators [1-12]. More often they are realized by parallel
mechanical coupling, where e.g. the linear actuator moves the whole rotary
actuator (its stator and rotor), as shown in Fig. 1.1(a). The drawbacks of
this coupling option are limited dynamics (as the linear actuator moves the
mass of the whole rotary actuator), moving cables of the rotary actuator and
increased size of the overall LiRA. Less often, the LiRA with series mechanical
coupling of the linear and rotary actuators can be found in industry [13], cf.
Fig. 1.1(b). Such realization allows higher dynamics due to smaller moving
mass compared to the parallel mechanical coupling, but, the overall LiRA may
have increased length as the linear and the rotary stators are axially displaced.
Therefore, in applications where the LiRA length is limited, the stators could
be displaced radially instead of axially, which results in a so called double
stator (DS) LiRA [14], [15], cf. Fig. 1.1(c). The challenge in realizing such

"The terms machine, motor and actuator are used equally in this thesis. Typically, in motion
control systems where a motor is operated from a certain fixed position reference to another one
it is called an actuator.



Chapter 1. Introduction

Parallel Series Double Magnetic
1 1 Stator Coupling

® :iz

® " o (d)

Fig. 1.1: Linear-rotary actuator (LiRA) realization options: (a) parallel mechanical
coupling, (b) series mechanical coupling, (c) double stator (DS) LiRA with the stators
displaced radially, in particular with the inner linear and outer rotary stator and (d)
LiRA with a single stator that can realize linear and rotary motion.

actuator is increased effort in manufacturing due to mechanical support of
the inner stator. The LiRA that can realize linear and rotary motion with a
single stator is typically realized as so called checkerboard actuator [16], [17],
cf. Fig. 1.1(d). This actuator may achieve the highest compactness, reliability,
robustness and simplified motor assembly into the final product due to fewer
mechanical parts. But, in the stator the linear and the rotary motions are
magnetically coupled. Consequently, the magnetically coupled LiRA has
a higher number of phases (than e.g. the actuators with parallel or series
coupling that may be realized with three-phase stators) and requires a more
complex current control [18], [19].

Magnetic Bearing (MB)

A magnetic bearing (MB) is an electrical machine which, unlike rotary or
linear machines that generate torque or linear force, generates radial force
on the rotor?* with the goal to magnetically support it such that it hovers
without touching the stator. Therefore, MBs have the same role as any other
conventional bearings (mechanical or air bearings), to support the rotor with
respect to the stator of an electric machine. Of course, as the MBs require

*The rotating part in rotary machines is called rotor, while in linear machines the moving
part is called mover. Since in the thesis linear-rotary machines are analyzed, both terms are used
interchangeably and equally.

2



1.1. Motivation and Applications

radial position sensors, amplifiers and controllers, the realization effort and
the price are usually higher. But, due to advantageous properties that MBs
offer, in certain applications MBs may result in a cheaper overall system, e.g.
in case of pipeline turbo compressors [20] or flywheels [21]. Some of the
properties of the MBs that open new application areas and/or enhance the
existing ones, cf. [22], are:

» No mechanical contact, therefore, no need for lubrication and no con-
taminating wear. Desirable for vacuum systems, clean and sterile rooms
and high temperatures.

» Load capacity (bearing stiffness) may be actively controlled during the
operation. Therefore, dynamics of the hovering rotor may be controlled.

» Tilting control of the rotor.

> Precision in the range of micrometers (depends on the installed position
sensor).

» Low maintenance costs and high lifetime.

» Important functional element of a smart machine - based on the MB
states, the operation of the whole machine may be optimized.

Linear-Rotary Actuator with Magnetic Bearings

Even though MBs could bring many advantages, to the author’s best knowl-
edge, the LiRA with MBs is not used in industry neither is analyzed in litera-
ture. Having in mind the LiRA application areas and the MB properties, the
LiRA with MBs would be beneficial in the following applications:

» Pick-and-place robot in electronics and semiconductor manufacturing
industries. Typically in such machines, a LiRA is moved in horizontal
x- and y-directions by a robot arm (parallel kinematics) or a gantry
system, where the rotary and the linear orientation of the placed com-
ponents are performed by a LiRA. Integrating MBs into a LiRA, the
following advantageous properties over a conventional solution would
be achieved:

- Handling smaller components since a mover tilting control would
be possible. As PCB track distances are getting smaller, the foot-
prints of the components are reduced as well. Additionally, the

3



Chapter 1. Introduction

components are becoming more fragile as a result of the size re-
duction. Consequently, high accuracy (several micrometers) as
well as the capability of mover tilting control are required in order
to handle the smaller components, which may only be complied
with MBs.

— Decoupling from thermal expansions by the mover radial position
control. The temperature change in the LiRAs parallel kinematics
or a gantry system will cause thermal expansions of the parts,
which consequently would compromise the precision of the pick-
and-place machine. Some of the state-of-the-art industry solutions
include water cooling of the parallel kinematics, such that the
temperature oscillations are minimized. By integrating MBs into
the LiRA, this issue can be avoided as any position disturbance in
x- and y-directions would be compensated by MBs. Like this, the
precision is absolutely decoupled from any thermal expansions
and only determined by the precision of the LiRAs radial position
Sensor.

— Contamination and wear free for clean rooms in semiconductor
manufacturing. The mover of the LiRA with MBs would not
touch at any point the stator and its position would be solely
controlled by the magnetic forces. Therefore, its operation would
not generate any contaminating particles that might compromise
the air purity in clean rooms.

» High-pressure wash-downs of LiRAs in food/pharmaceutical industry.
In some parts of food and pharmaceutical industries, the used LiRAs
require daily washing with highly pressurized water. This requires
the mechanical bearings to be detached and attached again after the
washing (wash-downs). The LiRA with MBs can have the stator and
the mover sealed in stainless steel as two separate pieces, where any
detaching/attaching of the bearings would not be required to perform
the washing. This would result in much shorter and fully automatized
wash-downs.

In all cases, the MBs would increase the LiRAs lifetime and reduce mainte-
nance costs, which are mainly driven by mechanical bearing failures.

From the above mentioned advantages, there is a clear motivation to
develop a LiRA with integrated MBs, which due to its properties would have
a superior performance compared to the conventional solutions in many
application areas.

4



1.2. Challenges

1.2 Challenges

In previous Section 1.1, an integration of MBs into a LiRA is motivated by the
benefits it would bring to the performance of the LiRA system. The challenges
that this integration poses are considered in this section.

> Actuator realization: As it can be seen in Fig. 1.1, there are many
options for the LiRA realization. The mechanical coupling of the two
actuators may result in a large and bulky LiRA (parallel mechanical
coupling) or in a compact magnetically coupled LiRA. Integration of
the MBs into the LiRA would in this sense represent an addition of
a “third” actuator (that actuates in radial direction). To make things
worse, the LiRA requires at least two MBs, such that tilting control of
the mover is possible. Therefore, it is a challenge to find a realization
of the LiRA with MBs that best suits to a specific application. Typical
compromises here are between the dynamics (mover’s rotary and linear
accelerations) and the maximum torque and the linear force, as the
actuator with a larger volume would have higher torque/force, but
limited dynamics due to increased moving mass.

» Number of actuator phases: To control the linear and the rotary
motion of a LiRA, separately and independently, two power supplies
for each motion mode are needed. If the individual actuators are three-
phase and magnetically decoupled, the supply inverter should have at
least six phases. If the LiRA is magnetically coupled (cf. checkerboard
stator in Fig. 2.3), the required number of phases in the inverter supply
is nine. If now on top of this, two MB machines should be integrated
into the LiRA, the number of required phases of the supply inverter
would further increase. This aspect should be carefully considered in
the design, as it increases the cost and complexity of the overall actuator
system.

> Position sensors: The LiRA with MBs should have rotary and linear
position sensors, as well as two radial position sensors. Ultimately,
the position sensor should not compromise the compactness of the
overall LiRA. This becomes a challenge, since a typical size of a LIRA
is, e.g. ~ 15cm in length and ~ 10 cm in width. Typically, in lower cost
applications, Hall-effect sensors are used as rotary and linear position
sensors, which sense the PM field from the mover and estimate its
position. It becomes challenging to estimate the position of the mover
when it can move radially, since this would also change the detected

5
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PM field and disturb the desired rotary and linear position estimation.
Another challenge is the usage of encoders for the linear and rotary
positions, which are required for high precision applications (below
pum). Namely, encoders have very narrow radial tolerance, i.e. the
distance between the encoder head and the sensing grid should not
vary more than 100 um typically, and this value may be easily exceeded
when the LiRAs mover is tilted.

> Control system: It should be kept in mind that the mover of a LiRA
with MBs is entirely supported by magnetic forces that are controlled
with a position controller. The design of such position controller is
challenging since it cannot be generalized, as its requirements depend
on the specific LiRA’s geometry and application in which it is used.

> Cost: In order to find its way to an application in industry, the invest-
ment into the LiRA with MBs must pay off. Therefore, a careful cost
analysis of the LiRA is necessary, which was not conducted in this the-
sis due to lack and confidentiality of price information. But, it should
be mentioned that savings compared to conventional solutions would
be possible. For example, in a pick-and-place high-precision robot ap-
plication, the water cooling of parallel kinematics may be removed if a
LiRA with MBs is used. Another example would be applications with
wash-downs, where cost savings would be achieved with shorter and
simpler wash-down procedures that would be possible if a LIRA with
MBs is used.

1.3 Scientific Contributions of the Thesis

The main contributions presented in the thesis are summarized below:

> An overview of possible realization concepts of linear-rotary actuators
suitable to implement magnetic bearings is given. Moreover, funda-
mental scaling laws concerning achievable axial forces and torques
of linear and rotary actuators are derived, which enable a qualitative
comparison that helps to figure out the most suitable actuator concept.

» A generic complex space vector modeling of linear-rotary machines
(actuators) is introduced. The linear-rotary machine complex space
vector is formed by a proposed transformation with two complex frames,
where one frame is used for the rotation and MBs and the other for
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the linear motion. These two complex reference frames require two
different complex units (e.g. i and j), which results in a complex space
vector having four components (two real and two complex).

A novel linear self-bearing actuator, also called magnetically levitated
tubular actuator (MALTA) is proposed. This actuator is capable of
generating the drive force and the bearing force on the mover with
a single set of stator windings, i.e. the same windings are used for
generating both forces. With this approach, the utility of the used
materials (copper, iron and PMs) is minimized and compactness of
the actuator is preserved when MBs are integrated, compared to the
conventional tubular linear actuator without MBs.

A decoupling transformation for the MALTA, which is necessary due
to magnetic coupling of the linear motion and magnetic bearings, is
proposed.

A hardware implementation of the MALTA prototype is performed,
that in addition required the design and manufacturing of an 18 phase
inverter, linear and radial position sensor design and manufacturing,
test bench design and manufacturing, position and current control
system design and implementation.

Taken measurement results prove the new linear actuator concept
(MALTA). In addition, mover tilting control measurement results are
taken that show MALTA’s superior advantage compared to any con-
ventional linear actuator for pick-and-place robot application.

Magnetic bearings (MBs) are integrated into the double stator (DS)
linear-rotary actuator (LiRA), cf. Fig. 1.1(c).

Hardware realization of a DS LiRA with MBs that includes FEM op-
timizations of the DS LiRA coupled with an analytic thermal model;
design, optimization and manufacturing of an 18 phase inverter; design
and manufacturing of a linear and radial position sensor; design and
manufacturing of an advanced test bench and implementation of the
control system.

Evaluation of the DS LiRA hardware prototype with measurements
that validate the proposed actuator concept.
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Chapters 4,5,6,7 Chapters 8,9,10,11

7

DS LiRA

MALTA Inverter DS LiRA Inverter

Fig. 1.2: Overview of the chapters dedicated to the novel linear self-bearing actuator
(MALTA): Chapters 4-7; double stator (DS) linear-rotary actuator (LiRA): Chapters
8-11.

1.4 Outline of the Thesis

The goal of this thesis is the exploration, analysis, optimization and experimen-
tal verification of novel tubular actuator topologies with magnetic bearings.
Such actuators are not thoroughly analyzed in literature, therefore, this thesis
deals with their various aspects such as viable topology and realizations, min-
imization of the required number of phases, enhancing current decoupling
and complex space vector modeling techniques. Following the motivation
and the discussion of application areas of LiRAs, challenges and scientific
contributions are outlined in Chapter 1.

Chapter 2 and Chapter 3 are dedicated to the general analysis and
modeling of LiRAs. In particular, Chapter 2 identifies possible realization
concepts of LiRAs suitable to implement MBs. Moreover, fundamental scaling
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laws concerning the achievable force of linear and torque of rotary machines
are derived, enabling a qualitative comparison in order to figure out the most
suitable actuator concept for given application requirements.

Chapter 3 proposes an enhanced complex space vector based model of
the LiRA with MBs, and derives expressions for the torque, linear (thrust)
force and the bearing force. A transformation that captures rotary and linear
stator quantities by using two complex frames is proposed, which allows for
the newly defined complex space vector of voltage, current or flux linkage to
capture the information about the torque, MB force and the linear force.

Further chapters are dedicated to the analysis of the MALTA and the DS
LiRA, as shown in Fig. 1.2.

In Chapter 4 design and FEM optimization details of the newly proposed
MALTA are shown. Moreover, an extensive consideration on the MALTA
winding realization is conducted. The designs are verified by measurements
of the drive and bearing machine constants in a test bench with force sensors.

Chapter 5 shows the MALTA inverter and the position sensor design
details. The resolution of the position sensor and the best signal to noise ratio
are given based on measurements on the sensor prototype.

In Chapter 6 a dynamic electromechanical model of the MALTA is de-
rived. The model is constituted from three sub-models: the nonlinear me-
chanical model of the mover, the linear model of the position sensor and the
linear electric model of the stator. This model allows to develop and design a
full state feedback controller, as done and described in the chapter.

Chapter 7 shows the measurement results taken during the MALTA
experimental analysis. The MALTA is tested for axial reference tracking
and its steady-state positioning performance is given. Moreover, a pick-and-
place application scenario is studied, where the tilting control of the mover is
demonstrated.

Chapter 8 introduces a DS LiRA with MBs and clarifies the challenges
in its design, such as axial heat flow in the inner stator. An automatized
optimization procedure, based on coupled FEM magnetic models and analytic
thermal models is explained. Supported by Pareto plots, a design of the DS
LiRA is chosen and a hardware prototype is manufactured.

In Chapter 9 the design and prototypes of the DS LiRA inverter and
position sensors are shown. The inductor design of the inverter’s output LC
filter and the heat-sink design are explained. The operation principle of the
radial eddy-current sensor is explained and its geometry is optimized.

Chapter 10 shows the concept and the structure of the current and the
position controllers of the DS LiRA. The realization of the current controller

9
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is challenging due to many phases that need to be controlled and as well the
output filter that requires, besides the DS LiRA current, control of the output
capacitor voltage and the inductor current in the filter, resulting in a current
controller with three cascaded loops.

In Chapter 11 the measurement results taken on the DS LiRA prototype
are given. In the performed measurements the inverter current control is
tested and verified. The operation of the linear and the rotary stators is
conducted separately, where the successful operation of the linear and rotary
position controllers is shown, as the successful operation of MBs.

Chapter 12 concludes the thesis by summarizing the outcomes of each
chapter and gives an outlook for future work in the area.

1.5 Publications

The most relevant publications created as part of this thesis, or in the scope
of related projects, are listed in this section in chronological order.

1.5.1 Journal Papers

The papers shown below are published in international journals and are a
basis for the creation of this document.

[J1] S.Mirié¢, P. Kiittel, A. Tiiysiiz, and J. W. Kolar, “Design and Experimental
Analysis of a New Magnetically Levitated Tubular Linear Actuator,”
IEEE Transactions on Industrial Electronics, 2019.

[J2] S.Mirié, R. V. Giuffrida, D. Bortis, and J. W. Kolar, “Enhanced Complex
Space Vector Modeling and Control System Design of Multiphase Mag-
netically Levitated Rotary-Linear Machines,” IEEE Journal of Emerging
and Selected Topics in Power Electronics, 2019.

[J3] S.Mirié, R. V. Giuffrida, D. Bortis, and J. W. Kolar, “Dynamic Electrome-
chanical Model and Position Controller Design of a New High-Precision
Self-Bearing Linear Actuator,” IEEE Transactions on Industrial Electronics,
2020.

Furthermore, in the course of the PhD research I also had the opportunity to
contribute to the following journal papers:
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[J4] J. A. Anderson, G. Zulauf, P. Papamanolis, S. Hobi, S. Miri¢, and J. W. Ko-

1.5.2

lar, “Three Levels Are Not Enough: Scaling Laws for Multi-Level Con-
verters in AC/DC Applications,” IEEE Transactions on Power Electronics,
2020.

M. Haider, J. A. Anderson, S. Miri¢, N. Nain, G. Zulauf, J. W. Kolar,
D. M. Xu and G. Deboy, “Novel ZVS S-TCM Modulation of Three-Phase
AC/DC Converters,” IEEE Open Journal of Power Electronics, 2020.

D. Cittanti, M. Guacci, S. Miri¢, R. Bojoi, J. W. Kolar, “Analysis and
Performance Evaluation of a Three-Phase Sparse Neutral Point Clamped
Converter for Industrial Variable Speed Drives,” Electrical Engineering,
2021, Springer.

Conference Papers

Other core achievements related to this project have been published in the
proceedings of international conferences and are partially used for the docu-
mentation of this thesis:

[C1]

[C2]

(C3]

S. Miri¢, A. Tiysiiz, and J. W. Kolar, “Comparative Evaluation of Linear-
Rotary Actuator Topologies for Highly Dynamic Applications,” Proc. of
the IEEE International Electric Machines and Drives Conference (IEMDC),
Miami, FL, USA, 2017.

S. Mirié, M. Schuck, A. Tiysiiz, and J. W. Kolar, “Double Stator Linear-
Rotary Actuator with a Single Set of Mover Magnets,” Proc. of IEEE
Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA,
2018.

S. Mirié¢, D. Bortis, and J. W. Kolar, “Design and Comparison of Perma-
nent Magnet Self-Bearing Linear-Rotary Actuators,” Proc. of the 12th
International IEEE Symposium on Linear Drives for Industry Applications
(LDIA), Neuchatel, Switzerland, 2019.

Additionally, for work on topics that are not in the core area of my PhD
research, but I helped in the preliminary studies of the topic and in the
writing of the manuscript. I have been recognized as a co-author of:

[C4]

D. Cittanti, S. Mirié¢, M. Guacci, and J. W. Kolar, “Comparative Eval-
uation of 800 V Three-Phase Three-Level Inverter Concepts,” Proc. of
the International IEEE Conference on Electrical Machines and Systems
(ICEMS), Hamamatsu, Japan, 2020.
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[Cs5] R. Giuffrida, S. Miri¢, D. Bortis, and J. W. Kolar, ““Looking Through
Walls” - Actuator Position Measurement Through a Conductive Wall,”
Proc. of the International IEEE Conference on Electrical Machines and
Systems (ICEMS), Hamamatsu, Japan, 2020.

[C6] J. W. Kolar, J. Azurza, S. Miri¢, M. Haider, M. Guacci, M. Antivachis,
G. Zulauf, D. Menzi, P. Niklaus, J. Minibock, P. Papamanolis, G. Rohner,
N. Nain, D. Cittanti, D. Bortis, “Application of WBG Power Devices in
Future 3-Phase Variable Speed Drive Inverter Systems “How to Handle
a Double-Edged Sword”” Proc. of the IEEE 66th International Electron
Devices Meeting (IEDM), San Francisco, USA, 2020.

[C7] G.Rohner, S. Miri¢, D. Bortis, J. W. Kolar, M. Schweizer , “Comparative
Evaluation of Overload Capability and Rated Power Efficiency of 200V
Si/GaN 7-Level FC 3-Phase Variable Speed Drive Inverter Systems,’
Proc. of the IEEE Applied Power Electronics Conference and Exposition
(APEC), Phoenix, AZ, USA, 2021.

1.5.3 Patents

The most innovative and original outcomes of my PhD research in collabora-
tion with others, which could offer a competitive advantage if commercially
exploited, have led to the filing of national and international patent applica-
tions. Despite the same title of [P2] and [P3], different actuators are discussed
in these patents: [P2] describes the DS LiRA (cf. Chapter 8), where [P3]
describes the MALTA (cf. Chapter 4).

[P1] S.Mirié, A. Tiysiiz and J. W. Kolar, “Electrical DC-AC Power Converter,”
Swiss patent application, 2017.

[P2] S.Mirié, A. Titysiiz and J. W. Kolar, “Electromechanical Actuator,” EU
patent application, 2017.

[P3] S. Mirié, A. Tiysiiz, D. Bortis and J. W. Kolar, “Electromechanical
Actuator,” EU patent application, 2017.

[P4] S.Mirié, M. Schuck, A. Tuystiz and J. W. Kolar, “Linear-rotatorischer
elektromechanischer Aktuator,” Swiss patent application, 2018.

[P5] J. A. Anderson, M. Haider, S. Miri¢ and J. W. Kolar, “Power Conversion
Method and Power Converter,” EU patent application, 2020.
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Linear-Rotary Machine Realizations
and Scaling Laws

To realize a linear-rotary machine that best suits the needs of an application,
an overview of possible realizations and their comparison is needed, which
is given in this chapter. The material presented in this chapter is further
described in [23].

2.1 Introduction

Linear-rotary actuators (LiRAs) are used in many different industries and
application areas, for example, in electronics and semiconductor manufac-
turing industries in pick-and-place robots [24, 25], or in industries such as
aerospace or automotive [26-28], food or pharmaceutical. Since LiRAs are
used in so many different application areas, they have to meet different torque
and/or force requirements, while also a given axial stroke has to be achieved.
Consequently, choosing the most suitable actuator for given application spec-
ifications is not an easy task. Therefore, in this chapter, torque and force
scaling laws that give a quick and clear performance overview of different
actuator arrangements are derived and verified with finite element method
(FEM) simulations. Compared to scaling law derivations already done in
literature [29], also thermal aspects are considered, which show to have a
significant influence onto the optimal actuator geometry.

This chapter focuses on permanent magnet (PM) LiRAs, as in general they
have the highest power densities [30], but the derived scaling laws can also
be applied to reluctance, flux switching or induction machines [25]. Besides
the machine type, LiRAs can be realized in many different combinations
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of individual actuators, whereby also the coupling of the machines can be
versatile, e.g. a parallel or series mechanical coupling, a magnetic coupling (e.g.
checkerboard actuator [31]) or a double stator configuration [15,32] can be used.
However, as the LiRA with parallel mechanical coupling has a mechanical
connection of the linear and rotary actuators [30], with independent rotors
(also called ‘'movers’ or ’sliders’), it is not further considered in this work, since
it would result in a bulkier and less robust design with lower acceleration
performances due to higher moving mass and moment of inertia.

Another important aspect in LiRAs are the bearings. Most of the LiRAs
use mechanical bearings, either ball or slider bearings. Besides their high
stiffness and simplicity, both of those feature drawbacks, such as the need
for lubrication and the particle generation. This is mainly a problem in
applications where a high purity is required, e.g. in clean room applications.
As an alternative, air bearings could be used, but they require a pressurized
air supply and the operation in low pressure environments is prohibited.
Accordingly, the mentioned issues can only be solved by magnetic bearings
(MBs), which are gaining more and more attention in tubular linear and
linear-rotary actuators [33-35].

This chapter first summarizes possible options to realize a LIRA with MBs,
and afterwards provides initial design considerations in terms of general
scaling laws of electric machines that would help a potential designer to
choose a topology suitable to the desired application. In contrast to the
existing literature, the derived scaling laws also consider the machine-internal
heat flow and the heat transfer to the ambient. Furthermore, the general
scaling laws are applicable to any kind of electric machine and are also verified
by FEM simulations.

2.2 Actuator Topology Concepts

Depending on the application specifications, the LiRA with magnetic bearings
(MB) can be built with different combinations of linear (L) and rotary (R)
machines, as shown in Fig. 2.1. The considered actuators are divided into two
groups, the first that features only an axial stator displacement of the different
machines (i.e. linear, rotary or magnetic bearing) with either all interior rotor
(cf. Fig. 2.2(a)) or all exterior rotor arrangements (cf. Fig. 2.2(b)), and the
second group featuring a combined stator arrangement, i.e. a double stator
LiRA (cf. Fig. 2.2(c)).

As can be noticed, for all possible LiRA arrangements always two indepen-
dent magnetic bearings (MB) on each axial end are required, such that rotor
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‘ Linear (L) + Rotary (R) + Magnetic Bearings (MBs) ‘
I

‘ Interior or Exterior Rotor ‘ Combined: Interior and Exterior Rotor
(Double Stator)
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Fig. 2.1: Possible axial combinations of linear machines (L), rotary machines (R) and
magnetic bearings (MB) to realize a self-bearing linear-rotary actuator. The possible
combinations can be divided into two groups, where the first group uses either only
an interior or an exterior rotor, while the second group is using a combined rotor, i.e.
a double stator machine.

Stator Rotor Outer Inner
Rotor Stator Stator

Stator

@) (b) (©

Fig. 2.2: Radial actuator arrangements: (a) interior rotor, (b) exterior rotor and (c)
combined rotor featuring two radially displaced stators, also known in literature as
double stator motor (cf. [14]).
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tilting can be controlled. Furthermore, depending on the degree of integration,
the magnetic bearing can be either realized as an independent machine with
separate stator (cf. LiRA-1 in Fig. 2.1) or can be integrated either into the
rotary machine, i.e. a self-bearing rotary machine (MB+R) [36], or into the
linear (L) machine (cf. LiRA-2 and LiRA-3 in Fig. 2.1), while a full integration
of all three machines into a single machine is also possible (cf. LiRA-4 in
Fig. 2.1). The realization options of these machines are shown in Fig. 2.3,
where in the first row the different rotor’s permanent magnet arrangements
and in the second row the corresponding stator’s winding configurations
are given. As can be noticed, a rotary machine realized with a R-Rotor and
R-Stator can also perform self-bearing (MB+R), while a linear machine (L)
with L-Rotor and L-Stator doesn’t feature magnetic levitation. Hence, the
integration of the magnetic bearing into a rotary machine (MB+R) is easier to
realize compared to the integration of the MB into a linear machine (MB+L).
In order to achieve self-bearing and linear movement in one machine, the
L-Rotor must be combined with a CB-Rotor ('Checkerboard-Rotor’, cf. [31]), as
done in [35]. A further option to realize either a self-bearing rotary machine
(MB+R) or a linear machine (L), is to use a S-Rotor ('Square-Magnet-Rotor’,
cf. [15]) with either a R-Stator or a L-Stator. Finally, to fully integrate all
features into a single machine (MB+R+L), a CB-Rotor with the CB-Stator is
needed. It should be noted that the same integration concepts (except the
full integration) can also be applied to the double stator LiRA (cf. LiRA-5 and
LiRA-6 in Fig. 2.1) and that the functionalities of the inner and outer stator
can also be exchanged, i.e. the linear machine (L) would then be the outer
actuator and the magnetic bearing (MB) together with the rotary machine (R)
would be the inner actuator.

Another aspect in LiRAs is the maximum axial stroke zgoke that can be
achieved with the selected machine arrangement. First of all, it has to be
considered that the rotor or mover should be longer than the total stator
length for at least zgyoke, such that a constant interaction between the stator
and the rotor is obtained. Furthermore, it has to be considered that depending
on the selected stator and rotor arrangement, a certain distance Az between
the different stators is needed, which in case of an independent linear (L) or
rotary (R) machine would have to be Az = zgoke (cf. LiRA-1 to LiRA-3 in
Fig. 2.1), while for a fully integrated checkerboard machine or a double stator
machine no distance between the stators is needed, i.e. Az = 0 (cf. LiRA-4 to
LiRA-6 in Fig. 2.1). Indeed, LiRAs with an S- or CB-Rotor can be realized with
Az = 0, however, as will be shown in the following section, they also feature
lower torque and force densities due to the inherently lower flux linkage of
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Fig. 2.3: Viable rotor and stator realization options that can be used for the LiRA
design, i.e. R-Rotor and R-Stator to realize a rotary machine which also can perform
self-bearing, L-Rotor and L-Stator for the linear machine, S-Rotor ('Square-Magnet-
Rotor’, cf. [15]) with either R-Stator or L-Stator to realize either a self-bearing rotary
machine or a linear machine, and CB-Rotor ('Checkerboard-Rotor’, cf. [31]) with CB-
Stator to realize a fully integrated machine featuring the linear and rotary movement
as well as the magnetic bearing. Furthermore, the L-Rotor can also be in combination
with the CB-Stator in order to realize a self-bearing linear machine [35]. These
realization concepts are only shown for the interior rotor actuator, but the same
winding configuration and permanent magnet arrangement can also be applied for
the exterior rotor actuator.

the S-Rotor [15] or the larger end windings of the CB-Stator [16], and therefore
finally result in a larger machine volume to achieve the same force and torque
performances. For sake of completeness, the LiRA assemblies from Fig. 2.1
are listed in Tab. 2.1 for the different rotor and stator realizations given in
Fig. 2.3 and it is shown whether a distance Az between the stators is needed
or not.

In the following section, the scaling laws for the achievable torque and the
thrust force of the Interior Rotor and Exterior Rotor actuator arrangements are
derived. In contrast to other literature [29], the current density amplitude Jis
calculated from the thermal (cooling) considerations, which have a significant
influence on the achievable torques and forces. The scaling laws are verified
with FEM simulations for the stator and rotor realizations shown in Fig,. 2.3.
The considered parameters are given in Tab. 2.2.

Furthermore, it is assumed that the thickness of the rotor, the stator back
iron, the permanent magnet, and the air gap are identical for all machines
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Tab. 2.1: Overview of the LiRA assemblies.

Rotor Stator Az
LiRA-1: (MB, L, R, MB)
(R, L, R, R) (R, L, R, R) Zstroke

S, S, S, S) (R,L,R,R) 0
LiRA-2: (MB+R, L, MB+R)

(R) L, R) (Rv L, R) Zstroke
S, S, S) (R,L,R) 0
LiRA-3: (MB+L, R, MB+L)

(L: R, L) (CB: R, CB) Zstroke
S,S,S) (CB, R, CB) 0
LiRA-4: (MB+R+L, MB+R+L)
(CB, CB) (CB,CB) 0

LiRA-5: (MB, R, MB / L)
®RR/L) (RRR/L) 0
(5.5.5/S)  (R.RR/L) 0
LiRA-6: (MB+R, MB+R / L)
(R,R/L) (RR/L) 0
(S.5/9) (R,R/L) 0

and much smaller than the outer dimensions (r, R and L). Moreover, also the
air gap flux density B, is fixed to a constant value for all machines.

In [29], the current density amplitude J is assumed to be constant. This
work extends the approach and J is calculated from the thermal (cooling)
considerations, which, as shown later, significantly influence the achievable
torque and force.

2.3 Interior Rotor Scaling Laws

2.3.1 Torque Scaling Law

According to the fundamental expression for 3-phase permanent magnet
electric machines, the torque magnitude Ty is proportional to the product of
the flux linkage ¥ and the current amplitude iy, of the symmetric 3-phase
winding system, i.e. Ty ~ Wl The flux linkage ¥ is the total flux linked
with the N turns of the stator winding. Therefore, the flux ® that penetrates
the stator from the air gap is N times smaller, i.e. ¥ = N ®, and consequently
the torque is proportional to Tjn; ~ d-N fint. Furthermore, & is proportional
to the flux density in the air gap B,; and the air gap area A,g, while Nfint
represents the magnetomotive force, which can be written as the product of
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the current density amplitude ]Aint and the winding area Ay, i.e. N fint = ]AintAw.
Finally, the torque is proportional to Tint ~ AagAwBagJint-

The air gap and winding areas, A,; and Ay, can be further expressed by
the geometrical parameters R and r (the outer and inner radii of the winding
volume) shown in Fig. 2.4(a). For the air gap area the expression A,z ~ rL is
applied, where L equals the assumed stator length, and for the winding area
the expression Ay ~ (R? — r?) is used. Since in the conducted analysis, the
air gap flux density B, is assumed to be constant, the torque can be scaled
as Tint ~ r(R? = r?)L - Jint which corresponds with the scaling law deduced

n [29]. If a relative parameter x; = r/R is introduced, the torque is obtained
as

Tint = KT . RSL : xr(l - xr2) : jints (2-1)

Tab. 2.2: Parameters used in FEM simulations.

Parameter Name Value/Expression
Geometrical
Length (L) 100 mm
Outer Radius (R) 100 mm
Rotor Back Iron Thickness 2mm
Stator Back Iron Thickness 2mm
PM Thickness 2mm
Number of Rotor Poles for Rotation 16(8)*
Number of Rotor Poles for Linear Motion 16(8)*
Number of Stator Teeth for Rotation 6
Number of Stator Teeth for Linear Motion 12
Total LiRA Volume (V') mR*L
Stator Volume (Vstator) m(R* —r?)L
Relative Winding Radial Size (x;) r/R
Magnetic / Electrical
PM Remanent Flux Density 13T
Rotor/Stator Core Relative Permeability 10 000
Copper Specific Electric Resistance at Ty, (pcu) 2.36 X108 Qm
Relative Copper Volume (key = Veu/ Vistator) 0.36
Current Density Constant (Kj) 24/AT [ (peuken)
Thermal
Winding Temperature (Ty,) 120°C
Ambient Temperature (T,p,) 40°C
Temperature Difference (AT) Tw — Tamb
Heat Transfer Coefficient (h) 10 W/ (Km?)
Winding Thermal Conductivity (Ay)** 2W/(Km)
Iron Core Thermal Conductivity (Ag) 22W/(Km)

*Pole number values for S-{Rotor} are in brackets.
**Measured value, see [37].
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Fig. 2.4: (a) Cross section of the Interior Rotor actuator with outer and inner radii, R
and r, of the actuator stator winding volume, and (b) the assumed lumped-parameter
steady-state thermal model of the actuator with interior rotor.

where Kt is an absolute torque constant that is given in Tab. 2.3 for the
analyzed LiRAs.

As already mentioned, in contrast to the constant current density ampli-
tude Jin; assumed in [29], in the following a loss-dependent current density
Jint = Jint(Pew) is considered, which is given by the maximum allowed copper
losses P, in the stator windings. Based on the Py, = 1/ 2Rcufi2m, the current
density can be expressed as Jint = V(2Pey)/ (peuVeu), where pey is the specific
resistance of copper and V,, the copper volume of the stator, which is given
as Vey = keuVstator (cf. Tab. 2.2).

The allowed copper losses P, are deduced from the actuator’s thermal
properties, whereby the two heat transfer modes are considered: (1) radial
heat flow through the windings by thermal conduction, modelled by the
thermal resistance fo}]‘ and (2) radial heat convection on the outer surface
of the actuator to the environment, modelled by the thermal resistance Rgflt,
which assumes a certain loss per surface area. The two thermal resistances
can be obtained as

th _ iln(R/r) th 1 1

in =T 2xL out =y o TRL’

(2.2)

where Ay is the specific thermal conductivity of the winding and A is the heat
transfer coefficient from the actuator’s outer surface to the environment (cf.
Tab. 2.2). The assumed thermal model is shown in Fig. 2.4(b). The allowed
copper losses are obtained as P., = AT/ (Ritil1 + Rgl‘n).

The copper volume can be calculated as Vo = key - 7(R?* — r?)L, where
kcy is considering the amount of copper volume relative to the total stator
volume. Assuming a winding fill factor equal to 0.6 and winding volume
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2.3. Interior Rotor Scaling Laws

to stator volume ratio of 0.6, i.e. 60% while 40% is iron), k¢, is calculated as
kew = 0.6 - 0.6 = 0.36 (cf. Tab. 2.2).
Accordingly, the current density amplitude is calculated as

1 1 1

= I<] . — R
R \1—x2 \/ln(l/xr) L1
Aw hR

]int

where Kj is given in Tab. 2.2.

The loss- and geometry-dependent current density Ji,; can now be used in
(2.3), in order to obtain the expression for the loss- and geometry-dependent
torque Tiy of the interior rotor actuator. Another important quantity is the
torque density t; = Tint/V, which equals the torque T divided by the total
rotary actuator volume V (cf. Tab. 2.2) and results in the following expression

2 1

KtK
S 1-xf ————— (2-4)

tint = X .
S T (/%) R
V' A R

The first factor is constant, while the second term only depends on the relative
quantity x;. The last factor, which comes from the thermal considerations,
depends on both, the relative parameter x, and the absolute parameter R.
Additionally, the last factor depends on the thermal parameters Ay, and h. In
order to examine the influence of these two thermal parameters, the extreme
cases when A, — oo or h — oo are analyzed. Both cases can be physically
interpreted and are shown in Fig. 2.5(a).

If A, — oo, then thrl; — 0, which means that the temperature drop inside
the windings can be neglected. This can be related to the scenario in which
the heat transfer coefficient & is low (e.g. natural air cooling), i.e. heat transfer
to the ambient is so low such that the temperature drop inside the winding
becomes negligible. In this scenario, the torque density t;,; depends on the
absolute value of the outer radius as #in; ~ VR and its maximum is achieved for
X = 0.707 (maximum of the function x,/1 — xZ, cf. red curve in Fig. 2.5(a)).

If h —» oo, then Rg‘lt — 0, which means the case temperature of the
actuator is fixed. This corresponds to the scenario where the heat transfer
coefficient h would be very high (e.g. water cooling), such that the main
temperature drop occurs inside the machine. This is represented with the
green curve in Fig. 2.5(a), which is a monotonically increasing function, since
in case the windings get thinner (increasing x,), the thermal resistance RL}:
of the winding in radial direction is decreasing. Consequently, more copper
losses can be dissipated and a higher torque can be generated.
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Fig. 2.5: Scaling law of the achievable torque density for the Interior Rotor actuator.
(a) Overall torque density iy (blue), and for the cases where either Ay, — oo (red) or
h — oo (green). (b) Verification of the analytically derived torque density tj,; with
FEM simulations. The parameters used in the simulation are given in Tab. 2.2.
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2.3. Interior Rotor Scaling Laws

The curve that considers both, inner and outer thermal resistances, is
always below the curves of the discussed scenarios (cf. Fig. 2.5(a)), as it is
limited by both thermal resistances. This curve is also verified with FEM
simulations as shown in Fig,. 2.5(b).

2.3.2 Thrust Force Scaling Law

Similar to the torque, the thrust (axial or drive) force Fiy is proportlonal to
the flux linkage and the 3-phase current amplitude, Fip; ~ ‘I’Lnt and therefore
is proportional to Fint ~ AggAwBag ]mt. The air gap and winding areas, A,y
and Ay, can be deduced by using the geometrical parameters R and r from
Fig. 2.4(a). Similar to the derivation from Section 2.3.1, Ay; ~ rL, while the
winding area is Ay ~ (R —r) L. Assuming the air gap flux density By, to be
constant, the force is proportional to Fiye ~ #(R —r)L? - ]}nb and by using the
same relative parameter x,, can be written as

Fint = K¢ - RPL? - (1= %) = Jonts (25)

where K is an absolute axial force constant that is given in Tab. 2.3 for the
analyzed LiRAs.

The cooling properties are assumed to be the same as in the case of the
rotary actuator, thus the current density Jiy is also given with (2.3) and can
be inserted into (2.5). Similar to the torque density, the force density fi,; can
be derived by dividing the force Fj, by the total linear actuator volume V (cf.
Tab. 2.2), which results in

KrKy L 1—x 1
ﬁnt = .. Xr . . (26)
7 R "Nl+x In(1/x;) . 1

Aw hR

Compared to the torque density in (2.4), the force density has a factor L/R,
which means that the force density is increasing with a decreasing actuator’s
outer radius. Hence, linear actuators (motors) are typically built with rather
high length over radius (L/R) ratios.

The last factor in (2.6), which considers the thermal properties of the
machine, is the same as the one in (2.4), therefore a discussion similar to
Section 2.3.1 is conducted here.

If Ay — oo, the force density depends on the absolute outer radius and
length as fiye ~ L/VR. The influence of the relative parameter x; is reduced to

fint ~ %/ (1= x;) /(1 + x;), which is shown in Fig. 2.6(a) with the red curve
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Fig. 2.6: Scaling law of the achievable force density for the Interior Rotor actuator.
(a) Overall force density fiy; (blue), and for the cases where either A, — oo (red) or
h — oo (green). (b) Verification of the analytically derived force density fi,; with FEM
simulations. The parameters used in the simulation are given in Tab. 2.2.
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Fig. 2.7: Tubular linear-rotary actuator with Exterior Rotor with (a) radial and (b)
axial cross sections. Based on the axial mounting of the interior stator, only axial
heat flow is assumed and denoted with the red arrows. (c¢) Corresponding lumped
parameter steady-state thermal model.

fint (A — oo, h). In this scenario, the maximum force density is achieved for
x; = 0.618.

If h — oo, the force density depends on the absolute outer radius and
length as fint ~ L/R, and in addition is again monotonically increasing with
the relative parameter x;. Again, the curve that considers both heat transfer
coefficients Ay, and h is always smaller than the curves where only one of
these parameters is considered. The verification with FEM simulations is
shown in Fig. 2.6(b).

2.4 Exterior Rotor Scaling Laws

2.4.1 Torque Scaling Law

In analogy to the actuator with interior rotor, the torque Tey of the actuator
with exterior rotor is proportional to Teyxt ~ AggAwBag Jext. Based on the ge-
ometric dimensions given in Fig. 2.7, the air gap area can be expressed by
Aag ~ RL, and the winding area by Ay, ~ (R? —r?). Moreover, with a constant
air gap flux density B, the torque is calculated as Ty ~ R(R* — r?)L - Jest-
Finally, using the relative parameter x, = r/R, the torque becomes

Text = KT : R3L : (1 - xf) 'jext, (2'7)

where Kt is again the absolute torque constant given in Tab. 2.3.

For the exterior rotor actuator, i.e. interior stator actuator, the stator can
only be mechanically fixed at one of the axial ends, therefore leading to an axial
heat flow in the actuator (cf. Fig. 2.7(b)). The end with the mechanical fixation
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Chapter 2. Linear-Rotary Machine Realizations and Scaling Laws

is assumed to have a heatsink with an area equal to 7R? and a heat transfer
coefficient h, which results in an outer thermal resistance Rf)}fjt (cf. Fig. 2.7(c)).
Accordingly, due to the axial heat flow, the hot spot temperature is on the
opposite axial end, with the temperature Ty, (cf. Fig. 2.7(b)). It is assumed
that the axial heat flow occurs only in the stator back iron (cylinder with the
radius r), while it is neglected through the winding volume, since the thermal
conductivity in the winding is mainly inhibited by the poor conductance of
the wire isolation and potting material (Ag/Ay, ~ 10). Furthermore, as the
copper losses P, are distributed in the winding volume, the heat generation
is also spatially distributed along the stator, resulting in an inner thermal
resistance RL}: to be half of the total back iron’s thermal resistance R}i‘ ie.
Rﬂ: = Rg‘ /2. Accordingly, the thermal resistances for the tubular actuator
with the exterior rotor can be calculated as

m_ 1 L o1 1
20 mr?’ ot R’

in (28)
where A is the thermal conductivity of iron given in Tab. 2.2. Applying
the same considerations as in Section 2.3.1, the allowed current density is
obtained as

Ay LI ! (2.9)

ext =Ky — - : , 2.9
VL Vi-x \/1£+z
/1fexr2 h

where Kj is given in Tab. 2.2. Inserting this equation into (2.7) and dividing
it by the rotary actuator volume V' (cf. Tab. 2.2), the following expression is
obtained for the torque density

KKy R [, 1
t = — e — . 1-— 2'—. .
ext e \/Z Xy I L+2 (210)
Mex? h

As can be noticed, the torque density t.x; depends on the ratio of the absolute
outer dimensions R and L, which means that making the actuator longer,
reduces the torque density due to the worse axial heat flow. Similarly to
Section 2.3.1, the two extreme scenarios h — oo or A — co can be analyzed
(cf. Fig. 2.8(a)).

Again, the scaling law considering both thermal parameters is verified
with FEM simulations as shown in Fig. 2.8(b).
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Fig. 2.8: Scaling law of the achievable torque for the Exterior Rotor actuator. (a)
Overall torque density fext (blue), and influence of the thermal parameters Ag, (red)
and h (green) onto the torque density fext. (b) Torque density fext verified with FEM
simulation with parameters given in Tab. 2.2.
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Tab. 2.3: Scaling law constants determined by FEM simulations.

Rotor Stator Kt Kg
(N/(Am?))  (N/(Am?))

Interior Rotor

R R 0.83 -

S R 0.35 -

L L - 0.93

S L - 0.48
Exterior Rotor

R R 0.71 -

L L - 0.99

2.4.2 Thrust Force Scaling Law

In analogy to the derivation done for the interior rotor, the thrust force Fex
is given as Feyt ~ AagAwBag jext. The air gap and the winding areas are again
proportional to Ayz ~ RL and Ay, ~ (R —r) L and with the assumption
of a constant air gap flux density By, the force is proportional to Fey ~
R(R—r)L? - Jux. By using x; = /R, the previous expression can be written as

Fext = K - RZLZ . (1 - xr) : jexta (2-11)

where Kr is the force constant and the current density is given with (2.9).
Hence, the force density for the tubular actuator with exterior rotor is obtained

as
KeK;

KrKy '_L' 1—xr. 1 .
T V1+x 1 L 2
__+_
VA x2 A

The force density feyr only depends on the absolute length L and increases
when the length L of the actuator increases. The influence of the thermal pa-
rameters Ag and h is analyzed and shown in Fig. 2.9(a), while the verification
by FEM simulation is shown in Fig. 2.9(b).

In general, for the tubular actuator with exterior rotor and therefore
internal axial heat flow, the consideration of the thermal aspects is very
important, since they influence the actuator geometry significantly as shown
in Fig. 2.8(a) and Fig. 2.9(a).

ﬁxt =

(2.12)

2.5 Scaling Law Constants

In this section, the absolute values of the scaling law constants Kt and K
are given and briefly discussed. Tab. 2.3 summarizes the constants for the
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Fig. 2.9: Scaling law of the achievable force for the Exterior Rotor actuator. (a) Overall
force density fext (blue), and influence of the thermal parameters A, (red) and & (green)
onto the force density fext. (b) Force density fext verified with FEM simulations with
parameters given in Tab. 2.2.
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actuators with {R,L,S}-Rotor and {R,L}-Stator for the interior rotor and with
{R,L}-Rotor and {R,L}-Stator for the exterior rotor. The actuator constants for
the rest of the actuator arrangements from Fig. 2.3 will be analyzed in future
work.

As intuitively expected, the actuator constants for the S-Rotor are around
2 times lower compared to the R-Rotor and L-Rotor. This is the consequence
of the 2 times lower PM cross section area, and therefore around 2 times lower
flux linkage. More detailed analysis of the S-Rotor and its application in high
dynamic positioning systems is explained in [15].

2.6 Design Example Discussion

As an example, in this section, the two possible realization options of the
LiRA-1 (MB, L, R, MB) with interior rotor are compared, i.e. where either
a combination of an L- and R-Rotor or a S-Rotor is used (cf. Fig. 2.1 and
Fig. 2.3). In a first step, the magnetic bearings are not considered, since on
the one hand the MBs are not yet considered in the scaling laws, and on the
other hand the scaling laws are also applicable to machines with conventional
bearings. Furthermore, the design discussion is conducted for the dimensions
also used for the FEM simulations as given in Tab. 2.2. Thereby, the length
L equals the total length of the complete actuator, which means that the
axial stroke (Az), the rotary actuator length Ly and the linear actuator length
L1, have to be accommodated in the total length L. As already discussed,
for the combined LR-Rotor the distance Az between the linear and rotary
machines must be at least as large as the specified maximum stroke zg;,oke,
while for the S-Rotor no distance between the machines is needed (Az = 0).
However, it also must be mentioned that with the S-Rotor lower torque and
force constants are achieved (cf. Tab. 2.3), and therefore the volumes of
the rotary machine Vg and linear machine volume V}, are bigger in order to
achieve the same absolute torques and forces. Hence, considering the volume
between the machines defined by Az as additional actuator volume V,, the
question arises for which range of stroke zg; ok, Which machine realization
results in a smaller overall actuator volume Vy if a given absolute torque T
and force F must be achieved. The total actuator volume is actually defined
as V4 = Vg + VL +V,, which, based on the assumption of a constant outer
radius R for all machines, corresponds to L = Lg + L1 + Az. Accordingly, in
case of the RL-Rotor with increasing Az, the remaining length for Lg and Ly,
is reduced, which in consequence also leads to a reduction of the maximum
achievable force and torque performance, while for the S-Rotor always the
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Fig. 2.10: (a) Achievable absolute forces and torques of the LiRA-1 with interior rotor
arrangement for different lengths of stroke zgoke- The performance of the LiRA-1
with combined LR-Rotor depends on the stroke (solid lines), while it is independent
from the stroke when realized with a S-Rotor. (b) Determining the relative parameter
xr by using the normalized torque and force densities tirrf% = tint/max(tint) and fifﬁl =
fint/max(fint). For the LR-rotor the optimum radius ratios are found at x; = 0.711
for rotary machine and at x; = 0.624 for the linear machine. For the S-Rotor a sub-
optimal value of x; = 0.67 is selected, which however for the given dimensions hardly
decreases the achievable torque and force densities.
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full actuator length L can be shared between the two machines. Moreover, for
both actuator realizations, the length distribution between Lg and L can be
selected arbitrarily. E.g. in the extreme case, where L; = 0 and Lg = L — Az,
the actuator achieves the maximum torque but no axial force is obtained, i.e.
only constitutes a rotary machine. However, if now Ly is decreased, also the
maximum achievable torque decreases linearly, since T =t - Vg ~ t - Lg, and
the axial force linearly increases, since F = f - Vi ~ f - L;. This behavior is
visualized in Fig. 2.10(a) for different stroke lengths zgoke. As can be clearly
noticed, for the LR-Rotor, the achievable torque-force-ratio decreases with
increasing zgyoke and for a maximum stroke of zgyoke = 100 mm neither an
axial force nor a torque can be achieved. On the other hand, for the S-Rotor,
a stroke-independent torque-force-ratio is obtained. In this case, the break
even in performance is roughly found at the half of the total actuator length
L/2 = 50 mm, which means that for axial strokes smaller than L/2 the LR-
Rotor performs better, while for zgoke > L/2 the S-Rotor should be used (cf.
yellow shaded area in Fig. 2.10(b)). The factor 1/2 actually originates from
the ratio of the torque and force constants Kt and Ky, which for the two rotor
types roughly differs by this factor. Hence, zgoke Of the break-even point can
easily be estimated by writing

LR,LR + LL,LR +Az = LR,S + LL,S + Az,

where Krir-Lrir = K1s-Lrs and Krir-Lrir = Kp1r-Lrs must be guaranteed
in order to achieve the same absolute torque and force values. For the sake of
completeness, it must be mentioned that also the relative parameter x, can
strongly influence this break-even point, since for the combined LR-Rotor
both machines can be designed independently, which means that the rotor
radius r can be optimized for each machine, i.e. always the optimum x, can
be selected, while for the S-Rotor the same x; for both machines must be
used. This is explained by Fig. 2.10(b), where the two normalized torque and
force densities, achievable for the specifications given Tab. 2.2, are shown.
Accordingly, the LR-rotor would be realized with two different diameters,
where for the rotary machine the optimum radius ratio is x, = 0.711 and
for the linear machine x, = 0.624. For the S-rotor a compromise between
torque and force has to be made, which for the given actuator dimensions is
found at x; = 0.67. As can be noticed, this sub-optimal radius ratio is hardly
decreasing the achievable force and torque densities, however, for other
actuator dimensions can be much larger, which means that the break-even
point concerning achievable performance is shifted to even larger strokes

Zstroke-
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2.7 Summary

This chapter gives an overview of possible realization concepts to build a
linear-rotary actuator (LiRAs) with magnetic bearings (MBs), i.e. a self-
bearing electric machine that can realize coupled linear and rotary movements.
In order to help the designer to easily compare different realization options
and to simplify the selection of the appropriate actuator concept for a given
application, general scaling laws concerning torque and forces considering
also the heat flow inside and outside the actuator are deduced for interior and
exterior rotor arrangements. All the findings are verified with FEM simula-
tions. The scaling laws are also applicable to special actuators (checkerboard
or double stator) as well as to standard rotary and/or linear actuators with
conventional bearings, as was also done for a design example in this chapter.
The comparison of linear-rotary actuators realized with either separate linear
and rotary machines or a combined linear-rotary machine showed, that the
separate realization outperforms the combined actuator with respect to the
total actuator volume as long as the linear stroke is smaller than half the
length of the total actuator. Furthermore, depending on the outer dimensions
given by the underlying application, this break-even point can be even shifted
to larger stroke values, since for the separate realization both machines can
be optimized independently, while for the combined actuator a compromise
has to be made.

The derived scaling laws have importance in an initial design decision
making, as discussed in the design example Section 2.6 of this chapter. There-
fore, they are used later in the thesis, in an initial design of the MALTA in
Section 4.5 of Chapter 4 to make a decision on the mover diameter range
that in the next step should be optimized using 3D-FEM.

The following Chapter 3 deals with complex space vector modeling for
linear-rotary machines, which is necessary to understand their behavior in
stationary dq reference frame. These models are finally used for the position
and the current controller designs in the later chapters.
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Generic Complex Space Vector
Modeling

To decouple the control of the torque, drive force and/or bearing force of a
magnetically coupled linear-rotary actuator, a modeling of phase windings
and rotor flux linkage in a stationary dq-coordinate system is needed, which
is given in this chapter. The material presented in this chapter is also detailed
in [18].

3.1 Introduction

Actuators that can achieve rotary, linear or coupled linear-rotary motion are
used in many versatile applications [38] such as pick-and-place robots [24,39],
active suspension systems [40], compressors [41], wave energy harvest-
ing [42], to mention a few. One of the main parts that limits the performance
of the linear-rotary actuators are the bearings. Most of the conventional actu-
ators use mechanical bearings, either ball or slider bearings. These bearings
introduce drawbacks such as particle generation and the need for lubrication,
which is a limiting factor for purity sensitive applications. In high-precision
applications (~ nm range), the thermal expansions of the mechanical bear-
ings limit the precision of the system and make it temperature dependent.
Moreover, mechanical bearings limit the lifetime of the actuator [43]. In
order to partially overcome these issues, in some applications air bearings
are used [30,44], which on the other hand increase the system complexity
due to the needed external air supply and the operation in low pressure en-
vironments is not possible. All the above mentioned issues may be solved
with magnetic bearings (MBs) [22], which are already largely employed in
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high-purity [45], high-speed applications [46], ultra high-speed systems [47]
or nanometer precision planar actuators [48]. However, the usage of MBs in
linear-rotary actuator systems has not been thoroughly studied in literature.
In [34] and [35], tubular linear actuators with separate and integrated MBs
are shown, but mainly focusing on the magnetic design without extensive
details about the models used for control system design and implementation.
In [35], the integration of the two machines (the linear and the rotary MB ma-
chine) results in a winding similar to the magnetically coupled linear-rotary
machine winding [19]. Such a machine, having the winding used for the
magnetic levitation that is at the same time magnetically coupled with the
linear motion, requires a decoupling transformation that clearly indicates
the current components contributing only to the MB forces or only to the
thrust force. Only in this case, an independent and decoupled control of the
mentioned forces can be achieved. Therefore, in this chapter an enhanced
complex space vector model is derived which allows to control any linear-
rotary machine with/without MBs based on only one space vector, which is
actually rotating in two complex planes, one for the rotary and one for the
linear movement. This model may also directly be applied to a linear machine
with integrated MBs [35], which is a special case of the linear-rotary machine
with zero rotational speed. Moreover, in order to easily follow the derivations,
standard complex space vector models of the rotary and linear machines with
and without MBs are revisited and a general three-phase machine model used
throughout the chapter is established. To my best knowledge, for the first
time in the literature, a complex space vector of the coupled linear-rotary
machine is formulated and used to explain the torque, thrust force and the
magnetic bearing force generation principles.

3.2 Complex Space Vector Model

In general, complex space vector theory may be used to model symmetric,
asymmetric, sinusoidal and non-sinusoidal steady state and transient phe-
nomena of three-phase electric machines [49]. More frequently the algorithm
is used for three-phase machines, but may be also used for multi-phase ma-
chines, with a phase number higher than 3, which are gaining more and
more attention [50], [51], [52], [53], [54]. Moreover, it can also model the
saturation effects in machines [55]. Mainly, it is developed to describe the
transient behavior of electric machines, where traditional single-phase equiv-
alent circuits cannot be used [56], especially in modern actuator systems,
where electric machines rarely operate in a steady-state sinusoidal regime
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3.3. Rotary Machine: Torque
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™
(b) \or-

Fig. 3.1: Example of a rotary machine realization with (a) 6 concentrated coils in the
stator and (b) 8 poles in the rotor, i.e. the number of the pole pairs is Nppr = 4. The
mechanical rotational speed of the rotor is Qpecp, and it is related to the electrical
angular speed as wr = NppRQmech-

@)

with constant amplitude and electrical frequency of the supply voltage. For
the first time, the space vector theory was introduced in [57] and the purpose
was to model alternating current (AC) machines. Today, in modern industry,
complex space vector theory is used to model three-phase systems, such that
in three-phase power converters, which are either connected to a three-phase
electric grid [58] or to a three-phase electric machine [59-63], the phase cur-
rents and voltages are properly controlled. Compared to the other approaches,
e.g. generalized machine theory where a pure mathematical formalism is
applied and an electric machine is viewed 'from outside® as "black box’, with
electric currents at the input and torque and/or force at the output, space
vector theory allows to view a machine ’from inside’ and model the spatial
field distribution in the air gap [64].

Based on this, in this section the complex space vector models of
three-phase electric machines, focusing on the magnetic coupling of the
rotary and linear motion [19] with MBs, are derived. In order to introduce
a general three-phase electric machine model, the derivation starts with the
conventional rotary machine and develops further towards the linear-rotary
machine with MBs.

For the sake of clarity, i and j are used to denote complex units of the
two different complex planes related to rotation/magnetic levitation and
linear motion, respectively. For the notation of electric currents always either
indices or the complex space vector notation i or i is used.

3.3 Rotary Machine: Torque

An example of a three-phase electric machine with 6 teeth in the stator
and 8 poles in the rotor is shown in Fig. 3.1. For different machines these
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Fig. 3.2: (a) Three-phase electric machine model with the 3 coils spatially displaced
by 120° and a 2-pole rotor. The mechanical rotational speed of the rotor is equal to the
electrical angular speed of the modeled machine (for the rotary machine wg). (b) The
complex space vector machine model represented either in the stationary reference
frame (R, J) or in the rotary reference frame (Rqq, Iqq)-

numbers may differ, but they would still have a three-phase system in the
stator. In order to simplify and generalize the analysis of three-phase electric
machines, a model with 3 stator coils and a 2-pole rotor is used, as shown
in Fig. 3.2(a). It should be noted that this model can resemble concentrated
and distributed stator windings, with or without iron teeth, i.e. slotted or
slotless windings, which are spatially displaced by 120°. Furthermore, also the
electrical quantities such as the voltages on the terminals u,}, ¢}, the currents
in the coils i(,},c) and the flux linkages of the coils /(4,c} are shifted by 120°
in time (cf. Fig. 3.2(a)). These quantities are described by their amplitude Xg
and phase wrt + ¢y as

Xa cos (wrt + @x + Ya)
Xp| = Xr - [cos (wRE+ @x + 1) |, (3.1)
X cos (wrt + @x + ¥e)

where x can be any of the quantities u, i or { denoted as x € {u, i, ¥} with
the amplitude Xg € {Ug, Iz, ¥z }. The initial phase angle is given as ¢, while
Ya = 0° yb = —120° and y. = 120° are the electrical angles that determine
the three-phase system, where the three phases for the rotation are denoted
with lowercase letters as ‘a’, ‘b’ and ‘c’. For symmetric electric machines, the
sum of the quantities is equal to zero, i.e. x, + x, + x. = 0. Consequently,
the three-phase system {x,, x, x. } is determined by knowing only 2 out of
3 quantities (e.g. if the first two quantities are given, the third one is x. =
—X, — Xp). This allows to model the three-phase system in a two-dimensional
coordinate system, i.e. the complex plane (R, J), which is extensively used
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3.3. Rotary Machine: Torque

in the analysis of three-phase electric machines. As shown in Fig. 3.2(a), the
complex plane (R, J) is superimposed to the general three-phase electric
machine model. Based on that, a complex space vector may be defined using
the positions of the coils in the model and the instantaneous values of the
three-phase quantities as

A

x==[1 a &]|n (32)

[SSH V)

where a = ¢'(>7/3) is a complex number and i the imaginary unit. This results
in a space vector rotating in the complex plane (R, J) which fully describes
the three-phase quantities present in the windings. The amplitude of the space
vector is the magnitude |§| = Xg and its argument equals the phase of the
quantities arg(x) = wrt + @y, which is graphically represented in Fig. 3.2(b).
This can be directly seen by writing the space vector in its exponential form

x = XelPx @Rl
The instantaneous values of the quantities are again simply obtained as
% = Rix}, x, = R{a’ x}, xe = Riax}.

The space vector model of the three-phase electric machine can be further
simplified by its representation in the rotary complex frame (Rqq, J4q), also
known as dq-frame. The complex space vector in the dg-frame rotating
with the angular frequency wgr removes the electrical angular speed from its
representation and it is equal to x4, = x e 1Rt = Xei0x (cf. Fig. 3.2(b)). Its
real and imaginary components (gdq = xq + ixq) are known as dg-components

and are related to the amplitude and phase angle as Xg = , /xﬁ + x4 and

¢x = atan2(xq/xq), where atan2 is the function that calculates the angle
between the x,;. and the d-axis considering also the periodicity between
+7/2 of the tangent function [65].

In summary, the three-phase electric machine quantities may be rep-
resented either with the three-phase electric machine model shown in
Fig. 3.2(a) in combination with the system of equations given in (3.1), or
with the complex space vector model from Fig. 3.2(b), which is equal to x in
the stationary complex frame or x dq in the rotary reference frame.

The established three-phase electric machine complex space vector rep-
resentation may also be used to determine the electromagnetic torque T,
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of the machine. For this purpose, in the first step the instantaneous input
electric power is determined. By using the three-phase quantities given in
(3.1), the instantaneous electrical power is calculated as pel = X k= (q,p,c} Ukik-
The same power may be obtained by using the complex space vectors of the
voltage and current as pe = R{3/2ui*} = R{3/2 Uyq E’iq}, where * denotes
the conjugate complex number. In both cases, it is necessary to determine
the voltage equation. The three-phase model will have 3 voltage equations
(i.e. one equation per coil), which can be put together into a single complex
space vector equation by using the transformation defined in (3.2) as

di
a ' dr
where R is the resistance of the coils and L is the inductance (cf. Fig. 3.2(a)).
It should be noted that the mutual inductance between the coils in Fig. 3.2(a)
is neglected in order to have a clearer presentation, but can be easily included
while (3.3) would have the same form. By using (3.3), the electric power is
equal to

u=Ri+ (3-3)

3 ., 3 di .| 3 ay |
peI:ERI§+EL%{d_;£}+E%{d_;£} (34)

The first term 3/2 RIE models the copper losses in the stator winding, the
second term 3/2L R {di/dt 5’*} represents the power used to change the
magnetic energy in the machine, while the third term 3/2 R {dtﬁ/ dt 1'*} is
further analyzed. The space vector of the flux linkage i can be_expressed
as § = Wpel®v el = (yy + itfq) e, Usually, the rotati_ng complex frame,
the dg-frame, is positioned such that the d-axis Rqq coincides with the flux
linkage space vector 1, which leads to ¢, = 0° (cf. Fig. 3.2(b)). Therefore, the

flux linkage space vector in the stationary complex frame is { = Wre'*!, while

in the rotary dq-frame tﬁd = ) = ¥g. Similarly, the conjugate complex space
—dq

vector of the current in the stationary complex frame is i* = (i dqei“’kt )=

5 e '@t where the complex conjugate in the dg-frame is i, =ia—iiq. Using
Lig q
these expressions for i and i*, the third term of (3.4) is further developed as

dy
3 7. 3 d‘I/R .
Eﬁ{al} 2 gy later; ‘I’qu, (3:5)

where the first term only results when also a change in the flux linkage
magnitude ¥y is considered. Hence, this term represents the power necessary
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3.4. Rotary Machine: Bearing Force

to change the flux linkage ¥g, e.g. used for field weakening operation of the
electric machine and may be changed with the d-component of the current i4.
The second term represents the converted power of the machine, which at the
shaft is equal to pmech = Qumech Tz, Where Qpech is the mechanical rotational
speed of the rotor in rad/s and T, is the electromagnetic torque. Having in
mind the relation of the electrical angular speed and the mechanical speed
R = NppRQmech, Where Ny, g is the number of pole pairs in the rotor, the
mechanical torque is equal to

3 .
Tz = 5 pp.R \Pqu- (36)

Therefore, the mechanical torque is controlled by the g-current component

(iq).

3.4 Rotary Machine: Bearing Force

Rotary machines are mainly used to generate torque, but may also be used
to generate the bearing force if the winding configuration, i.e. the inter-
connection between several phase windings is accordingly adjusted. For a
given number of stator teeth and pole pairs Ny, g in the rotor, the winding
configuration for the torque generation can be optimized and is well doc-
umented in literature [66] and there are even online tools for the winding
configuration calculation [67]. For the bearing force generation the same
winding arrangement as for the torque generation can be used, while only the
winding interconnections have to be reconfigured. This actually results in a
different virtual number of pole pairs of the stator winding, which means that
depending on the winding interconnection a different stator field harmonic is
pronounced by the three-phase currents. For example, if the number of the
pole pairs in the rotor is Ny, g, the winding configuration optimized for the
torque generation with N, 3 = Nypr + 1 pole pairs should be used to gener-
ate the bearing force. In literature, this is known as the self-bearing motor
Nppr = 1type [22,68]. To show this in an example, the winding configuration
of the machine shown in Fig. 3.1, which has concentrated windings with 6
teeth and a rotor with Nppr = 4, is analyzed and reconfigured, i.e. changing
the interconnection of phase windings, such that the rotary machine can also
generate the bearing force. Hence, in order to generate torque, the stator
winding should be connected such that the three-phase currents in the coils
have directions as denoted in Fig. 3.1(a), which can be represented with the
set as Wr = {iy, ib, ¢, La, ib, ic }- As already mentioned, to use the same winding
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for the bearing force generation, a winding configuration for Ny,3 = 4 1
pole pairs should be used. Since it is not possible to have a concentrated
winding with 6 teeth and 3 pole pairs [67], a winding configuration that is
able to generate N = 5 pole pairs has to be used, which in this case means
that the coils are connected as Wy = {i,, —ib, ic, —la, ip, —ic }. In contrast to Wr,
the winding configuration Wi actually means that now the two correspond-
ing phase windings are connected in anti-series instead of being connected
in series, thus by applying the three-phase currents to the rotary electric
machine shown in Fig. 3.1, with the W winding configuration the bearing
force onto the rotor is generated.

In order to control the magnetic bearing forces (Fx and Fy), a three-phase
model of the magnetic bearing machine similar to the one shown in Fig. 3.2(a)
is established. The difference between the torque machine winding and the
bearing machine winding is that now due to this anti-series connection of the
phase windings the overall flux linkage in the bearing winding, i.e. the sum
of the flux linked with both phase coils, is equal to 0 when the rotor is in its
center position, i.e. when there is no radial displacement of the rotor, x = 0
and y = 0, independent from the angular position of the rotor. A non-zero
flux linkage in the bearing winding only appears when a radial displacement
of the rotor is present. To model this, the coils in the three-phase electric
machine model from Fig. 3.2(a) are split in half, placed at both sides of the
rotor and are connected in anti-series as shown in Fig. 3.3(a). As will be
explained in the following, with this arrangement the total flux linkage in all
coils becomes non-zero when the rotor is displaced from the center, i.e. x # 0
and/or y # 0, and can be calculated as

I//{a,b,c} :dd%x COS(th + oy + {Yas Ybs YC})_
: (3.7)
d¥r .
Wy sin(wrt + @y + {Va, Vo> Ye 1)

where d¥g /dx and d¥ /dy are the change of the flux linkage with respect to
the radial displacement. The deduction of this radial displacement-dependent
flux linkage given in (3.7) is explained for phase ‘a’ based on Fig. 3.3(b-d).
In a first step, a displacement in x-direction is assumed, while the rotor flux
is also pointing in positive x-direction. As shown in Fig,. 3.3(c), a displacement
in positive x-direction leads to an increased flux linkage in the right coil, while
the flux linkage with the left coil is reduced, thus the total flux linkage with
both coils is increasing. Assuming a certain constant sensitivity d¥ /dx =
Xpm,x the resulting flux linkage can be calculated as (d‘ifR /dx) X = Xpmx X. As
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Fig. 3.3: (a) Three-phase electric machine bearing force model where a radial displace-
ment of the rotor in x- and y-direction is allowed. It is derived from the three-phase
machine model shown in Fig. 3.2(a) by splitting the coils in half, placing them at both
sides of the rotor and connecting them in anti-series. This allows to model the bearing
winding, in which the flux linkage only exists when the rotor is displaced from its
center. (b) Radial flux density component of the rotor PMs. The rotor is in the center
and, therefore, the flux linkage of the first phase 5, = +yy — ¥ = 0. (c) The rotor is
displaced in x-direction by x with the rotary orientation (wrt+¢y) = 0. Consequently,
there is a non-zero flux linkage in the first winding ¢, =+ + AY — ¢ + Ay = 2A¢,
which we model with the sensitivity d¥g /dx. This results in the flux linkage of the
first phase y, = (d¥g/dx) x. (d) The rotor is displaced in y-direction by y with the
rotary orientation (wrt + ¢y) = 7/2. Both winding sides experience negative flux
increase, resulting in the flux linkage ¢, = —Ay — Ay = —2Ay. Again, we model it
with the sensitivity d¥g /dy, resulting in the flux linkage of ¥, = —(d¥g/dy) y.
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can be noticed, however, this is only true when the rotor’s angular position is
equal to (wrt + @) = 0°. If e.g. the rotor is rotated by 180", the flux linkage
would be the same as with 0°, but in the negative direction, which means a
multiplication by —1. Furthermore, at the angular positions 90° and 270° a
displacement in x-direction ideally does not result in any total flux linkage.
Consequently, the arbitrary rotational position of the rotor (cf. Fig. 3.3(c))
has to be considered, which for an x-displacement can be done by multiplying
(d‘i’R/dx) X = Ypmx X With cos(wrt + @y + ¥a).

In analogy to the x-displacement, the influence of a y-displacement can
be analyzed. As it may be imagined based on Fig. 3.3(d), when the rotor
flux is pointing in y-direction, the resulting flux linkage of the phase ‘a’ is
(-d¥p/dy)y = — Xpmy V- if again a certain constant sensitivity d¥p/dy =
Xpmy is assumed. Furthermore, the flux linkage again depends on the rotating
position, which for a y-displacement has to be considered with sin(wgt +
@y + Ya) and thus leads to the second term of (3.7). By applying now the
transformation given in (3.2) and assuming that Ypmx = Ypmy = XpmR. the
complex space vector of the bearing flux linkage in the stationary complex
frame is obtained

% = XpmR (X + ly) eitp,/,eiwkt, (3'8)

where x and y equal the radial displacements [69]. The complex space vector
of the flux linkage in the rotary dg-frame is Kd = Jpmpr (x +iy) €%v. Since
q

the rotating dg-frame is positioned such that ¢, = 0, the complex space vector
of the flux linkage is then equal to !d = YpmR (x +1iy).
q

To obtain the expressions for the mechanical bearing forces Fy and Fy,
similar as for the mechanical torque, the expression of the instantaneous
electric power pe is analyzed. The electric power may be obtained by using
the complex space vectors as pg = R{3/2ui*} = R{3/2 gdqizq}, which
results in the same expression found in (3.4). Accordingly, for the mechanical
bearing force analysis only the last term given in (3.4) is needed, which leads
to

3 (4 | 3 . .
E% {Ei } =5 XpmR (vxia +vyiq) +

3 . .
2 XpmR @R (xiq — yia)

(3.9)

where vy = dx/dt and vy = dy/dt are the rotor velocities in x- and y-direction.
The total mechanical power with the allowed radial displacement of the rotor
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Fig. 3.4: (a) A three-phase electric linear machine stator realization with 6 teeth single
layer winding. (b) Rotor (also called 'mover’ for linear machines) with 4 poles. The
pole pair width (twice the pole pitch) is denoted as 7pp.

iS Pmech = Ox Fx + 0y Fy + Quech T,. Comparing the terms of ppecn with the
terms in (3.9), the bearing forces are

3 . 3 .
F, = EXPmsR i F, = EXP‘“’R iq- (3.10)

As can be noted, the radial force components can be independently controlled
with iq and iy current components of the bearing winding. In addition, there
is a parasitic torque created when the rotor radial displacement is non-zero,
which is equal to T, = (3/2) Nppr XpmR (xiq— yiq) and has to be compensated
by the controller.

3.5 Linear Machine: Thrust Force

An example of the three-phase electric linear machine realization is shown
in Fig. 3.4. It should be noted that instead of the pole pair number for the
rotary machine, the pole pair width 7, is given for the linear machine.

From the perspective of the electrical machine analysis, the three-phase
linear electric machine is similar to the rotary machine, i.e. the stator winding
is characterized by the three-phase voltage, current and the flux linkage

XA cos (wpt + 0y +ya)
xg| =Xy - |cos(wpt+0x+ys)|, (3.11)
xc cos (wLt + 0x + yc)

where XL € {UL, fL, ‘i’L} is the amplitude, «, is the linear machine electrical
angular speed, 0y is the phase angle and ya = 0°, yg = —120° and y¢ = 120°
are the electrical angles that determine the three-phase system, where the
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three phases for linear motion are denoted with uppercase letters as ‘A’, ‘B’
and ‘C’. Therefore, the same model as depicted in Fig. 3.2 may be used for
the linear machine analysis. In the rotary machine the rotational mechanical
speed Qpech is related to the electrical angular speed wg, while for the linear
machine the linear mechanical speed v, is related to the linear machine
electrical angular speed as

2
WL, = — 0. (3.12)
Tpp

Similar to the rotary machine, where the electrical power is analyzed based on
(3.4) to get the expression for the mechanical torque, for the linear machine
the same expression can be used, just with the linear machine quantities.
Therefore, the last term of (3.4) is

dy }
3 Y . 3d¥; 3.
5%{55 } =3 a atoptiie (323

where ¥ is the flux linkage of the linear machine. The first term again
describes the magnetic power to change the flux linkage (flux weakening),
while the second term is related to the mechanical output power. By using
(3.12) and the mechanical power ppech = v.F;, the thrust force is obtained as

3 ..
F, = —Yiig. (3.14)
Tpp

In analogy to the mechanical torque obtained in a rotary machine, the thrust
force is controlled by the g-current component i,.

3.6 Linear Machine: Bearing Force

In order to generate and control the bearing force onto the rotor of a linear
machine, the air gap flux density has to be controlled around the rotor circum-
ference such that a ‘radial pull’ is created in the desired direction. However,
the three-phase linear machine has a winding that is circumferentially homo-
geneous (cf. Fig. 3.4(a)). Consequently, the air gap flux density around the
circumference cannot be adjusted with the linear machine winding. Therefore,
the conventional linear machine cannot be used as a bearing machine.
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3.7 Linear-Rotary Machine:
Torque + Thrust Force

A linear-rotary machine may be realized by coupling a rotary and a linear
machine either mechanically or magnetically. The analysis of the linear-
rotary machine with the mechanical coupling may be split into the separate
analyses of the rotary and linear machines explained in Section 3.3 and
Section 3.5, respectively. The analysis of the linear-rotary machine with the
magnetic coupling is clarified in this section. A realization example of such a
machine is shown in Fig. 3.5. Since the stator windings have to be able to
generate torque and thrust force at the same time, concentrated stator coils
are needed, which can be seen as a combination of the winding arrangements
used for the rotary machine (denoted with lowercase letters {a,b,c}) and the
linear machine (denoted with uppercase letters {A,B,C}). As illustrated in
Fig. 3.5(a), the concentrated coils of the linear-rotary machine resemble the
rotary machine in rotary direction and the linear machine in linear direction.
Similarly, the rotor’s PM arrangement results from a combination of the PM
arrangement needed for the rotary machine and the linear machine, which
leads to a checkerboard-type PM arrangement (cf. Fig. 3.5(b)). Therefore,
the number of pole pairs in rotary direction is again Nppr, and the pole pair
width in linear direction is zpp.

Finally, also the voltages and currents which have to be applied to the
magnetically coupled linear-rotary machine windings can be seen as a combi-
nation of the quantities needed for the rotary machine and the linear machine.
Compared to a conventional rotary machine, for example, this means that
for the linear-rotary machine also a rotating flux density has to be generated
by the stator windings in order to produce torque, however, in this case also
the linear position of the rotor has to be considered, since for each rotary
three-phase winding set (e.g. {aA, bA, cA} compared to {aB, bB, cB}) the PM
alignment below each three-phase winding set is different and therefore differ-
ent torque-generating currents have to be injected into the rotary three-phase
windings. Accordingly, the same is also true in linear direction, which means
that for the generation of thrust force, for each linear three-phase winding
set (e.g. {aA, aB, aC} compared to {bA, bB, bC}) the rotation angle has to be
considered, since the PM alignment for each linear three-phase winding set
is different. This can be achieved by multiplying the rotary three-phase quan-
tities (e.g. cos(wgrt)) with the linear three-phase quantities (e.g. cos(wrt)),
which corresponds to a modulation of the rotary quantities in linear direction
with the electrical angular speed wp, and a modulation of the linear quantities
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Fig. 3.5: (a) A linear-rotary machine stator realization with 6 teeth for the rotation
and 3 teeth for the linear motion. (b) The rotor of the linear-rotary machine with
Npp.r = 4 pole pairs for the rotation and with a pole pair width of zp, for the linear
motion.

in rotary direction with the electrical angular speed wgr. Therefore, the phase
quantities of the linear-rotary machine have the following form

X{abc) {ABC} = XRL €08 (Rt + @x + {Yas Ybs Ve }) ¥

(3.15)
cos (wrt + 0x + {ya, yB. yc})

where X € {URL, Ik, ‘ifRL} is the amplitude, ¢, is the rotary initial phase
angle and 6, is the linear initial phase angle. It should be noted again that the
lowercase letters {a, b, c} denote the rotary component, while the uppercase
letters {A, B, C} denote the linear component.

In order to unify the analysis of the linear-rotary machines and apply the
same techniques as for the rotary and linear machines, the complex space
vector of the magnetically coupled linear-rotary machine is defined. Hence,
two complex planes are needed, one for the rotary component (with the
complex unit i) and another for the linear component (with the complex
unit j). The complex space vector for the magnetically coupled linear-rotary
machine is defined with the following transformation

XaA XaB XaC

2
[1 a @ |xa xB e
XcA  XcB  XcC

2 (3.16)

112
O |
INIW —

where x € {u,i,¥}, a = ¢®7/3 and b = ¢/?*/3) are complex numbers. It
should be noted that the ‘double underline’ x denotes the complex space

vector with the two different complex units. This results in the space vector
rotating simultaneously in two complex planes, (R, 3%) and (R/, 3/), and
fully describing the phase quantities of the linear-rotary machine. The ampli-
tude of the complex space vector is the magnitude |x| = Xgr and its arguments
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are the rotary and linear phases of the phase quantities, i.e. arg'(x) = wrt+¢y
and arg’ (x) = wrt + 0. This can be seen by writing the complex space vector
in its exponential form as

x = Xppe'Prel¥x lortgiort, (3.17)
- [

X
=dq

where e is the complex space vector in the double-rotary dg-frame. The
q

defined complex space vector (3.16) has 4 components

gdq = X4d + iqu + jxdq + ijxqq, (3.18)
which may be obtained by applying Euler’s formula (e.g. e’} = cos(wgt) +
i sin(wgt)) on each of the exponents in (3.17). The first index of each com-
ponent belongs to the rotary and the second index to the linear machine.
Accordingly, the component x4q equals in both complex planes, i.e. for the
rotary and linear machine, to a real component and thus in both complex
planes is pointing in d-direction. The component ixyq is purely imaginary
for the rotary machine (first index q) and purely real for the linear machine
(second index d), while for the component jxq it is exactly opposite. Finally,
the component ijxyq is a component which in both complex planes is purely
imaginary, therefore in both frames points in g-direction.

In order to obtain instantaneous values given with (3.15) from the complex
space vector x, a similar procedure as for the complex space vector x is applied.
Namely, depgnding on the desired instantaneous component (X{ap,c}{AB.C})
the complex space vector is multiplied at first with either 1, @, a?, b and/or b*
and then the real part R is taken, which can be written as

XaA XaB XaC
xba X Xpc| =R
XcA  XcB  XcC

x[1 b b]¢. (3.19)

1S |QN —_

After defining the complex space vector of the linear-rotary machine,
further calculations are similar as for the rotary or linear machines. Hence,
in order to obtain the expressions for the torque and the thrust force of the
linear-rotary machine, again the power balance, i.e. the conversion from
electrical input power to mechanical output power, is analyzed. The input
electrical power is the sum of the powers of each phase, which can be written
using the double sum operators pel = Y= (ab.c} 2n={A,BC} Ymnimn- It also
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can be calculated using the complex space vectors as pey = R{9/4ui'} =
R{9/4 u, 1'; }, which together with the voltage space vector equation given
=dq =dq

in (3.3) results in

L 9 di | 9 |W
Del RIRL+ LR dt— +Z‘R d—;é* . (3.20)

Similar to the analysis of the electric power expression for the rotary machine
(cf. (3.4)), the first two terms do not contribute to the mechanical power but
consider either the losses in the windings or the change in magnetic energy.

Therefore, the third term 9/4 R {d!/// dt f‘} is further analyzed. As the dg-

frames are oriented in such a way that ¢y = 0 and 0, = 0, the complex space
vector of the flux linkage is then equal to § = ¥z e/**e/“*. The conjugate

complex space vector of the current is equal to i* = Ig e e~/0i g7 iRt gmjeort =
it e—inte—ijt -
:dq

the last term in (3.20) is equal to

, where édq = igq — iiqa — jiaq + ijiqq- Using these expressions,

9% di* 9d‘I’RL N 9\ij N 9\11 (3.21)
— —1 — « i w i .21
4 dr & =2 di dd R RLlqd L RLldq- 3

The first term is the power used to change the flux linkage ¥gy, e.g. used for
field weakening. The other two terms correspond to the mechanical power of
the rotation and the linear motion. Considering the expression for the total
mechanical power obtained at the shaft pech = QmecnT; + v, F, and the ratios
between the electrical and mechanical angular speeds wr = Nppr2mech and
oy, = 271/ Tpp 0,, the torque and the thrust force are calculated as

T, = _Npp,R\iIRL Iqds F, = 9_ RL ldg- (3-22)
4 27pp

As can be noted, the mechanical torque and the thrust force in the linear-
rotary machine can be fortunately controlled with two independent current
components igq and igq, Which for the corresponding machine part, i.e. rotary
or linear machine, equals to the g-current (torque or force generation) and
in the other machine part results in a d-component (field weakening/ampli-
fication). The torque T, and the F, generation is decoupled, i.e. iqq current
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3.8. Linear-Rotary Machine: Bearing Force

component does not cause any axial force, while igq current component does
not cause any torque. It should be mentioned that this result agrees with the
torque and the thrust force expressions derived in [19].

3.8 Linear-Rotary Machine: Bearing Force

Similar to the rotary machine discussed in Section 3.4, the bearing force
may also be generated with the linear-rotary machine. In analogy to the
rotary machine, for the linear-rotary machine the winding configuration has
to be adjusted. Consequently, in order to generate the torque, the winding
configuration in rotary direction is Wr = {iax, ibx, icX> lax, ibX> icx }, Where ‘X’
in the index denotes any of the linear phase components X € {A,B,C}, and
to generate the bearing force, the winding configuration in rotary direction
should be Wi = {iax, —ibx; icx> —lax, ibxs —icx } (cf. Section 3.4).

The flux linkage modeling considerations are similar as for the rotary
machine given with (3.7) and shown in Fig. 3.3, while for the linear-rotary
machine in addition to the rotation angle, which is already considered in (3.7),
also the linear position of the rotor has to be taken into account. Hence, (3.7)
has to be multiplied with cos (wr.t + 0y + {ya, y8. yc}), which in other words
corresponds to a modulation of the flux linkage in linear direction, and results
in the following expression

V{ab.c}{ABC} = XpmRL (x cos(wrt + @y + {Ya Vb Ve })—

y sin(wrt + @y + {Va, Ybs Yc})) X (3.23)
cos (wrt + Oy + {ya, v8 yc}) .

where ypmre is the flux linkage radial sensitivity of the linear-rotary machine.
By applying the proposed complex space vector transformation for the linear-
rotary machines (cf. (3.16)), the bearing flux linkage vector is

¥ = dompr (x + 1) e0v el glonteiont, (3.24)

The complex space vectors of the voltage u and the current i are the same as
for the linear-rotary machine (cf. (3.17)). a )

To determine the bearing forces F, and Fy of the linear-rotary machine,
similar to the previous analysis for the rotary machine, the expressions for
the electrical and mechanical powers are used. The electric power may be
calculated using the complex space vectors (cf. (3.20)). Similar as for the
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Chapter 3. Generic Complex Space Vector Modeling

torque and the thrust force calculation, the last term in (3.20) is further
analyzed

dy
9 Z. 9 . .
" R El :ZXpm,RL(ledd +0yiga+
B (3-25)

wr (Xigq — yida) + wr (xigq + yiqq))’

where vy = dx/dt, vy = dy/dt, o = NppRQmech and o, = 27/1p,0,. The
mechanical power is equal to pmech = 0xFx + 0y Fy + 0, F, + Qpecn T,. By com-
paring these coefficients with (3.25), the bearing forces of the linear-rotary
machine are obtained as

9 . 9 .
Fy = ZXpm,RL ldds F = Z)(pm,RL Iqd- (3.26)

Again, the radial force components of the linear-rotary machine can be in-
dependently controlled with igq and iqq current components of the bear-
ing winding, which in both cases means that the bearing forces are gener-
ated with the linear d-current component. In addition, there are parasitic
torque and thrust force components created when the rotor radial displace-
ment is non-zero. They are equal to T, = (9/4) Nppr YpmpRL (Xigd — yida) and
F, = (97/27p) xpmpRL (Xidgq + Yiqq) and have to be compensated by the con-
troller.

3.9 Linear Machine:
Thrust Force + Bearing Force

As shown in Section 3.6, the linear machine analyzed in Section 3.5 cannot
generate any bearing forces and, therefore, cannot be operated as a self-
bearing machine.

In contrast, the linear machine analyzed in this section can be operated
as a self-bearing machine and can be derived either from the standard linear
machine shown in Fig. 3.4, by interrupting the linear machine winding in cir-
cumferential direction and creating the three new coils as shown in Fig. 3.6(a),
or from the rotary-linear machine discussed in the previous section. Hence,
the resulting machine is a combination of a rotary-linear machine winding
and a linear machine rotor (cf. Fig. 3.6).
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3.9. Linear Machine: Thrust Force + Bearing Force

South
PM Pole

North
/]
(b) PM Pole

Fig. 3.6: (a) Stator winding arrangement of the MALTA with 9 phase windings. (b)
The MALTA rotor is similar to the rotor of a linear machine (cf. Fig. 3.4). Due to
simpler manufacturing, the MALTA rotor has axially magnetized PMs in combination
with iron rings.

This machine type, also called MALTA (MAgnetically Levitated Tubular
Actuator), is for the first time proposed in [35], where the magnetic design
and hardware realization are discussed.

The achievable thrust and the bearing forces of the MALTA are determined
by using the complex space vector models derived for the linear and linear-
rotary machines. It should be noted that they are first analyzed separately,
i.e. it is assumed that the MALTA winding is carrying only the thrust force
current or only the bearing force current, which in the literature is known as
separate winding arrangement [70]. In a second step, the superposition of
the thrust and bearing force currents is analyzed in Section 6.5.

3.9.1 MALTA Thrust Force Generation

From the thrust force generation point of view, the MALTA winding (cf.
Fig. 3.6(a)) behaves the same as the winding of the linear machine analyzed
in Section 3.5 (cf. Fig. 3.4(a)). Therefore, the currents in the MALTA winding
are equal in circumferential (rotary) direction, i.e. iyx = ipx = icx, where X €
{A, B, C}. Consequently, it is enough to analyze one third (one circumferential
third) of the MALTA winding (e.g. coils {aA,aB,aC}). Accordingly, the
findings can afterwards also be applied to the rest of the windings.
Furthermore, the analysis concerning thrust force, which was conducted
for the linear machine (cf. Section 3.5) can also be applied to one third of the
MALTA winding. Therefore, the phase quantities in the MALTA responsible
for the thrust force will have the same waveform as the ones for the linear
machine (cf. (3.11)). After transforming the three-phase currents into the
rotating dg-frame, the iy current component will contribute to the thrust force
generation as 37/, ‘i’Miq, where 1), is the pole pair width in the MALTA
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Chapter 3. Generic Complex Space Vector Modeling

rotor (cf. Fig. 3.6(b)) and Wy is the flux linkage of the MALTA coil. However,
since only one third of the MALTA winding is considered, the total thrust
force of the MALTA is obtained by multiplying the linear machine force
expression with 3, which gives

or ~ .

F,= —Y¥\miq. (3.27)

Tpp
This expression is verified with measurements on the MALTA prototype [35].
The term (97/7,p) P represents the MALTA thrust force constant. The pole
pair width in the MALTA prototype is 7,, = 30 mm and the measured flux
linkage is Wy = 8.35mWb. By using these two values, the MALTA thrust
force constant is calculated to be (97/7,p) $y = 7.8 N/A. On the other hand,
using the external force sensor in the test bench, the value of the MALTA
thrust force constant is measured to be 7.6 N/A (cf. (6) in [35]). The calculated
and the measured value differ only = 2.6 %, which verifies (3.27).

3.9.2 MALTA Bearing Force Generation

The generation of the bearing forces in the MALTA is very similar to the
linear-rotary machine analyzed in Section 3.8. The waveforms of the MALTA
bearing voltage and current match with (3.15), while only wr = 0. Applying
the transformation (3.16), the complex space vector of the voltage and the
current is

_ v iQx ,jO0x ,jort _ Jjort
x= Xppe'?e/> e = édqe , (3.28)

where x € {u,i} and X, = XM,bei¢x ¢/% . Similarly, for the flux linkage, (3.23)
q

may be used, where wr = 0. With (3.16) this results in the complex space
vector of the MALTA bearing flux linkage as

Y = xpma (x +iy) e¥relO e, (3.29)

where ypmm is the MALTA flux linkage radial sensitivity. In order to deter-
mine the bearing forces F, and F, of the MALTA, similar to the linear-rotary
machine, the electric power and the mechanical power expressions are com-
pared. The term of the electric power that contributes to the mechanical
power is the same as for the linear-rotary machine (cf. (3.25)), just replacing
wgr = 0. Therefore, the radial forces of the MALTA are generated as

9 . 9 .
F = ZXpm,M ldd, Fy = ZXpm,M Iqd> (3-30)
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which are the same bearing forces as obtained in (3.26) and are again in-
dependently controlled with the igq and igq current components of the
MALTA winding. In addition, a parasitic thrust force component is cre-
ated when the rotor radial displacement is non-zero, which is equal to
F, = (97/27pp) YpmM (Xigq + Yiqq) and has to be compensated by the con-
troller.

In order to verify (3.30) and to estimate the impact of the parasitic thrust
force, the flux linkage radial sensitivity for the MALTA prototype from [35] is
estimated with FEM. For the MALTA prototype, where each coil has 205 turns,
the average flux linkage radial sensitivity is ypmm = 2.56 Wb/m. Using (3.30),
the term (9/4) ypmMm = 5.75N/A is the MALTA average bearing constant,
since the effective value also depends on the displacement direction, i.e.
whether the rotor is displaced either towards a stator tooth or towards the
stator winding, as explained and measured in [35]. The average thrust force
constant is then 5.94 N/m, which is very close to the value calculated using
(3-30). The value for the flux linkage radial sensitivity y,mm may also be used
to check for the expected parasitic thrust force. For the MALTA prototype
Tpp = 30 mm and if a radial displacement of x = 10 um and an electrical
current of igq = 6 A are assumed, the parasitic thrust force is calculated to be
F, = (97/27p) YpmM (Xiaq + Yigq) = 0.07 N, which is negligible compared to
the MALTA continuous forces ~ 20N (cf. [35]). For the sake of clarity, the
assumed current igq = 6 A is twice the continuous current allowed by the
thermal limit, and only occurs e.g. during transients.

3.10 Summary

This chapter focuses on the complex space vector modeling of electric ma-
chines with permanent magnet (PM) rotor covering all possible movements
such as rotary, linear and radial, i.e. magnetic bearing (MB). To the best
knowledge of the author, for the first time in literature a complex space vector
model of the linear-rotary machine with MBs is formulated, allowing to apply
known complex space vector techniques used for years for modeling of elec-
tric machines. For example, the phase winding of the linear-rotary machine
may be described with a single complex space vector voltage equation using
the proposed transformation, which has the same form as the complex space
vector voltage equation of the conventional rotary or linear machine. The
torque, the thrust force and the radial (bearing) forces onto the rotor can be
easily calculated using the proposed complex space vector model, which is
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of interest for understanding the machine operation and implementing the
control system.

The derived models of the linear-rotary machines in stationary dq ref-
erence frame are used in the later chapters for the control system design.
More specifically, in Chapter 6 for the MALTA controller design and in
Chapter 10 for the DS LiRA controller design.

Based on the derived scaling laws (Chapter 2) and dg models (Chapter 3),
a design of a bearingless linear actuator (MALTA) will be discussed in the fol-
lowing Chapter 4, while in the further Chapter 8 the design of a bearingless
linear-rotary actuator with double stators is given.
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Design of the Linear Machine with
Integrated Magnetic Bearings

To understand and verify the concept of the tubular linear machine with
integrated magnetic bearings (also called MALTA), the machine topology
derivation is explained in detail in this chapter. Moreover, various winding
realizations that result in different required numbers of half-bridges in the
inverter are compared. The MALTA prototype with the winding realization
featuring the highest force density is realized in hardware and FEM design
models are verified with measurements. Parts of the material presented in
this chapter are published in [35].

4.1 Introduction

Tubular linear actuators (TLAs) offer certain benefits compared to flat linear
actuators such as better exploitation of the permanent magnet (PM) flux,
absence of asymmetric attractive forces between the stator and the mover, and
higher power density [71]. Therefore, there is a growing trend in using TLAs in
many versatile applications such as pick-and-place robots used in packaging
lines or very precise component mounting on printed circuit boards [72,73],
surgery robots [74, 75], active suspension of vehicles [76], electrical power
generation [42,77,78], linear compressors [79-81] and walking robots [82].
Because of their closed construction, TLAs are also convenient for underwater
[83] or high-purity applications [84].

Bearings used in TLAs today are mainly mechanical bearings. These
bearings feature drawbacks such as friction, risk of contamination due to wear
and limited lifetime [43]. Moreover, their use in high-accuracy positioning
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Fig. 4.1: Magnetic support of the mover in TLA: (a) with two standalone MBs and (b)
the proposed MALTA.

systems is limited due to thermal disturbance. In order to overcome some
of these issues, higher-end TLAs feature air bearings, which, on the other
hand, increase system complexity since a pressurized air supply is necessary.
Moreover, air bearings prohibit operation in vacuum.

Even though magnetic bearings (MBs) would overcome the issues men-
tioned earlier, their integration into a TLA system has not been analyzed
thoroughly in literature. In [34], a system with two standalone MBs used at
each axial end of a TLA is analyzed, see Fig. 4.1(a). This system, compared to
the standard TLA, is characterized by a bulkier design, a higher complexity
and a longer mover.

In this chapter, the integration of MBs into the TLA, which results in a
magnetically levitated tubular actuator (MALTA), is analyzed and an actuator
prototype is built. The concept is illustrated in Fig,. 4.1(b). The MB integration
is achieved by introducing slits in the circumferential direction in the teeth
of the standard TLA stator, which are normally not interrupted in the circum-
ferential direction. A new winding arrangement is proposed, which can alter
the air gap magnetic field distribution both in the circumferential and axial
directions. This is achieved by replacing the circumferentially uninterrupted
coils of a standard TLA with concentrated windings wound around the teeth,
which are now separated by the newly introduced slits. The proposed MALTA
features lower mass and inertia of the moving parts and higher compactness
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4.2. Derivation of the MALTA Winding

compared to a standard TLA with additional MBs. Even though the detailed
discussion of the suitable control strategies is not the topic of this chapter,
the actuator design is carried out with a controlled magnetic levitation in
mind. For instance, in order to control the tilting of the mover, the stator of
the MALTA consists of two modules (module 1 and module 2, see Fig. 4.1(b))
that can generate two independent bearing forces (ﬁbl and ﬁbz). Moreover,
design aspects affecting the levitation controller, such as the radial pull force
and the circumferential dependency of the bearing force constant are also
studied.

4.2 Derivation of the MALTA Winding

In Fig. 4.1 two TLA concepts are shown: (a) with standalone MBs, which
employs windings that can solely generate the drive force Fy and windings
that can solely generate the bearing forces ﬁbl and ﬁbz and (b) with integrated
MBs, which uses windings that can generate both, the drive and the bearing
forces. It should be noted that generation of two independent bearing forces
is needed, in order to control the tilting of the mover. Going from the solution
shown in Fig. 4.1(a) to the one shown in Fig. 4.1(b) involves the integration
of MBs into the TLA, where the fundamental characteristic of the TLA, i.e.
the drive force generation, should be kept. This results in a so-called self-
bearing or bearingless actuator. This terminology is also used for rotary
machines/actuators, cf. [85]. Therefore, MALTA could be referred to as a
self-bearing TLA or a bearingsless TLA.

In Fig. 4.2, various three-phase actuator types are shown, (tubular) rotary
actuator (RA), flat linear actuator (FLA) and tubular linear actuator (TLA).
In general, RAs are capable of generating a torque Tanda bearing force F
on the rotor. Unfolding the RA results in FLA, where the tangential force
that generates the torque in the RA now acts as a linear driving force Fyon
the mover of the FLA. Generation of the bearing force on the mover is also
possible. A drawback of single-sided PM FLAs are rather large attraction
forces between the mover PMs and the stator iron, which makes this solution
unpractical for MBs due to constant bearing forces needed to levitate the
mover. This issue can be solved by using an iron-less (slot-less) stator [86, 87],
or by attaching a FLA on top where the weight of the load would compensate
the attraction force. By further folding of the FLA in the direction of the
slots as shown in Fig. 4.2, a TLA is achieved. This actuator can generate the
drive force in the same way as the FLA, since the magnetic coupling between
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Fig. 4.2: Evolution of a self-bearing (bearingless) FLA from a self-bearing RA through
unfolding in circumferential direction. Folding back in axial direction yields the TLA,
but the self-bearing capability cannot be maintained.
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Fig. 4.3: Normalized fundamental component of the radial air gap PM flux density in
the TLA. The electrical angles 6 and ¢ are indicated in Fig. 4.2. 0 denotes the electrical
angle in axial (z) direction, while ¢ is the electrical angle in circumferential direction.
Since in circumferential direction there are no PM poles, ¢ is equal to the mechanical
angle.

the stator winding and the mover PMs did not change by folding the FLA.
Additionally, in the TLA there is no parasitic attraction forces, as they are
compensated by the circumferential symmetry of the actuator.

The radial air gap flux density in the TLA is shown in Fig. 4.3, where the
angles 0 and ¢ are indicated in Fig. 4.2. Additionally, in Fig. 4.3 the TLA
stator is shown. It is positioned such that the first phase A is aligned with
the maximum PM flux density. Therefore, the fundamental component of the
three-phase flux linkage may be written as

VA ) cos(6)
Yp | = ¥m |cos(0 —27/3) |, (4.1)
s cos(0 +2/3)

where Wy is the TLA flux linkage. To generate the drive force with the TLA,
the three-phase currents existing in the stator should have the the following
waveforms

ia cos(0 + /2)
ip| = Iv |cos(0+ 7/2 — 27/3) | . (4.2)
ic cos(@+m/2+2m/3)

If the reluctance force component in the MALTA is neglected, this phase
of the current, being /2 shifted with respect to the flux linkage gives the
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TLA Drive Windings

Fig. 4.4: Three-phase TLA winding where 3 stator slots span along a single pole pair
of the mover PMs. The winding is symmetric in circumferential direction (¢-direction).

maximum drive force per copper loss. The TLA three-phase windings are
shown in Fig. 4.4. The TLA windings have ¢ symmetry, therefore, the field
generated by the TLA windings does not change along the circumference,
which is shown in Fig. 4.5. As expected, the two field components in the
TLA, from the PMs (cf. Fig. 4.3) and from the drive currents (cf. Fig. 4.5),
which interact in the air gap of the TLA, are shifted by /2 electrical radians.
The two fields tend to align, which creates the drive force onto the mover.

In general, the radial force in electric machines that acts onto the ro-
tor/mover is generated if the air gap field is not symmetric in circumferential
direction. As in the TLA, the both fields, from the PMs and the stator currents
(cf. Fig. 4.3 and Fig. 4.5), have circumferential symmetry, it is not possible
to generate any radial force. Therefore, it is not possible to implement MBs
with the TLA geometry of the windings.

To generate the bearing force, the magnetic field in the air gap must be
modulated in circumferential direction. In Fig. 4.6 an interaction between
the mover PM field at the axial position § = 27 and the field with two poles
is shown, resulting in a bearing force onto the mover. The force direction
can be controlled by controlling the field orientation. Therefore, in order to
allow bearing force control in the TLA, its stator should be modified such that
it can generate the field shown in Fig. 4.6(b). Additionally, at the positions
where the mover radial flux density is zero, e.g. {7/2,37/2,57/2,7x/2} in
Fig. 4.3, it is not possible to generate any radial forces, therefore, the stator
should not create a field in these zones. Also, the field in these zones would
create a drive force (cf. Fig. 4.5), which is not desirable as it would introduce
coupling between the drive and the bearing forces. Therefore, the stator field
that should generate the bearing forces is modulated in both directions, axial
0 and circumferential ¢. An example of such field is shown in Fig. 4.7, where
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Fig. 4.5: Normalized fundamental component of the radial air gap flux density in the
TLA, originating from the drive currents given in (4.2). The electrical angles 6 and ¢
are denoted in Fig. 4.2. 6 denotes the electrical angle in axial (z) direction, while ¢ is
the electrical angle in circumferential direction.
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Fig. 4.6: (a) PM field from the MALTA mover at the axial position 6 = 27, cf. Fig. 4.3.
The field lines close axially, therefore, along the outer circumference the North pole N
exists. (b) A two pole magnetic field which lines close circumferentially resulting in
the North N and the South S poles. From inner side, the S pole is located at ¢ = 90°,
while the N pole at ¢ = —90°. (c) Interaction of the two fields results in the bearing
force ﬁb in the direction of ¢ = 90°. Since the mover PM field is constant for any

¢ € [—m, ], the bearing force direction can be controlled by controlling the direction
of the field from (b).
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Fig. 4.7: Normalized fundamental component of the radial air gap flux density from
the MALTA winding, created by the bearing current. 6 denotes the electrical angle in
axial (z) direction, while ¢ is the electrical angle in circumferential direction.

the alternation of the poles in 8- and ¢-direction is achieved. To create such a
field distribution, a simultaneous action from the stator in 8- and ¢-direction
is needed. In @-direction, the same stator as for the TLA is kept, i.e. with
three-phases A, B and C. The field alternation/modulation in ¢-direction may
be achieved either with a three- or two-phase stator, as shown in Fig. 4.7. This
requirement, to keep the three-phases in 6-direction and to consider three-
and two-phases in ¢-direction, results in the winding realizations shown in
Fig. 4.8, which are called the MALTA windings. It should be mentioned
that the notation of the phases in f-direction is done with capital letters
(ABC), while in ¢-direction with small letters (abc). The MALTA windings
are derived from the TLA windings, by interrupting them in circumferential
direction, i.e. from a singe TLA coil three or four MALTA winding coils are
created. For example, the coil from the first phase A in TLA (cf. Fig. 4.4) is
interrupted/split in circumferential direction into more coils, either aA-bA-cA
for the three-phase or aA-bA-cA-dA for the two-phase option (cf. Fig. 4.8).

In order to create the air gap field shown in Fig. 4.7 that would generate
the bearing force, the currents in the MALTA winding should have proper
waveforms. For the 3 X 3-phase MALTA winding (cf. Fig. 4.8(a)), the currents
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MALTA Drive + Bearing Windings
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Fig. 4.8: Schematic representation of the MALTA winding that can generate the drive
and the bearing force: (a) the winding with three-phases in circumferential direction
and three-phases in axial direction (3 X 3-phase winding) and (b) the winding with
two-phases in circumferential direction and three-phases in axial direction (2 X 3-phase
winding).

are equal to

iaan = Ivp cos(¢) cos(6)

iba = Ivp cos(¢ — 27/3) cos(0)

ica = In cos(g + 27/3) cos(6)

iap = Iy cos(@) cos(0 — 27/3)

ipg = Ivp cos(¢ — 277/3) cos(0 — 27/3) (4.3)
icn = Inp cos(@ + 27/3) cos(0 — 27/3)

iac = Iy cos(g) cos(0 + 27/3)

inc = Ivp cos(¢ — 277/3) cos(6 + 27/3)

icc = Iy cos(¢ + 27/3) cos(6 + 27/3)
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For the 2 X 3-phase MALTA winding (cf. Fig. 4.8(b)), the currents are equal
to

iaa = I cos(¢) cos(0)

ipa = Iy sin(¢) cos(6)

iag = I cos() cos(0 — 27/3) (4.4)
ibg = Ivb sin() cos(0 — 27/3)

iac = Iy cos(@) cos(0 +27/3)

ine = Iy sin(e) cos(6 + 27/3)

It should be noted that the drive currents i, ip and ic given in (4.2) are +7/2
shifted compared to the 8-component of the bearing currents given in (4.3)
and (4.4). Therefore, the bearing current component will not generate any
drive force.

The simultaneous action of the drive and the bearing current components
in the creation of the air gap field is shown in Fig. 4.9 for different values of
the bearing and the drive current amplitudes.

4.3 MALTA Winding Realizations

In Fig. 4.8 two possible MALTA windings are shown, with either two- or three-
phases in circumferential ¢-direction and three-phases in axial 0-direction.
In this section, a step further is analyzed, where the possible MALTA winding
realizations are considered and compared with respect to the inverter effort
(required number of half-bridges) and the achievable bearing and drive forces.

The MALTA windings shown in Fig. 4.8 may be used to control the
bearing and the drive force, simultaneously. In that case, the total current in
the winding consists of two components: the bearing and the drive current
component. This winding is typically called combined winding. The MALTA
windings (cf. Fig. 4.8) may be used in the combination with the TLA drive
windings (cf. Fig. 4.4), where the two winding systems would be physically
separated in the MALTA stator. The MALTA winding would carry only the
bearing current component, while the drive winding would carry the drive
current component. Such winding realization is called separated winding.
Both winding realizations are shown in Fig. 4.10. In the following, the
required phase current and the resulting inverter effort are analyzed for each
of the MALTA winding realizations.
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Iv = 0.8; Iyp = 0.2 fM_06 Ivi, = 0.4

Int = 0.4; Inp = 0.6 I =0.2; Iyp = 0.8 IMm=0; Iyp =1

47 0

Fig. 4.9: Normalized radial air gap flux density of the MALTA windings created by
the drive and the bearing current components acting simultaneously. The fields are
shown for different ratios of the drive Iyf and the bearing currents Iy, starting from
only a drive current and no bearing current, till only a bearing current existing and
no drive current. It should be noted that the drive and the bearing field distributions
are shifted by /2 in axial 0-direction.

Combined Winding Separated Winding
Bearing & Drive Bearing & Drive [Bearing: 3 X 3-PhaseBearing: 2 x 3-Phase
3 X 3-Phase 2 X 3-Phase Drive: 3-Phase Drive: 3-phase

Drive Bearing

@) (b) (© (d)

Fig. 4.10: Two types of MALTA winding realizations are possible: combined windings
(a,b) and separated windings (c,d). The coils in the combined windings contain both
current components, bearing and drive, while the separated windings have these two
current components physically separated with dedicated bearing and drive winding.
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Fig. 4.11: The required number of half-bridges in the inverter for the MALTA combined
winding with 3 X 3-phases (cf. Fig. 4.10(a)) is 9 half-bridges per module. In total,
at least 2 modules are needed to control the tilting of the mover (cf. Fig. 4.1(b)),
therefore, an inverter with 18 half-bridges is needed to supply this MALTA winding.

Combined Winding: 3 x 3-Phase

The winding realization is shown in Fig. 4.10(a). The winding current has
two components, the bearing and the drive component, and therefore, the
total current is the superposition of the two components

laa+ian ILap+ip Iac+ic
iba+ia ip+i  ipc +ic|, (4.5)
icA+ia ip+ig Icc+ic

where the current component waveforms are given in (4.3) and (4.2). An
inverter with 18 half-bridges is required to supply this MALTA winding real-
ization, cf. Fig. 4.11. The star points S;, S; and S5 should be kept unconnected,
such that the potential occurrence of a low frequency zero sequence current
(common mode (CM) current) is prevented.

Combined Winding: 2 X 3-Phase

The winding realization is shown in Fig. 4.10(b). The winding current has
two components, the bearing and the drive component, and therefore, the
total current is the superposition of the two components

IaA +ia i,g + Ip iac +ic
iba + ia ibg + IB ihc + ic
—laa +ia  —lag+ig  —iac +ic|’
—ipa +ia —ipgp+ip —ipc +icC

(4.6)
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Combined Winding: 2 x 3-Phase

Upc

IEERFEEPEREY

Sl SQ 53 S4

Fig. 4.12: The required number of half-bridges in the inverter for the MALTA combined
winding with 2 X 3-phases (cf. Fig. 4.10(b)) is 12 half-bridges per module. In total,
at least 2 modules are needed to control the tilting of the mover (cf. Fig. 4.1(b)),
therefore, an inverter with 24 half-bridges is needed to supply this MALTA winding.

where the current component waveforms are given in (4.4) and (4.2). An
inverter with 24 half-bridges is required to supply this MALTA winding
realization, cf. Fig. 4.12. The star points Sj, Sz, S3 and S4 should be kept
unconnected, such that the potential occurrence of a low frequency zero
sequence current (common mode (CM) current) is prevented.

Separated Winding: 3 X 3-Phase + 3-Phase

The winding realization is shown in Fig. 4.10(c). The two current components,
the bearing and the drive component, exist in separate winding sections of
the MALTA stator

laA IaB  laC iA
bearing: |ipa i ibc| drive: |ig|, (4.7)
icA icB icC iC

where their waveforms are given in (4.3) and (4.2) An inverter with 21 half-
bridges is required to supply this MALTA winding realization, cf. Fig. 4.13.
The star points Sy, Sz, S3 and S should be kept unconnected, such that the
potential occurrence of a low frequency zero sequence current (common
mode (CM) current) is prevented.
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Fig. 4.13: The required number of half-bridges in the inverter for the bearing part of
the MALTA separated winding with 3 X 3-phases is 9 half-bridges per module. At least
2 modules are needed to control the tilting of the mover (cf. Fig. 4.1(b)), therefore,
18 half-bridges are needed to supply the bearing part of this MALTA winding. For
the drive part of the winding 3 half-bridges are needed. Therefore, in total an inverter
with 21 half-bridges is needed to supply this winding, which realization is shown in

(cf. Fig. 4.10(c)).
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Separated Windning
Bearing: 2 x 3-Phase Drive: 3-Phase
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Fig. 4.14: The required number of half-bridges in the inverter for the bearing part of
the MALTA separated winding with 2 X 3-phases is 6 half-bridges per module. At least
2 modules are needed to control the tilting of the mover (cf. Fig. 4.1(b)), therefore,
12 half-bridges are needed to supply the bearing part of this MALTA winding. For
the drive part of the winding 3 half-bridges are needed. Therefore, in total an inverter
with 15 half-bridges is needed to supply this winding, which realization is shown in
(cf. Fig. 4.10(d)).

Separated Winding: 2 X 3-Phase + 3-Phase

The winding realization is shown in Fig. 4.10(d). The two current components,
the bearing and the drive component, exist in separate winding sections of
the MALTA stator

laA  IaB IaC

. . . ia
. i i i . .
bearing: | 24 B PC 1 drive: |i|, (4.8)
—laA  ~laB  ~laC ic

—ipa  —ipp  —IhC

where their waveforms are given in (4.4) and (4.2) An inverter with 15 half-
bridges is required to supply this MALTA winding realization, cf. Fig. 4.14.
The star points Sy, S, and S should be kept unconnected, such that the potential
occurrence of a low frequency zero sequence current (common mode (CM)
current) is prevented.

It should be noted that the flux linkage in the coils at the same axial
position is equal, since the PM field from the mover does not change around
the circumference ¢, cf. Fig. 4.3. Consequently, the induced voltage is equal
in the coils around the circumference and due to anti-series connection of
a{A,B,C}-c{A,B,C} and b{A,B,C}-d{A,B,C} in the bearing winding (cf. Fig. 4.14)
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Tab. 4.1: Comparison of the winding realizations.

Winding Shown Force/Fg A Number of
Realization Drive ‘ Bearing | Half-Bridges
Combined

3 X 3-Phase Fig. 4.11(a) 0.78 1.12 18

2 X 3-Phase Fig. 4.12(b) 0.76 1.1 24
Separated

3 x 3-Phase +3-Phase | Fig. 4.13(c) 0.57 0.81 21

2 X 3-Phase +3-Phase | Fig. 4.14(d) || 0.29 0.46 15

it cancels out. Therefore, the two-level inverter supplied from the Upc; will
not see any induced voltage. This allows to use eventually different DC-link
voltages, e.g. Upcy may be lower than Upc; and the bearing inverter may
be realized with lower blocking voltage semiconductors than for the drive
inverter.

4.4 Comparison of the MALTA Winding
Realizations

In this section the MALTA winding realizations shown in Fig. 4.10 are com-
pared with respect to the achievable drive and the bearing force. The bench-
mark actuator in the comparison is the conventional TLA (cf. Fig. 4.2 and
Fig. 4.3). The goal is to obtain a relative comparison among the MALTA wind-
ing realizations such that the best performing one could be chosen. Therefore,
the absolute values of the forces are currently not of interest. In order to
perform an as fair as possible comparison, the magnetic circuits of all the
actuator options are the same, which includes the outer diameter of the sta-
tor and the tooth depth, the air gap, the mover geometry and the material
properties. For the separated windings, the winding depth space is divided
equally between the drive and the bearing windings. Additionally, the copper
losses of each winding realization are fixed to the same value. Therefore, the
current amplitudes Iy and Iy are set such that the drive force generation
as well as the bearing force generation result in the same amount of copper
losses for each MALTA winding realization. Iron core losses are neglected in
this comparison.

In Tab. 4.1 the relative comparison between the MALTA winding real-
izations is shown. The benchmark force value is the TLA drive force Fyqpa,
achieved with the same stator and the mover geometrical parameters and
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Tab. 4.2: MALTA design constraints.

Symbol Quantity Value
Geometrical
L Module active length 60 mm
D Stator diameter 60 mm
Tag Air gap radial size 2mm
Materials
-Solid steel CKy45 used as iron core material
Py Relative permeability 500
Binax Saturation flux density 13T
-Neodymium PM used in the mover
B; PM remanent flux density 1.18T
-Copper used for windings
ocu Copper conductivity (20°C)  58.5S/m

the copper losses as for the MALTA winding realizations, just having TLA
windings (cf. Fig. 4.4) and the stator teeth with no circumferential slots. The
results are obtained by using 3D-FEM models of the analyzed actuators.

The winding realization with the highest drive and the bearing force
is the MALTA 3 X 3-phase combined winding. Therefore, this winding
realization is further considered.

4.5 Machine Design

Key design aspects of the MALTA are addressed in this section. By choosing
the key geometry parameters, the goal of the design is to maximize the axial
force and the bearing forces and to minimize the mover mass, i.e. to maximize
the axial and sustainable radial accelerations’.

The constraints in the MALTA design are the outer dimensions, radial
air gap size and material properties as summarized in Tab. 4.2. Additionally,
practical limitations such as simple manufacturing of windings, off-the-shelf
available PM shapes, easily accessible and machinable core materials are all
boundaries that are considered in this design.

FEM analysis is used in the design procedure. The reason for not using
analytic models is their typical limitation to cylindrical coordinate systems,

'A linear actuator can be mounted on a kinematic system that moves it radially with high
accelerations. This translates into a sustainable radial acceleration, i.e. a MB force requirement
that depends on the mover’s mass and the acceleration of the whole MALTA in the radial
direction.
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Fig. 4.15: SPM and IPM mover.

i.e. the models cannot account for radial displacement, i.e. cannot calculate
the radial pull force.

4.5.1 Mover Design

Two different mover configurations are considered in the design procedure,
i.e. surface-mounted PMs (SPM) and interior PMs (IPM), as shown in Fig. 4.15.
The SPM mover consists of PMs magnetized in radial direction, as denoted
with arrows pointing radially outwards (North PM pole) and radially in-
wards (South PM pole). In the IPM mover type, PMs are magnetized axially.
Therefore, the iron rings are used to form the poles in this mover type.

The range of the considered PM dimensions, especially their outer di-
ameter is determined based on the scaling laws for the thrust force interior
mover actuator, derived in Chapter 2. More specifically, in Fig. 2.6 it can
be seen that the optimum ratio of the outer winding diameter (D — 2ry;, cf.
Fig. 2.4) and the inner winding diameter (Dpp, + 27,¢) depends on the cooling
of the actuator. If conditions close to natural convection are assumed, which
is justified since the MALTA is not considered to have water cooling, the
optimum ratio of the winding inner and outer diameters should be in the
range

Dpm + 2rag

Do =10.5,0.7] (4.9)

where ry; is the back-iron thickness. If a back-iron thickness of r,; = 2 mm is
assumed, the suggested optimum diameter range of the PMs is

Dpm = (D — 2ry;) - [0.5,0.7] — 2rag

.10
= [24 mm, 35.2 mm] (4-10)
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Tab. 4.3: Considered PMs for the mover design.

Number  Pole Size  Dpm Tpm Tpm

SPM (radially magnetized PMs)

1 10 mm 35.75 mm 1.5mm 9mm

2 7.5 mm 22.6 mm 1.3 mm 6.5mm
IPM (axially magnetized PMs)

3 10.5 mm 23 mm 515mm 7mm

4 15 mm 25mm 2.5mm 10 mm

5 15 mm 27 mm 5.5mm 10 mm

6 15 mm 27 mm 3 mm 10 mm

7 15mm 34 mm 6.5mm 10 mm

Highlighted geometry is the chosen design.

Therefore, the considered PM dimensions are given in Tab. 4.3. These PMs
define different mover geometries, and each of them is evaluated with two
3D-FEM magnetostatic simulations, one for axial force, and one for bearing
force. Axial and sustainable radial accelerations are calculated in post pro-
cessing based on the obtained forces. No additional load is considered, i.e. the
actuator is used only for levitating and accelerating its mover, which is a very
reasonable assumption e.g. considering the use of a MALTA in pick-and-place
robots in semiconductor industry, where the mass of the potential load is
negligible compared to that of the mover itself. The forces are determined
by the electrical loading, which is limited by the maximum allowed wind-
ing temperature and the actuator’s thermal properties. In order to provide
quantitative results, the electrical loading is set such that the mean copper
losses are 15 W, which is based on a simplified thermal model that is given
in [16] for an actuator with similar outer dimensions. However, since the
final performance of the MALTA will depend strongly on the actual cooling
performance, the thermal properties of the actuator will be studied experi-
mentally in Section 4.7.2. A winding fill factor of 0.6 is assumed based on
earlier experience with electrical machines of similar size.

The performance of different mover geometries is shown in Fig. 4.16.
This analysis shows the contradiction between the forces and accelerations,
which is an expected behavior as more PMs in the mover guarantee higher
flux density in the air gap and consequently higher forces. On the other
hand, more PMs increase the mover mass and reduce the accelerations. A
mover geometry that is a good compromise between high forces and high
accelerations is chosen as final mover design, which is the IPM mover topology
that is denoted in Fig. 4.16 and its dimensions are highlighted in Tab. 4.3.
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Fig. 4.16: Performance comparison of different mover geometries defined with
Tab. 4.3. The numbers next to the dots denote the number in Tab. 4.3. The cho-
sen design is number 6 and it is highlighted in Tab. 4.3.

4.5.2 Stator Design

A key aspect in the MALTA stator design is the trade-off between the achiev-
able drive and bearing forces, and the radial pull force when the mover is
radially displaced. The effect of two key geometrical parameters, tooth thick-
ness i and tooth depth r; (cf. Fig. 4.17(a)), on this trade-off is studied. Since
the start-up is the most critical for the MBs, i.e. requires the highest radial
pull force, this scenario is used to determine the stator teeth size.

Two groups of 3D-FEM simulations are performed for the MALTA in the
scenario where the mover touches the touch-down bearing (a touch-down
bearing is used in machines with MBs to avoid a damage of the mover or the
stator in case the MBs stop working or are overloaded [22].). In one group
the tooth thickness 7; has a fixed value and the tooth depth r, is changed. In
the other group, the tooth thickness 7; is changed while the tooth depth r; is
fixed. The outer dimensions of the windings are fixed, see Fig. 4.17(a).

In the first group of simulations, the influence of the tooth depth on the
drive, bearing and the radial pull forces is examined. If the tooth depth is
equal to the radial size of the windings (r; = 12.5 mm), the radial pull force is
much higher than the continuous bearing force. In order to reduce the radial
pull force, the tooth depth is reduced and its influence on the forces is shown
in Fig. 4.18(a). As a consequence, the continuous drive and bearing forces
are lower. The tooth depth of r; = 11 mm is chosen for the final design, since
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Fig. 4.17: (a) Cross section of the MALTA module with denoted teeth size and size of
the winding. (b) Stator teeth design scenario: mover displaced such that it touches the
touch-down bearing (1 mm displacement). The thickness of the touch-down bearing
is 1mm.

the pull force is significantly reduced and close to the continuous bearing
force.

In the second group of the simulations, see Fig. 4.18(b), the influence of
the tooth thickness on the drive, bearing and radial pull forces is examined.
Increasing the tooth thickness leads to an increased radial pull force, but
results in no increase of the drive and bearing forces since the copper volume
and hence the electric loading are decreasing. Therefore, the tooth thickness
of 7t = 3mm is chosen for the final design.

Generally, in systems with short stroke movement the average speed is
rather low. Consequently, eddy-current losses due to the PM movement are
low compared to copper losses, which justifies building these systems from
solid iron [44]. Additionally, this is shown once more here, using a worst case
2D-FEM model.

Because of the transverse flux in the stator iron and complicated geometry,
lamination is not considered. The stator is built of solid steel CK45, which
magnetic properties are measured and reported in [88]. In order to check the
order of eddy-current losses in the stator iron, a 2D-FEM model is utilized, see
Fig. 4.19. A very high axial acceleration of 20g is assumed. The acceleration
is intentionally selected above values which the machine can continuosly
deliver, such that the eddy-currents are calculated for the absolute worst case.
The 2D-FEM model is axis-symmetric, therefore the slits between the teeth
of the MALTA are neglected, which is another worst-case approximation,
as both the total flux and the eddy-current loop are larger. Hence, the eddy-
current losses in the actual MALTA will be lower for the same speed profile.
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Fig. 4.18: Two groups of 3D-FEM simulations that examine the influence of the tooth
depth (rt) and the tooth thickness (zt) on the drive, bearing and radial pull forces: (a)
tooth thickness is constant, while tooth depth is swept, and (b) tooth thickness is
swept, while tooth depth is constant.
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Fig. 4.19: Simulated eddy-current losses in the stator teeth and back iron for a speed
profile (blue curve) in the extreme case where the mover accelerates and decelerates
with 20g for an axial stroke of 30 mm. The obtained average eddy-current losses are
~ 0.7W.

The average eddy-current losses are 0.7 W, which is only 4.7 % of the assumed
copper losses. Therefore, it is expected that the eddy-current losses will not
have a significant influence on the temperature rise of the MALTA and will
not impair its performance.

4.6 MALTA Prototype

4.6.1 Mover

The mover is of IPM type (see Fig. 4.15 on the right) and its geometrical
parameters are highlighted in Tab. 4.3. In the prototype, the PMs and the
iron rings are stacked on a light-weight carbon rod, see Fig. 4.20. The total
number of poles (iron rings) in the mover prototype is 10. Each module covers
4 poles (8 poles for the two modules) and the length of the 2 poles covers the
stroke, such that a constant active length of the MALTA is kept during the
operation.

The aluminum sleeve that shields the mover is used to protect the PMs
from breaking if the touch-down bearing is hit. Additionally, the smooth
conductive surface of the sleeve is used for eddy-current radial position
sensing [89].
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Fig. 4.20: Built mover prototype: axially magnetized ring PMs are stack on a light-
weight carbon rod. Finally, the whole assembly is inserted into a 0.3 mm thick alu-
minum sleeve that protects the PMs. The smooth conductive surface of the sleeve is
be used for eddy-current radial position sensing.
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0.5 mm Wire Diameter

//

Fig. 4.21: Built coil prototype of the MALTA winding (cf. schematic representation
shown in Fig. 4.8(a)).

4.6.2 Windings

A manufactured coil prototype is shown in Fig. 4.21. Its shape differs from
the schematic representation of the MALTA winding depicted in Fig. 4.8(a)
due to manufacturing constraints. It is built using 0.5 mm wire and consists
of 205 turns. The achieved fill factor is 0.6.

In order to determine the maximum expected voltage across the wind-
ing terminals, phase resistance and inductance are measured and the back
electromotive force (EMF) is estimated from the 3D-FEM simulation. In the
simulation, a constant linear mover speed of 2m/s is assumed as a worst-
case scenario, since 2m/s is the peak speed during the oscillating motion
of the actuator. Accordingly, a peak induced back-EMF per turn of 26 mV is
obtained. The winding resistance and inductance are measured as 2.2 Q and
2mH, once the windings are inserted into the stator and the stator is potted.
The measurement is taken at 66.7 Hz, which is the worst-case electrical fre-
quency corresponding the mover’s peak instantaneous linear speed of 2m/s
(pole length is 15 mm).
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Fig. 4.22: Phasor diagram and electrical circuit of the built winding (X - phasor
quantity; X - amplitude).

The electrical loading of the windings is obtained from the stator design
(see Section 4.5), as 300 Ampere—turns. For 205 winding turns, this corre-
sponds to a phase current amplitude of 1.46 A. Consequently, the amplitude
of the phase voltage is estimated to be around 7.5V, see Fig. 4.22. The peak-
to-peak value of this voltage is = 15V, which implies that an inverter with
24V DC-link voltage can be used to drive the actuator.

4.6.3 Stator

As already mentioned in Section 4.5.2, the stator is built from solid steel. It is
divided into three stator sections, one of which is depicted in Fig. 4.23(a). In
order to monitor the temperature in the machine, three NTC thermal sensors
are inserted in the radially innermost surface of one winding in each stator
section. From the inner side, a 3D printed touch-down bearing is inserted,
which protects mover and stator windings from damaging in case the MBs
stop working [22], and is furthermore used as a molt in the potting procedure.

In order to fix the module in the test bench, it is inserted into an aluminum
case shown in Fig. 4.23(b). Further, the stator is potted with epoxy, which
holds windings and stator sections together and ensures better cooling of
the windings. A PCB connector is designed that gathers all 9 X 2 = 18 power
winding connections and 6 connections for the three NTC thermal sensors.

4.6.4 Test Bench

A prototype of the MALTA is built in order to verify its concept and the FEM
models. As the mover is magnetically levitated, a verification of the actual
system without closed loop control, sensors and power electronics is not
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Fig. 4.23: (a) Stator section and module. (b) Module inside the aluminum case, before
and after potting.
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Fig. 4.24: MALTA test bench.
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possible. Therefore, a custom test bench shown in Fig. 4.24 is built, in which
mechanical bearings are used to suspend the mover. The mechanical bearings
are used only during the initial measurement and verification stage. Later
on, they are removed and MBs are used in regular operation. The two radial
force sensors, located beneath each linear bearing, are used to measure the
bearing force. The drive force is measured with one sensor, which is attached
to one end of the mover and to the axial positioning stage that is used for
setting the axial position of the mover. The axial position of the modules
(module 1 and module 2) is fixed, while its radial position is set with the
radial positioning stage. The radial position of the mover is guaranteed by
the fixture with embedded force sensors. Sensors used in the measurements
are given in Tab. 4.4.

Tab. 4.4: Sensors used in the test bench.

Measurement Manufacturer / Model
Temperature sensor see [90]
Drive force sensor see [91]
Bearing force sensor see [92]

4.7 Machine Constant Measurement Results

4.7.1  Flux Linkage

Flux linkage is obtained by integrating the induced back-EMF, which is mea-
sured across the open-circuited machine terminals while the mover travels its
complete stroke back and forth several times, actuated manually. Obtained
flux linkage values are given in Fig. 4.25. The flux linkage is lower in the
outer coils than in the middle coils due to the lower flux leakage of the outer
coils. 3D-FEM simulation results for the flux linkage of the outer and the
inner coils are provided and a good match with the measurements is achieved.

4.7.2 Temperature Rise

The continuous drive and bearing forces of the MALTA are limited by the
maximum allowable winding temperature. So far, the electrical loading has
been calculated according to a simplified thermal model presented in [16].
However, in order to asses the actual performance limit of the built prototype,
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Fig. 4.25: Measured flux linkage of the outer and the middle coils in the MALTA
module and its comparison to the 3D-FEM simulation results.
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Fig. 4.26: Winding temperature rise measurement for 20.5W of copper losses in the
MALTA windings of a module.

a winding temperature rise measurement is performed for determining the
actual thermal properties in detail, and consequently, for determining the
maximum permissible electrical loading.

At standstill, a DC voltage is applied to the windings and total copper
losses of 20.5 W are dissipated. Note that this is an arbitrary value and is
only used to estimate the thermal properties of the prototype. The measured
winding temperature is shown in Fig. 4.26. The thermal resistance of the test
bench setup, in which the MALTA is enclosed with an aluminum case, can be
roughly estimated as Ry, ~ 31°C/20.5W = 1.51°C/W. The obtained thermal
resistance of the test bench closely resembles the thermal properties of the
MALTA in a real life application. The casing has fins and it is connected with
the radial positioning stage to the aluminum base plate, which resembles the
MALTA that is held by a robot arm.
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With the estimated thermal resistance of Ry, ~ 1.51°C/W, and a given
maximum continuous winding temperature, the admissible continuous elec-
trical loading of the MALTA can be calculated, which directly allows to
specify its performance. Setting the maximum winding temperature to 100 °C,
continuous copper losses of (100 °C — 28°C)/1.51°C/W ~ 47 W are obtained,
where 28 °C is the assumed ambient temperature. This value will be used in
the following sections to specify the expected performance of the MALTA
prototype.

4.7.3 Drive Force Constant

The MALTA drive force constant (drive force divided by the current amplitude)
is determined in this subsection. The measurement is performed with one
module. Hence, for the actual MALTA with two modules (module 1 and
module 2, see Fig. 4.24), the drive force constant is doubled.

In this measurement, the difference between the electrical angles of the
current vector and the PM flux linkage vector is 7/2 in axial direction. In
order to simplify this measurement, the position of the current vector is
chosen such that some of the coils have zero current. E.g. 6 = 57/6 (cf. (4.2)
and (4.5)), results in the following currents in the MALTA winding

-V3/2 0 +3/2
In|-V3/2 0 V3/2], (4.11)
-V3/2 0 V3/2

where Iy is the current amplitude that can be arbitrary chosen and Iy, = 0.
The columns and the rows denote the current in the MALTA winding, as
explained in Section 4.3. In the following, the axial position of the mover
is changed, e.g. in steps of 1mm, while the current in the MALTA winding
is kept constant according to (4.11). The measured drive force is shown in
Fig. 4.27(a). The axial positions of the mover that give the +7/2 electrical
distance between the current vector given with (4.11) and the mover flux
vector are +7.5 mm. In the sense of the well known dg-transformation, the
direct current component is equal to zero at this positions, i.e. the force-per-
copper-loss is maximized. Additionally, a 15 mm pole size in the mover can
be observed, which agrees with the designed mover pole size, see Tab. 4.3.
In the next measurement the drive force constant is obtained. The axial
position of the mover is fixed to —7.5 mm, while the current vector amplitude
I\ is changed, see Fig. 4.27(b). The drive force constant is estimated from
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Fig. 4.27: Drive force constant measurement and comparison with FEM simulations:
(a) Synchronization of the constant DC-current vector given in (4.11) with the mover
flux vector by changing the mover’s axial position. (b) Drive force constant measure-
ment by changing the DC-current vector amplitude Iy for a fixed axial position of
the mover at —7.5 mm that results in 7/2 electrical distance between the DC-current

vector and PM flux linkage vector.

86
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the measurement as

B Axial Force

4= ~ 7.6 N/A. (4.12)

Im

A drive force of 21N per module can be achieved with copper losses of
42 W in continuous operation, see Fig. 4.27(b). The maximum continuous
electrical loading with copper losses of ~ 47 W per module of the MALTA
prototype is obtained in Section 4.7.2. The drive force per module for these
losses is 22.2 N. Therefore, the continuous drive force with two modules is
2% 22.2N = 44.4N. The mass of the mover without the extension that is
required solely for the temporary linear bearings is 0.35 kg, which results in
an achievable continuous axial acceleration of the MALTA with two modules
of ~ +12.5¢.

4.7.4 Bearing Force Constant

This measurement is conducted in a similar fashion as the drive force con-
stant measurement, i.e. a current vector at fixed axial position is applied,
its amplitude is changed and the bearing force is recorded. In order to ex-
amine the MB properties of the MALTA in circumferential direction, a FEM
simulation is conducted, whose result is shown in Fig. 4.28. In this simula-
tion the magnitude of the bearing force along the circumference is obtained
(p = [0°,...,360°]), where the current amplitude is kept constant and equal
to Iy = 3 A (cf. (4.5) and (4.3)). The circumferential position at the MALTA
stator is defined as in Fig. 4.29.

The three denoted points in the plot shown in Fig. 4.28 are further verified
with measurements on the prototype. These measurement points capture
critical bearing force magnitude values, i.e. its maximum for ¢ = 0°, its
average value for ¢ = 30° and its minimum value for ¢ = 60°. For each of
these circumferential directions, the bearing force measurements for different
bearing current amplitudes (Iyp = 0.... 3 A) are conducted, in order to capture
the machine bearing constant. In order not to generate any parasitic drive
force, the bearing force is measured at 0 mm axial position, see Fig. 4.27(a),
which is electrically 90° away from the position where the drive force is
measured, i.e. in the phase with the PM flux linkage.

The bearing force constant measurement for ¢ = 0° direction is conducted
in the following setup. The current vector is formed by applying the currents
in the coils given with (4.5) and (4.3). The electrical angle in the axial direction
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Fig. 4.28: Bearing force magnitude dependency on the circumference of the MALTA
stator shown in Fig. 4.29. The results are obtained with 3D-FEM simulation. The
desired bearing force may vary up to around 13 % depending on the circumferential
direction. The three denoted points (blue stars) are further verified with measurements.

Fig. 4.29: Force circumferential position used in Fig. 4.30.
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is set to @ = 0°. This results in the following currents in the MALTA windings:

1 -1/2 -1/2

Lup | -1/2 1/4 1/4 |. (4.13)
-1/2 1/4 1/4

The amplitude Iy, = [0...3 A] is varied and the bearing force is measured and
shown in Fig. 4.30(a) and compared to 3D-FEM simulation results. From this
measurement the bearing force constant for the ¢ = 0° direction is calculated

as
o  Bearing Force

K, = T ~ 5.6 N/A. (4.14)
Copper losses in the last measurement point are ~ 28 W, see Fig. 4.30(a).
According to the above described temperature rise measurements, copper
losses of = 47 W can be continuously dissipated in the module. Consequently,
a maximum continuous bearing force of ~ 21.9 N per module in the ¢ = 0°
circumferential direction can be achieved.
The second bearing force constant measurement is conducted for ¢ = 30°
direction, see Fig. 4.29. Also here, the current vector has the same fixed axial
position argument of 4 = 0°, which results in

V3/2 V3[4 —V3/4
0 0 0
-V3/2  V3/4 V3[4

The current amplitude Iyy, = [0...3.1A] is varied and the bearing force is
measured, as shown in Fig. 4.30(b). From this measurement, the bearing
force constant for ¢ = 30° circumferential direction is calculated as

v (4.15)

Bearing Force

K" = ~ 5.96N/A. (4.16)

I

In the last measurement point the copper losses are ~ 29 W, see Fig. 4.30(b).
A maximum continuous bearing force for ¢ = 30° direction of 23.2N per
module is obtained assuming the copper losses of 47 W.

The bearing force constant measurement for ¢ = 60° direction is conducted
with the current vector equal to

/2 -1/4 -1/4

Ly | 1/2 -1/4 -1/4 |. (4.17)
-1 1/2  1/2
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Fig. 4.30: Bearing force constant measurement for different circumferential directions.
For these measurements, the drive current component is kept at zero, i.e. Iy =
0. (a) Bearing force constant measurement for ¢ = 0°. (b) Bearing force constant
measurement for ¢ = 30°. (c) Bearing force constant measurement for ¢ = 60°.
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The current amplitude Iy, = [0...3 A] is varied and the bearing force is
measured, as shown in Fig. 4.30(c). From this measurement, the bearing
force constant for ¢ = 60° circumferential direction is calculated as

Bearing Force

KO0 =
b I

~ 6.26 N/A. (4.18)

A maximum continuous bearing force for ¢ = 60° direction of 24.4 N per
module can be generated assuming the copper losses of 47 W.

The bearing force constant depends on the bearing force circumferential
direction, which is shown with FEM simulations in Fig. 4.28 and confirmed
with measurements for 0°, 30° and 60° circumferential directions. The maximal
measured bearing force constant Kg and the minimal one Kgoa differ by
~ 11.8 %.

Additionally, the bearing force constant depends on the radial displace-
ment of the mover from its center position. This dependence is ~ 2 N/A/mm
(per mm of the radial displacement). As typical radial displacements in MB
machines of this size are in the range of only several pm, the influence of
radial mover displacements on the bearing force constant is very low.

An important aspect for the MALTA is the decoupled control of the drive
and bearing forces, which is achieved by proper determination of the phase
currents (see Section 4.2). Measurements and FEM simulation results in
Fig. 4.31 show that the cross coupling between the drive and the bearing
forces is negligible when a bearing force is commanded. Negligible cross
coupling between the forces when a drive force is commanded is clear as it
reduces the MALTA operation to a standard TLA in which the bearing force
is always zero.

4.7.5 Radial Pull Force

The radial pull force measurement for one module is shown in Fig. 4.32 and
compared with 3D-FEM magnetostatic simulation results. This measurement
is important for the self-bearing operation of the MALTA, since it will act as
radial position disturbance if the mover is not in the center position. Addi-
tionally, if the mover is continuously displaced for ~ 0.5 mm, the radial pull
force would have to be balanced by a MB force, which would raise the copper
losses per module by up to ~ 2.5W.
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Fig. 4.31: Measurements and FEM simulations that show decoupled control of the
drive and bearing forces, when a bearing force is commanded.
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Fig. 4.32: Radial pull force measurement and comparison with 3D-FEM magnetostatic
simulation results when the mover is displaced from its center position.
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4.8. Summary

Tab. 4.5: MALTA performance with two modules. For 0°, 30° and 180° directions see
Fig. 4.29.

Quantity Value
Continuous drive/axial/thrust/linear force 444N
Continuous bearing force, ¢ = 0° position 43.7N
Continuous bearing force, ¢ = 30° position 46.4N
Linear/axial acceleration 12.58
Sustainable radial acceleration, ¢ = 0° direction 12.58

Sustainable radial acceleration, ¢ = 30° direction 13.38
Sustainable radial acceleration, ¢ = 180° direction  13.9g

4.7.6 MALTA Performance

The MALTA performance with both modules is determined in this section. The
results rely on the measurements of the temperature rise (see Section 4.7.2),
drive force constant (see Section 4.7.3) and bearing force constant (see Sec-
tion 4.7.4) of one module.

The MALTA performance is summarized in Tab. 4.5. The mass of the
mover is 0.35 kg without the extension that is required solely for the tempo-
rary linear bearings.

4.8 Summary

Tubular linear actuators (TLAs) can realize linear reciprocal motion as a direct
drive, i.e. no mechanical transmissions are needed like in the conversion
from rotational to translational motion. Therefore, higher compactness and
efficiency can be achieved with TLAs in systems with linear reciprocal motion.

Standard bearings used in TLAs are either mechanical bearings or air
bearings. These bearings feature drawbacks such as friction, risk of contami-
nation due to wear or limited lifetime of the mechanical bearings, increased
system volume and complexity due to pressurized air supply for air bearings.
Furthermore, operation in low pressure environments is not possible for air
bearings. These issues can be avoided if magnetic bearings (MBs) are used
in TLA systems. MBs could be used as two separate machines on each axial
side of a TLA, which would increase its length and complexity. Therefore, in
this chapter, a novel self-bearing (bearingless) TLA is analyzed, resulting in a
magnetically levitated tubular actuator (MALTA). The outer dimensions of
the stator, i.e. active length and diameter, are 120 mm and 50 mm, respectively.
Flux linkage measurements, drive, bearing and radial pull forces measure-
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ments are shown and a good agreement with FEM simulations is achieved.
The maximum feasible drive force in continuous operation is ~ 44 N and a
maximum axial acceleration of ~ 12.5¢g can be achieved in continuous opera-
tion. This force is roughly 40 % lower compared to a standard TLA, because
in the standard TLA the flux linkage is higher as there are no slits in the teeth.

As a next step in the following Chapter 5 the MALTA inverter supply
and the position sensor are designed and realized in hardware.
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Linear Machine Inverter Supply and
Position Sensor

In order to test and verify the proposed tubular linear machine with integrated
magnetic bearings (MALTA), an inverter supply and position sensors are
needed, which realization is described in this chapter. Parts of the material
presented in this chapter are published in [93].

5.1 Introduction

This chapter summarizes the most important design aspects of the MALTA
inverter supply and its position sensor. Derivation of the inverter specification
from the MALTA requirements is explained. The current measurement circuit
of the inverter features external ADC ICs to minimize the analog circuitry
area.

The position sensor is capable of measuring the MALTA mover axial and
radial positions. A technique to reduce an influence of the mover’s radial
displacements onto the axial position measurement is shown. Finally, the
measurements from the sensor prototype calibration are given.

5.2 MALTA Inverter Supply

After building the MALTA prototype, the flux linkage of the stator phase coil
and the PM’s flux from the mover are measured, cf. Section 4.7. With this, for
the maximum assumed mover linear speed of 2 m/s the maximum expected
induced voltage amplitude of = 5.3 V is estimated, cf. Fig. 4.21. Therefore, the
supply inverter with a DC-link voltage of 45V would be suitable, i.e. a certain
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Fig. 5.1: Schematic of the MALTA inverter supplying a single MALTA module.

margin for eventually higher speeds is left, as well as a room for current
control. The thermal measurements on the MALTA prototype revealed that
the continuous phase current has an amplitude = 3 A, resulting in so called
continuous or RMS drive force of 22.2 N per module. As in the operation of
the actuator the mechanical loads should be accelerated and decelerated, it
is typical to overload the actuator for these periods of time, constituting so
called intermittent operation. On average, the RMS value of the overload
force waveform should not exceed its continuous value, where in overload
the forces may be 3x higher. Therefore, the inverter should be able to supply
at least > 9 A.

For the above discussed specifications of the MALTA prototype, a choice
of the inverter semiconductors should be done such that it can block 45 VDC
and supply the phase current with an amplitude of minimum 9 A. A suitable
semiconductor arrangement for implementing the inverter half-bridges for
this purpose is GaN LMGs200 from Texas Instruments, cf. [94], whose specifi-
cations are given in Tab. 5.1. The schematic of the inverter supplying a single
MALTA module which comprising 9 half-bridges is shown in Fig. 5.1.

The schematic of a single phase current measurement circuit is shown in
Fig. 5.2. For the current measurement the voltage over the shunt resistor is

Tab. 5.1: LMGs5200 half-bridge specification.

Quantity/Feature Value
Semiconductor technology GaN
Max. drain-source blocking voltage 80V
Nominal drain-source current 10A
Drain-source electrical resistance 15 mQ
Integrated gate driver Yes
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Fig. 5.2: Schematic of the MALTA inverter half-bridge with current measurement
scheme.

sensed and amplified with the analog front end (AFE) implemented in the IC
LT1999 [95]. The AFE provides insulation as well, since its input is connected
to the switching node. The amplified analog signal is digitized with 12-bit
ADC LTC2313 [96], which over the serial link transmits the data to the high-
performance digital signal processing platform from Xilinx, Zynq Z-7020 [97].
The control system is discretized and implemented in C code on the processing
platform and executed at a rate of 20 kHz, which is limited by the available
processing capability. In each control interrupt the current measurements
of all 18 half-bridges are taken and transferred to the platform’s memory
simultaneously. The 18 integrated GaN half-bridges required to drive the
MALTA are controlled by 18 individual pulse-width modulators implemented
in the fabric of the FPGA processing platform. The MALTA inverter prototype
is shown in Fig. 5.3.

In MALTA operation, the mover exhibits accelerations and decelerations,
which reflects onto the electrical part of the system by consumption or gener-
ation of electrical energy that might cause oscillations of the DC-link voltage.
Therefore, a rather large capacitance of 4 X 22 mF = 88 mF is used in the DC-
link. For example, if the mover has a linear speed of 5m/s, it has accumulated
kinetic energy of

% -m-(5m/s)® = 4.5],
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Fig. 5.3: Two-level 45VDC inverter supply with 24 half-bridges.

where m = 0.36 kg is the mover mass. If the losses in the inverter and the
MALTA are neglected, this kinetic energy will be added to the electric energy
in the DC-link caps and would cause a voltage oscillation of ~ 1.12V, which
is around 2.5 % of the 45 VDC and is an acceptable value. This issue could be
also addressed by e.g. adding a braking resistor in the DC-link, which would
allow to use a lower DC-link capacitance value. This approach is not used as
it was simpler to implement larger DC-link capacitance.

5.3 MALTA Position Sensor

The MALTA position sensors are realized on PCBs and placed with respect to
the stator modules as shown in Fig. 5.4(a). For the axial position detection,
the signals from the Hall-effect sensors located on both sensor planes, SP1 and
SP2, are used. This is a very well known method where ‘sin’ and ‘cos’ of the
PM field need to be measured such that linear position may be detected [98].
In conventional linear machines where the radial position of the mover is
governed, e.g. by mechanical bearings, the PM field sensed by the Hall-effect
sensors can change only if the mover moves in linear z-direction. Since in
the MALTA, the mover is capable also to move radially (for the MALTA from
approx. —0.6 mm to 0.6 mm), which is allowed by the integrated MBs, the
change of the PM field detected by the Hall-effect sensor due to radial motion
cannot be distinguished from the PM field change due to linear motion, which
may lead to an inaccurate linear position detection. Therefore, for the linear
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Fig. 5.4: (a) Hlustration of the PM field lines used to sense the axial position of the
mover and the sensor planes SP1 and SP2, at axial distance 2Is. (b) Front side of the
sensor prototype with four Hall-effect sensors, denoted as hy, hp, h3 and hs. The Hall-
effect sensors can sense the z-component (axial) of the PM field. The displacement
2lg is such that the sensed PM field from SP1 and SP2 Hall sensors is shifted by half
the PM pole size Ly/2. (c) Back side of the PCB integrated sensor prototype. The
eddy-current sensor coils for x-direction (x*, x7) are connected in anti-series, as well
as (y*, y7) for y-direction. The physical size of sensor PCBs is 8 X 8 cm.
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Fig. 5.5: MALTA prototype consisting of two stator modules that contain the phase
coils, a mover comprising permanent magnets, and two PCB-integrated position
sensors (SP1 and SP2). The shaft diameter is 27 mm, while the actuator active length
is 170 mm. The machine design procedure is described in detail in [35]. The MALTA
modules (stator) can act onto the mover with the bearing (radial) forces f, (1,2} and
fy.B{1,2} in x- and y-direction and with the drive (linear) force fp in z-direction.

position detection of the MALTA, the ‘sin’ and ‘cos’ signals are formed by
the average sum of the four Hall-effect sensors, i.e. (hy + hy + hs + hy) /4. This
mitigates the sensitivity of the sensed PM field change to the radial motions
of the MALTA mover. For example, if the mover moves in the positive y-
direction (cf. Fig. 5.4(b)), the PM field sensed by h, would increase while
the field for hy reduces, i.e. their average sum stays approximately constant.
Finally, in total 8 Hall-effect sensors (4 per sensor plane) are used for the
linear position detection of the MALTA’s mover. The sensors implemented in
the MALTA prototype are shown in Fig. 5.5.

The radial position is detected by the PCB integrated eddy-current position
sensor, shown in Fig. 5.4(c). The explanation about the sensor operating
principles and its equivalent circuit are given in Section 9.2. Also, in [89,99]
a similar sensor approach is analyzed. Here, the operation of the sensor will
be discussed only briefly. The eddy-current sensor consists of a so-called
injection coil and pick-up coils. In the injection coil exists an AC-current
with an amplitude of ~ 100 mA and a frequency of ~ 3.5 MHz. It should be
mentioned that this frequency is selected as large as possible, but still below
the injection coil resonance frequency, i.e. the frequency where the injection
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Fig. 5.6: Measured sensor output voltage as a function of the radial mover displace-
ment in x-direction.

coil impedance turns from inductive to capacitive behavior. The current in
the injection coil creates the HF field that is coupled with the pick-up coils
and induces voltage whose amplitude depends on the mover’s radial position.
The mover’s surface is made out of non-ferromagnetic electrically conductive
material (e.g. aluminum or stainless still). The analog signal of the induced
HF AC voltage in pick-up coils is further processed by electronic components
and transformed into a DC-signal that depends on the mover’s radial position,
as shown in Fig. 5.6.

The measured voltage signal in Fig. 5.6 changes around Au = 1.6 V when
the mover is moved from x = —0.7mm to x = 0.5mm, i.e. for a step of
Ax = 1.2mm. This voltage signal is digitized with 12-bit ADC (LTC2313,
cf. [96]) in which 1mV suits to a single bit. Therefore, the resolution of the
radial position measurement is around

1.2 mm
1600 bit

= 0.75 pm/bit.

To assess the quality of the sensor signal, the voltage noise is measured
with a precision FFT spectrum analyzer [100], and its RMS noise value is
around 52 pV. The measurement frequency range is 10 — 5000 Hz. Therefore,
the best signal to noise ratio (SNR) is

1.6V/\2

201og,, 20V

= 86.7 dB.
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5.4 Summary

In this chapter details of the MALTA inverter and the position sensor design
and hardware realization are shown. Based on the analysis and measurements
in the previous Chapter 4, a specification for the MALTA inverter design is
derived, resulting in 45 VDC and 10 Apeak of the output current. Therefore,
for this purpose the GaN integrated half-bridge from Texas Instruments
LMGs200 is used and an inverter with 24 half-bridges is realized, where
only 18 are used to drive the MALTA. The inverter is designed with 24 half-
bridges such that it can also drive other actuators with 24 phases, e.g. a2 X 3
phases MALTA with the combined windings (cf. Chapter 4). The MALTA
radial position sensor is based on the eddy-current principle, while the linear
position sensor is based on Hall-effect elements that sense the mover PM
field.

At this point, the realization of the MALTA hardware parts is complete,
i.e. the MALTA machine prototype realization is shown in Chapter 4 and
the inverter and position sensor realizations are shown in this chapter. In a
next step a control system must be designed and implemented, which is the
topic of the following Chapter 6.
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Dynamic Model and Controller
Design of the Linear Machine

To verify the MALTA concept a position controller is necessary. As the
MALTA represents a system with coupled dynamics, the controller design
finally results in a LQG MIMO controller. Parts of the material presented in
this chapter are published in [93].

6.1 Introduction

In applications that require repetitive linear motion, the usage of direct drive
tubular linear actuators (TLAs) is beneficial compared to systems where gear-
boxes are used to generate linear motion from a rotary actuator [101,102].
Direct drive TLAs achieve higher dynamics, are more precise, and feature
less moving parts that are subject to wear. They are gaining attention in
numerous applications, such as actuators for pick-and-place robots in the
semiconductor or electronics manufacturing industries [24, 39,103], active
and semi-active suspension systems [40], compressors [41], tubular linear
generators [42], steering systems [104] or rehabilitation robots [105]. Never-
theless, in precision sensitive applications, accuracy and fast motion control
of the direct-drive actuators may be affected by friction of the bearings and/or
thermal expansions (e.g. in robotic arms that move the actuator). As a step
forward in the actuator area, a contact-less TLA was proposed in [35] that
features integrated active magnetic bearings (AMBs). With such an actuator,
friction is removed and any thermal expansion may be compensated by ad-
justing the radial position of the AMB [22]. In addition, the stiffness of the
bearings and the tilting of the mover may be actively controlled. The proposed
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Fig. 6.1: MALTA prototype consisting of two stator modules that contain the phase
coils, a mover comprising permanent magnets, and two PCB-integrated position
sensors (SP1 and SP2). The shaft diameter is 27 mm, while the actuator active length
is 170 mm. The machine design procedure is described in detail in [35]. The MALTA
modules (stator) can act onto the mover with the bearing (radial) forces f, (1,2} and
fy.B{1,2} in x- and y-direction and with the drive (linear) force fp in z-direction.

actuator is called MALTA (Magnetically Levitated Tubular Actuator) and its
hardware prototype is shown in Fig. 6.1. In addition to the linear motion and
magnetic bearings, to obtain rotation, the MALTA concept may be extended
and adapted, e.g. by adding a rotary machine, cf. [23].

In industry, PID position controllers are widely adopted for conventional
TLAs [106], which are in general well suited for single-input single-output
control schemes. However, they are unsuitable for the considered MALTA
system, as for the positioning of the magnetically levitated mover five degrees
of freedom have to be controlled simultaneously (instead of just a single
position), resulting in a multiple-input multiple-output (MIMO) control prob-
lem. The controlled five degrees of freedom refer to: forward-back, right-lefft,
up-down, pitch and yaw, whereas the sixth degree of freedom of the MALTA’s
mover, rotation, is not controllable. Therefore, a dynamic model of the me-
chanical subsystem of the MALTA is developed, which is used to design
an appropriate MIMO feedback controller structure, which is assisted by
additional feed-forward compensation components.
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qt
Electric ~ | Mechanical | |g, ||Position Sensor|
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(Sec. 6.5) (Sec. 6.3) (Sec. 6.4)

Fig. 6.2: Overview of the MALTA system models: electric, mechanical and position
sensor model.

6.2 MALTA System Model

The MALTA system model consists of three parts: the electric model, the
mechanical model and the position sensor model, as shown in Fig,. 6.2.

The electric model elaborates the bearing and the drive force genera-
tion from the phase currents L. For the derivation of the electric model
of the MALTA, two electrical angles, the linear electrical angle 0 and the
circumferential electrical angle ¢ are used, whose directions are shown in
Fig. 6.3.

The mechanical model is a nonlinear dynamic model, which allows to
determine the mover’s position (output of the model) depending on the total
net forces U that act on the mover (input of the model). The input of the
mechanical model, the bearing and the drive force that act onto the MALTA
mover is written in vector form as

o= fm fm fee fime fD]T, (6.1)

whose components are denoted in Fig. 6.1.

The position sensor model relates the center of gravity (COG) mover
coordinates G and g, (cf. equation (6.2)) to the displacements p that are
measured in the position sensor planes SP1 and SP2 (cf. Fig. 6.1). The mass
distribution of the mover is assumed to be even. A potential influence of the
picked component mass in pick-and-place application is neglected, as the
component mass is assumed to be much smaller than the mass of the mover
(e.g. this applies for SMD components to be mounted onto a printed circuit
board). For the derivation of the dynamic model, two coordinate reference
frames, the inertial 7 and the rotary R reference frame (cf. Fig. 6.3) are used,
which are described in more detail in the following subsection.
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SP1 Module 1 Module 2 SP2
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Fig. 6.3: Mechanical setup of the MALTA with inertial (1) and rotary (R) reference
frames: (a) side view as denoted in Fig. 6.1; (b) front view on the sensor plane 1 (SP1)
as denoted in Fig. 6.1; (c) mover construction showing the arrangement of the PMs
and their flux density directions.
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Fig. 6.4: Simplified mechanical setup showing the bearing planes 1 and 2 (BP1and BP2)
in the center of the modules 1 and 2, respectively (cf. Fig. 6. 3(a)). The intersection
points 1 and 2 are denoted by IP1 and 7Ps.

6.3 Mechanical Model

The mechanical model is nonlinear and dynamic and assumes a rigid mover
of the MALTA. The inertial reference frame 7 is fixed to the origin O and the
zr-axis is oriented along the axial direction of the MALTA stator, whereas the
rotary reference frame R is fixed to the mover’s center of gravity (COG) Ocog
and the zr-axis is aligned with its principal axis, as shown in Fig. 6.4. The
tilting of the mover in Fig. 6.4 is used to illustrate the position of the R frame
and it does not correspond to the tilting possible in reality. The motion of the
mover is described in terms of translation and rotation of the frame R with
respect to the frame 7. The translation and rotation may be parametrized
using a set of Cartesian coordinates g; and a set of Cardan angles g, as

X (04
‘it =Y C_I)r = |B|. (6.2)
z Y

The angles in g; are three subsequent elementary rotations around the xg, yg

and zg axes (cf. Fig. 6.4). Once the motion of the mover is parametrized, the

equations of motion can be derived, for example by using the Newton-Euler

equations [107], which can describe combined translation and rotation of a
rigid body,

92
m% = 7 Fiot
(6:3)

oR o
Rlm - ?"‘RC‘)X’RIm R = RTiot,

where the translation is described in the inertial frame 7 and the rotation in
the rotary frame R. Fyot and Ty, are the total force and the total torque acting
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Tab. 6.1: Mechanical parameters of the MALTA.

Symbol  Quantity Value
Mass and Moment of Inertia
m Mover mass 0.360 kg
Lex Mover x-axis Mol 1.3805 x 1073 kg m?
Iy Mover y-axis Mol 1.3805 x 10~% kg m?
L. Mover z-axis Mol 4.7707 x 10~ kg m?
Force Constant
Kp Drive constant per module 5.2N/A
Kp Bearing constant per module 5.2N/A
Ka Attraction constant per module 8330 N/m

on the mover, respectively. The mass of the mover is m, while

L. 0 0
Rln=10 I,, 0
0 0 I,

is the Moment of Inertia (Mol) diagonal matrix, expressed in the mover frame
R. The values of these parameters are given in the Tab. 6.1. The angular
speed in the rotary frame gw is given by the following angular rotations

0 0 Ty
725) =0 [+ Rz(ﬂ) TWy| + Rz(ﬁ)Ry(a) 01, (6.4)
Tz 0 0

where 7wy = da/dt, 1wy = 0f/dt, rw, = dy/at. Furthermore, a small angle
approximation is used, i.e. for any angle ¢ it applies sin¢ ~ & and cos & ~ 1.
The rotation matrices R, (f) and R; () are equal to

cos(f) 0 sin(p) cos(a) —sin(a) 0
R,(p) = 0 1 0 |, Ry(a)=|sin(a) cos(a) 0], (6.5)
—sin(f) 0 cos(p) 0 0 1

where a detailed outline of the rotation procedure is given in [108].

The total force on the mover is the superposition of the two net forces
from the modules 1 and 2, acting at the points ]1_51 and _71_52, which are in
the middle of each module. These points are shown in Fig. 6.4 and may be
described analytically as

x—f(g+2) x+ Bl — z)
Pi=|y+alls+2)|, P=|y-a(z-2)|. (6.6)
_lB lB
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These expressions are derived from
P1=1O0coc + Rrg g Py

and
P2 = 1Ococ + R1g ® P2,

where the points in the rotary reference frame are equal to
5 T
gPi=1[0 0 (-lz-2)]

and _
gPr=[0 0 (h-2)]",

and the 3 X 3 transformation matrix Ryg = R;{lj, where Rgy =
R, (2)Ry(B)Rx(y) (cf. [108]), is considered. The rotation matrix Ry (y) is
equal to

1 0 0

Ri(y) = |0 cos(y) —sin(y)|. (6.7)

0 sin(y) cos(y)
Based on the position of these interaction points, the total forces and torques
applied to the mover are discussed in the following.

6.3.1 Total Force in Inertial Reference Frame

The total force Fio acting on the mover consists of three force types: the
drive, the bearing and the attraction force (also called magnetic pull or detent
force). As the inertial frame 7 is fixed to the stator, the total force may be
readily expressed in the 7 frame as jﬁtot, where Iﬁtot is composed of the two
components which are generated by module 1 and module 2, acting as a net
force in the points ]1_51 and ]P_;z,

7Fot = 7F + 1F,. (6.8)

The forces of each module, [ﬁl and [ﬁz, are further split into a drive, a bearing
and an attraction force,

7Fi=1Fpi+ 1Fpi+ rFa

and
7F = 1Fpy + 1Fp2 + 7 Fa2.
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It should be mentioned that these considered force vectors are analyzed in
the Cartesian coordinate system (with the axes x, y and z) and, therefore, the
vectors have a dimension of 3 X 1.

The drive force component is an active component controlled by the
drive currents in the stator and acts in the z-axis direction. Therefore, it
corresponds to the third component of the drive force vectors

0
IﬁDl =10 and ]ﬁDZ = 0
D1 Jo2

The total drlve force may be expressed as a superposition of the individual
drive forces ]FDl and ]FDZ as

7Fp = rFo1 + rFpe
0 (6.9)
= 0 .

o1+ foe

The bearing forces are also actively controlled by the bearing current com-
ponent in the stator windings. They act as net forces in x7- and yr-direction
at the interaction points 11_51 and ]f’g. Therefore, these forces constitute the
first and the second component of the force vectors

N fx,Bl R fx,Bz
Fp1 = |fyp1 and Fe2 = | fyB2
0

The total bearing force may be expressed as a superposition of 7 Fgy and 7 Fpy
as

= rFp + rFg2

N
=
|

fx1 + fis2 (6.10)

Sy + fys2
0

The attraction forces are radial reluctance forces, which only generate
a resulting attraction force on the mover if it is displaced from its center
position, otherwise they cancel each other out. Thereby, it can be assumed
that for a small displacement the resulting attraction forces acting at the
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interaction points [1_51 and 11_52 are proportional to the radial displacement
at these points. Therefore, the modules 1 and 2 are generating the attraction
forces

7Fa =Ka - 1Py

and
7Fa2 =Ka - 1P,

which can be written as

. [x = Bl +2)
rFa=Ka|y+all+2)|, (6.11)
0
and )
x+ p(lsg —2)
rFar=Ka|y—alls—2)|. (6.12)
0

There, K5 equals the attraction constant per module, whose measured value
of the prototype is given in Tab. 6.1. The total attraction force is then given

as the superposition of the forces ]fAl and ]fAz, ie.

7FA = rFa1+ rFas. (6.13)

6.3.2 Total Torque in Rotary Reference Frame

By its magnetic design, the MALTA is designed as a linear motor (with
integrated MBs). Therefore, it is not able to generate any drive torque (the
torque around the z-axis, which ‘drives’ the rotation of conventional rotary
machines). Consequently, the total drive torque component is equal to zero.
On the other hand, certain net forces (drive, bearing and attraction) may
act on the mover at the interaction points 7P and 7P, points, which may
generate a certain net torque ﬁot. This net total torque is first determined in
the I frame, and then transformed into the R frame.

In a first step, the lever arms are determined at the interaction points
Iﬁl and 11_52. The lever arms are vectors describing the distance between
the force interaction point and the mover’s center of gravity Ocog. In the
inertial reference frame 7, for the MALTA mover two lever arms are defined
as ]Ijl = ]1_51 — 71Ocog and ]Ez = ]132 — 70c0G, which results in the following
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expressions
[~ +2) [ Bls-2)
Li=|allg+2) |, 7Ly = |—a(lg+2)|. (6.14)
—lB 4 lB 4

The net torques ]ﬁ and ]ﬁ generated by the MALTA modules 1 and 2,
may be calculated then as

rh=rLi X 7F, =1Ly X 1 F. (6.15)

Finally, the total torque acting on the mover in the rotary R reference frame
is obtained as
RTtot = Rrr (rTi+ 1T2). (6.16)

6.4 Position Sensor Model

In order to realize a closed-loop position control of the MALTA mover, the
axial and radial positions have to be measured. Here, it should be mentioned
that the radial position has to be measured at two distinct axial locations, such
that any tilting of the mover can be controlled. Therefore, two PCB integrated
sensors are located at a certain distance s in z-direction from the origin O
of the inertial frame 7, as shown in Fig. 6.3(a). The position measurement
vector of SP1 and SP2 (which are denoted in Fig. 6.1 and Fig. 6.3) may then
be written as

and the position of the mover described in terms of translation and rotation
of the COG, may be related to the measured positions as

- q_)t
=P >0,
p O(Z) [qr]

where g; and g; are given in (6.2) and

100 0 ~(s+z) 0
01 0 (k+2) 0 0
Po(z)=|1 0 0 0 (Is—2) o0f, (6.17)
01 0 —(lg—z) 0 0
0 0 1 0 0 0
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can be deduced in analogy to the relations given in (6.6) for the two force
interaction points, where in this case the measurement points Is instead of Iy
have to be used.

The hardware implementation of the two eddy-current sensors, which
output a voltage that is proportional to the radial displacement, is shown in
Fig. 6.1. Hence, the two position sensors, denoted as SP1and SP2 in Fig. 6.3(a),
can measure the radial positions of the mover at their axial locations z = +Ig,
i.e. x; and y; are measured by SP1 at —Is and x; and y, are measured by SP2 at
Is. Furthermore, the axial position of the mover z is measured with Hall-effect
sensors, as explained in Section 5.3.

6.5 Electrical Model

The drive force IfD and the bearing force ]133, are controlled by the elec-
tric currents in the multiple three-phase windings of the MALTA, as shown
in Fig. 6.5(a). In conventional linear machines, the appropriate drive cur-
rent to generate the desired thrust is typically obtained by performing a
dg-transformation out of the three-phase currents in the axially arranged
three-phase windings. The resulting g-current component is proportional
to the generated thrust, and the resulting d-current component is used for
field-weakening; however, it is typically controlled to zero.

For electric machines like the MALTA, which can also control the
radial bearing forces on the mover (rotor), the same principle, i.e. the
dg-transformation, can be applied to the radially arranged three-phase sys-
tems, whose obtained d- and g-current components directly control the re-
sulting bearing forces in x- and y-direction. Hence, for electric machines
which can either simultaneously generate drive and bearing forces or si-
multaneously rotate and move in linear direction, a dg-transformation for
both systems should be applied, i.e. for the rotational and the linear motion,
which results in a so-called two-directional dg-transformation [18,19]. Such a
transformation has 4 components, dd, dq, qd and qq, where the components
dq, qd may provide decoupled torque and axial force control (the first index
is related to the rotation, while the second index corresponds to the linear
motion, e.g. dq is the d-component for rotation and the g-component for the
linear motion). As explained in [18], the MALTA drive current component is a
zero-sequence component in rotary direction, and therefore, its g-component
is denoted as 0q in the two-directional transformation, which is also shown
in Fig. 6.5(b). The bearing components have only a d-component in axial
direction and both d- and g-components in rotary direction, which gives dd-
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Fig. 6.5: Electrical system of the MALTA: (a) Winding system of a single module con-
sisting of 9 concentrated coils. The complete MALTA prototype with module 1and mod-
ule 2 has 2 X 9 = 18 coils. (b) Mover with labelled two-directional dg-transformation
axes (the first index for radial direction (bearing) and the second index for the linear
direction).

and qd-components for control of the bearing forces in x- and y-direction.
The mentioned zero-sequence component in rotary direction cannot be repre-
sented by the two dimensional complex dg-transformation (3.16). Therefore,
for the control implementation in this section, matrix notation is used.

In general, in electric machines that can generate torque and/or thrust
force in combination with magnetic bearing forces, the windings are realized
either as separate or combined windings [70, 85]. The separated winding
arrangement contains a drive winding dedicated to the torque and/or thrust
force generation and a bearing winding dedicated to the bearing force gen-
eration (i.e. a bearing winding). On the other hand, the combined winding
arrangement employs only one winding, where the drive and bearing currents
are superimposed. Usually, the separated winding is more difficult to man-
ufacture than the combined winding, as the two different winding systems
have to be arranged on the same magnetic core. On the other hand, with the
separated winding the control system implementation is simpler compared to
the combined winding, as the drive and bearing quantities (voltages, currents
and flux linkages) are inherently decoupled.

The comparison of the MALTA winding realizations (separated versus
combined) is conducted in Section 4.4. The 3 X 3-phase combined MALTA
winding realization (cf. Fig. 6.5) provides the highest drive and bearing force
per copper loss compared to the other realization options. Therefore, this
winding realization is used in the built prototype. Consequently, the two
components of the voltage (u), current (i) and the flux () linkage, the drive
component (for the thrust force generation) and the bearing component (for
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the magnetic bearing force generation) are superimposed, and the MALTA
phase quantities may be written in the following form

XA +XaA XB+ XaB XC + Xac
Xabe = |Xa +Xpa  XB+XpB  XC + XbC| (6.18)
XA +XeA XB+HXB  XC + XeC

where x5 p ) is the drive component and x(,1,c}¢a,c} is the bearing com-
ponent and x € {u, i, /} may represent any of the phase quantities (voltage,
current or flux linkage). According to a conventional linear machine, the
drive component of the MALTA phase quantities is equal to

x(aBc) = Xu cos (wrt + Oy + {ya, v, ¥ }) s (6.19)

where x € {u,i,¢}, XM € {UM, fM, ‘ifM} is the drive amplitude, wy, is the
electrical angular speed, 6y is the initial drive phase angle, ypo = 0°, yg =
—120° and yc = 120°. As can be noted, the drive component results in an
offset, i.e. a zero-sequence component, added to the bearing components
of each rotary three-phase system (cf. each column in (6.18)). These zero-
sequence components appear due to the MALTA combined winding, i.e. each
winding has drive and bearing current components. E.g. the first three axial
windings aA, bA and cA have the same drive current component which forms
zero-sequence, whereas the bearing component currents form a three-phase
system. Therefore, to ensure a uniform modeling, linear algebra notation
(vectors and matrices) is used for the MALTA electric model rather then
complex numbers, since representing zero-sequence components is simpler.
The bearing component of the MALTA voltage and current quantities is given
as

X{abeHABC) = Xab €08 (@x + {Va Ybs Ye}) X

(6.20)
cos (wrt + Oxp + {ya. vB, vc})

where x € {u,i}, Xsp € {Unmp, Ivy} is the bearing amplitude and ¢, is the
direction in which the current space vector has to point in order to counteract
the displacement, which together with Xy, is later defined by the bearing
current controller. Furthermore, since not all stator windings are facing the
same PM in axial direction, the linear position of the rotor has to be considered
for the bearing current and voltage, which is achieved by the multiplication
with cos (@t + Oy p + {ya, y8, yc}) in (6.20). Hence, the superposition of the
three bearing components to the drive component can be interpreted as a
redistribution of the drive current to the three circumferential windings of

115



Chapter 6. Dynamic Model and Controller Design of the Linear Machine

one linear phase in order to generate bearing forces, while at the same time
the average drive component in linear direction is not changed.

As already discussed in Section 3.9.2, in contrast to the bearing compo-
nents of the current and voltage, the bearing component of the flux linkage
also depends on the radial displacement. Since for the MALTA there is no
dependency on the rotation angle, i.e. wrt + ¢y = 0, based on (3.23) the flux
linkage can be written as

Ip{a,b,c}{A,B,C} = XpmM (x COS{}’as Ybs }’c} -y Sin{)’as Ybs )’c})

(6.21)
X cos (wrt + 0y + {ya. ys, vc}) »

where Ypmm is the MALTA flux linkage radial sensitivity.

6.5.1 MALTA Transformation

As shown in Section 3.9.2, for the MALTA only the currents iy, igq and igq
have to be controlled to generate the thrust and the bearing force, respectively.
Furthermore, as shown in the following, also the ig-component must be
controlled to zero such that the drive current is kept to a minimum and is
not weakening the PM field. Hence, In order to obtain these quantities, first
the 9 MALTA phase quantities (abc-quantities) have to be transformed into 9
stationary dq0-quantities as

Xdqo = Kro - Xabe - Kros (6.22)
where Kgy is the rotary electrical angle transformation

o | COSYa  cosyp  cosye
Kgro = - [—siny, —siny, -—siny|, (6.23)
1/2 1/2 1/2

and K is the linear electrical angle transformation

cos(wpt +ya) —sin(wpt+ya) 1/2
Ky = = |cos(wrt +yp) —sin(wnt+yp) 1/2]. (6.24)
cos(wpt +y.) —sin(wpt+y.) 1/2

It should be noted that these transformation matrices also consider the zero
sequence components for rotation and for linear motion, since, as already seen,
e.g. the drive component in linear direction is a zero-sequence component
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for the bearing component (cf. (6.18)). Hence, the dq0-quantities have the
following components

Xdd  Xdq Xdo
quO = |Xqd Xqq Xqo]- (6.25)
Xod Xoq X00

where in the double index notation x4,q,0}{d,q0}. the first index denotes the
respective rotary component (d, ¢ or 0) while the second index denotes
the linear component, i.e. the rows in X4qo represent the rotary direction
while the columns represent the linear direction. Furthermore, it should be
noted that three types of the zero sequence components may be identified:
(1) rotary zero sequence components xyq and xog4, (2) linear zero sequence
components xqo and xqo and (3) rotary-linear zero sequence component x.
By transforming the abc-quantities of the MALTA voltage and the current
into the dq0-quantities, i.e. inserting (6.19) and (6.20) into (6.18) and applying
the transformation given in (6.22), the following components are obtained

Xy oS @x 08 Oy X cos @xsinfyp 0
Xdqo = [ Xmp sin @y cos O, Xmp sin @y sin Oy, 0] . (6.26)
X cos O X sin 6, 0

This expression clearly shows that the drive components of the voltage and
the current (XM cos 0, and Xy sin 0y) are ‘seen’ as a zero component (xoq and
Xoq) for the rotary direction, which also corresponds to (6.18) where the drive
component is the same in all rows of the matrix Xyp.. Accordingly, also the
abc flux linkage W, is transformed into the dq0-flux linkage which results
in

XYpmM €08 0y X )ypmmsinfy 0

Wiq = | YXpmMm €OS Oy Yxpmmsinby Of. (6.27)
‘i’M cos 0y ‘i’M sin 0y, 0

The dg-frame is usually oriented such that 6y = 0°, which leads to only three
non-zero flux linkage components

X Xpm,M 0 0
Wago = [YXpmm 0 O]. (6.28)
v 0 0

As already done in Section 3.9.2 for separate windings, in order to identify
the dq0-current components that contribute to the radial forces (Fy and Fy)
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and the thrust force (F,) generation in matrix notation for the combined
winding, the electrical and mechanical powers are compared. The electrical
power of the MALTA winding is pel = X n={ab,c} 2in={4,B,C} Umnimn, Which
can be expressed by the Frobenius inner product [109] of matrices, i.e. the
sum of the element by element multiplication, as

Pel = <Uasz Iabc>F> (6-29)
where the MALTA voltage Uy, is given as

dIa c d‘I]a c
be 4 ——gbe

Uabe = Rapelabe + Labe dt dt

(6.30)

The resistance R,p and the inductance L, matrices are diagonal matrices,
i.e. Ry = diag(R, R, R) and Ly, = diag(L, L, L). Hence, the electrical power
is equal to

A

dIMb A

9 A
pa =5 {leﬂ, + L— = hay+

XpmM (vxidd + vyiqd) + WL XpmM (xidq + yiqq)}+ (6.31)

9 . dhy, d¥ .
E{RIKA + Ld—l“fIM + d—;“iOd + wL‘I‘MiOq},

where d ypmm/dt = 0 is assumed. From (6.31), the power parts that contribute
to the copper losses (containing R), change of the magnetic energy (containing
L or d¥/dt) and the mechanical power (containing oy, vy or wy) can be easily
identified. It should be noted that
2
Wy, = — Uy.
Tpp

On the other hand, the mechanical power of the MALTA is equal to
Pmech = 0xFx + 0y Fy + 0, F,.

Therefore, the thrust force in the MALTA with the combined winding is

generated as

or » .
F, = —¥Pmiogs (6.32)
Tpp
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while the bearing forces are generated as

9 ) 9 .
F = ZXpm,Mldda Fy, = ZXpm,Mlq(L (6.33)

which agrees with the analysis conducted using complex space vectors (cf.
(3.26) and (3.27)). Additionally, the parasitic thrust force is created when the
rotor radial displacement is non-zero, which is equal to

Fz,par = (9”/271313) \?M (Xidq + yiqq)’

which has to be compensated by the controller.

6.5.2 MALTA Reduced Transformation

In a second step, now a transformation has to be found which transforms
the 9 dq0-quantities into only 4 dq0-quantities, which are needed to control
the forces generated in the MALTA. From (6.32) and (6.33) it can be seen that
the thrust force F, and the bearing forces Fy and Fy are controlled with three
different dq0-current components. The rest of the current components has
to be kept to zero by the current controller. Hence, I4q reference has the
following form

Idd — FX/KB idq -0 idgo — 0
quO = iqd - Fy/KB iqq —0 qu — 0], (6.34)
lod — 0 iog = F,/KL ipo — 0

where Ki, = (97/1p) ¥y and K = (9/4) XpmM are the MALTA drive and
bearing constants (cf. (6.32) and (6.33)). It should be noted that by keeping
the current components in (6.34) to zero, the electrical angles ¢y, 6y and 0y},
of the phase currents have to be controlled. Comparing (6.34) and (6.26), it
can be seen that when controlling ipg — 0, the drive current phase angle
0; = m/2 is achieved and when controlling ig; — 0 or igg — 0, the bearing
current phase angle 0;}, = 0 results. Finally, the phase angle ¢; is determined
by the current components igq and igq ( iad = be cos¢; and igq = be sin @;)
as
@i = atan2(iqq, idd)

which can be also obtained as

¢; = atan2(Fy, Fy)
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due to the proportionality between the currents iyq, iqq and Fy, Fy, respectively,
(cf. (6.33)).

Since I3q has nine current components, the control system of the MALTA
would need nine independent current controllers per MALTA module (the
complete MALTA system consists of two such independently controllable
modules, since a possible tilting of the long MALTA rotor has to be counter-
acted). In order to reduce the number of the required current controllers, a
reduced transformation that requires only four current controllers per MALTA
module is proposed. Since there is no rotation in the MALTA (i.e. the mover
cannot rotate wr = 0, and therefore all bearing control quantities are posi-
tioned in circumferential direction, but not rotated), the three-phase system
in the rotary direction resembles a DC-quantity, i.e. it does not alternate
its values over time with a certain angular frequency like in typical electric
machines. Therefore, it is enough to control only its amplitude g, while
the information about the phase and the electrical angle ¢; is given by the
radial position controllers that output the bearing forces F, and Fy. Hence,
the angle ¢; is always pointing in the direction in which the bearing force
has to act. The transformation that gives only 4 dg-components is defined as

B XM cos 0, XM sin 0,

Xaq= |+ N
7 | Xap cos Orp Xiip sin Oy

= KR(QDX) : Xabc ‘ KL; (635)

where the transformation matrices Kg(¢y) and Ky, are

1/2  —sin(px — 1/2 +ya,) T
Kr(px) = 2 |1/2 —sin(px —7/2+ )| (6.36)
1/2  —sin(px — /2 +ye)
and
cos(wrt +ya) —sin(wrt + ya)
Ky = — |cos(wrt +yp) —sin(oLt + )| . (6.37)
cos(wpt +y.) —sin(wrt +yc)

The pseudoinverse transformation matrices are equal to

1 —sin(px — /2 +y,)
Kp'(px) = |1 —sin(px —7/2+p) |, (6.38)
1 —sin(px — 71/2+ )

and
cos(wrt +ya) —sin(wrt + ya) T
K;' = |cos(wpt +yp) —sin(ort+yb)| - (6.39)
cos(wrt +y.) —sin(wrt +ye)
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Comparing the new dg-components in X4q given with (6.35) to the dq0-
components in Xqq0 given with (6.26), it can be seen that the rotary zero
sequence components xyq and xoq are moved to the first row of the Xg4q. In
the second row the components proportional to the bearing amplitude Xy,
are found. In order not to generate any thrust force F, with the bearing
current component, the electrical angle is 6;}, = 0. Similarly, to maximize the
thrust force generation with the drive current component Xy, the electrical
angle is §; = 7/2. In order to achieve these electrical angles, the components
Xdq(1,1) and Xg44(2, 2) are controlled to zero

Iyq =

g = 0 log — FZ/KL] (6.40)

ira — Fs/Kp ibq — 0

where ibg = Iy €08 O b, ibq = Ivp sin Oy p and F = ([F2 + F?. The force angle
¢; = atan2(F,/Fy) is calculated from the bearing force references Fy and
Fy, which are provided from the radial position controller as shown in the
following section.

6.6 MALTA Mechanical Model Linearization

The nonlinear mechanical model given with the equations of motion (6.3),
together with the model of the position sensing and the electrical model,
may be used for numerical simulation of the MALTA dynamics. To use the
nonlinear mechanical model (6.3) for the position controller design, the model
is first linearized. In order to formally represent the linearization process a
function from the equations of motion (6.3) is defined as

&G o4 24 _ |
]‘_—;’ q o9 ..\ _ m—oe — 1 Frot
EoM _Z,E,q,v T T e T sl T T T >
ot RIm - 52 + RO X gl - D — RTiot (6.41)

which is identically equal to zero. 0gx; represents a 6 X 1 zero matrix. The
position (state) g and the force (input) o vectors are equal to

x
y fiBi
z fyBi
q= al’ 0= f;(BZ s
ﬂ fi’BZ
o
Y
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where fp = fp1 + fpz. The resulting linear equation of motion is

g q .
M— +G— =8q+ Vg, 6.
ot? ot I+ Ve (6.42)

where the linearization matrices are calculated as

Mexs =] (ﬁ azcj) Gexs =J (ﬁ ag])
6X6 = EoMs —/ 5 6X6 = EoMs> —
31’2 at ss ot at ss

Sexe = —J (ﬁEoij) Viexs = =J (ﬁE0M> 5)

at ss at ss

J( f, 1) computes the Jacobian matrix of the function ﬁnxl with respect to Fyxi,
where the Jacobian matrix size is m X n, which is then evaluated at the given
steady-state point. At the steady-state point, the mover can be displaced in
axial direction, but should be in the radial center and not tilted. Therefore,
the linearization is conducted for the following values of the position and
force vectors:

0
0 Zgs — lB
0 IR
- Zss - 0
Iss = 0]’ Uss = o Zes + Ip
0 g m oL
0 0
0

Additionally, at the steady-state point, the position derivatives are set to zero,
ie.

Iss _ g ¢ RO 9qss —0cR™.

ot? ot

The matrix G = Oy in the linearized equation of motion (6.42), also called
gyroscopic effect matrix [22], is equal to zero as the rotation of the mover in
the steady-state is neglected. The rest of the matrices in (6.42) are equal to

m 0 0 0 0 0
0O m 0 0 0 0
0 0m 0 0 0

M=10 0 0 L, o o} (6.43)
0 0 0 0 I, 0
0 0 0 0 0 L,
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6.6. MALTA Mechanical Model Linearization

2Ka 0 0 0 —2Kp - zs 0
0 2Ka 0 2K - zg 0 0
s 0 0 0 0 0 0
- 0 2Kp - zgs g-m 2Kp(zE +1}) 0 o’
—2Kp - zgs 0 0 0 2Ka(Z5 +15) 0
0 0 0 0 0 0
(6.44)
1 0 1 0 0
0 1 0 1 0
0 0 0 0 1
V=1 Is+zs 0  ly—2zg O (645)
—ZB — Zss 0 lB — Zgg 0 0
0 0 0 0 0

6.6.1 Reduced MALTA Model

Since rotation of the MALTA mover cannot be actively controlled, therefore,
the dynamics of y are not considered for the controller design. Consequently,
the matrices in the linearized equation of motion (6.42) are reduced, i.e. the
last rows and columns in (6.43), (6.44) and (6.45) are omitted. Therefore, in
further analysis the matrices M, S and V have the following dimensions

M € R¥® S e R V e R,

The most favorable form of MIMO system for controller design is the
state-space form of the linear equations, where the first derivatives of the
states are expressed as functions of the states itself and the inputs (drive and
bearing forces). In order get the state-space form, the second derivatives from
the linearized equations of motions are removed by augmenting the state
vector as

E=|aG| e R,

where
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Tab. 6.2: Poles (eigenvalues) of the linearized MALTA system.

Symbol  Mode  Eigenvalue

/11,2 X +218.92
/13’4 y +218.92
/15,(, z 0

A7’8 o +157.53
/19,10 ﬁ +157.53

since y is neglected for the further analysis. This gives a system in a standard
state-space form

L = Af+ B3,
ar =M (6.46)
p=C¢
where the state-space matrices are obtained as
A=E [s 0 B=E" |y c=[P o], (6.47)

where A € RI%10 B ¢ R C e R>10 and the matrix P € R** is obtained
from (6.17) by removing the last column and adding the zero-matrix 0 € R,

6.6.2 Poles of the Reduced MALTA Model

From the linearized state-space system representation (6.46), the poles of the
system are determined as eigenvalues of the matrix A, which are given in
Tab. 6.2 for the case z;; = 0. The linearization was also studied for z; €
[—15,15] mm, revealing that the pole locations do not vary significantly. The
system is open-loop unstable, since there exist positive poles. These are
caused by the destabilizing attraction forces, which act on the mover in
a ‘negative-stiffness spring’ fashion. The largest unstable pole imposes a
minimum requirement on the closed-loop bandwidth of the position control
system (as a rule of thumb, the closed-loop system bandwidth should at
least be twice the frequency of the largest unstable pole [110]). For example,
from Tab. 6.2 the largest frequency is 218.92 rad/s and it is associated to the
unstable pole A; = 218.92.
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6.6. MALTA Mechanical Model Linearization

Tab. 6.3: Maximum expected values of positions and forces used for normalization.

Symbol  Description Value
Position

Xmax Radial distance from center to touchdown bearing ~ 0.65mm
Ymax Radial distance from center to touchdown bearing ~ 0.65mm
Zmax Axial stroke amplitude 15 mm
max Cardan angle 0.0154 rad
Pmax Cardan angle 0.0154 rad
Speed

Kmax Translational velocity 0.335m/s
Vmax Translational velocity 0.335m/s
Zmax Translational velocity 1.904m/s
Gmax Angular velocity 5.315rad/s
Prnax Angular velocity 5.315rad/s
Force

fBmax Maximum bearing force per module 15N

fOmax Maximum drive force per module 21N

6.6.3 Normalization

Normalization (scaling) is very important for practical implementations of
the control systems, as it allows to ensure for all the states g?, inputs ¢ and the
outputs p numerical values < 1. Therefore, the absolute values in the vectors
are divided by their maximum expected value, which may be written in the
following form using the normalization matrices

-

fn =D €R", 5, =D,'5 €R’, fru=D,'p €R’,  (6.48)
where the normalization matrices are diagonal and equal to
D, o
=[5 b
7o D,
Dq = diag (xmax Ymax Zmax  ®max ﬁmax) 5
Dq = dlag (xmax Ymax Zmax @max ﬁmax) > (6.49)
Dv = dlag (ﬁ3max f]‘3max f]‘3max ﬁ%max szmax) 5

Dp = diag (xmax Ymax Xmax  Ymax Zmax) .

The maximum values for the positions and the forces are given in Tab. 6.3.
The cardan angles are calculated as

X
Omax = atan | —=| | Pmax = atan Ymax .
Iy Iy
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The speeds are derived from the maximum displacements and the maximum
forces. The derivation is given for the x-direction, but is analog for the y-
and z-direction. Assuming the mover is initially at rest at the origin, the
movement is described with

F F F
x(t) = x(t) = ta x(t) = t2’
m m 2m

where F is assumed to be the total force accelerating the mover in the respec-
tive direction, m is the mover mass and ¢ time. In order to find the maximum
occuring speed, the last equation is solved for the maximum time #y,,x, where
the mover hits the touchdown bearing, i.e.

2M Xmax
Imax = T .

This results in the maximum velocity

/2Fx
)'C(trnax) = mmax .

Therefore, the translational velocities are calculated as

. _ 4 fBmax Xmax . _ 4 fBmax Ymax . K - fDmax Zmax
Xmax = T, Ymax = T; Zmax = T;

where the force F that accelerates the mover in the respective direction is
twice the maximum force per module, since the MALTA has the two modules
acting on the mover.

For the angular velocities, the considerations are similar. If « is taken as
an example, the following expressions that describe the rotation result

F F F
() = =, a(t) = = ¢, alt) = = 12,
IXX Ixx 2IXX

where F is the total force that rotates the mover over the radius r. The
maximum rotational velocities are equal to

. 4ly f]‘3max Qmax 5 4ly ﬁ%max ﬁmax
Omax = I—: ﬁmax = I—
XX Yy
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Inner Control Loop

& Inverter MALTA
i Position _3(2 Current |Udq|dg Uabe i , xp
Controller Controller e ‘}
x . i
I fole ;
qu dq Iabc ‘ 12
abp
B
& State
Outer Control Loop Estimator

Fig. 6.6: Overview of the cascaded MALTA control structure with inner current
control loop and outer position control loop.

The normalization of the state vector ¢ and the input vector o results in
the normalized (scaled) system of the state-space equations

.
ot
ﬁpu = Cpugpu

= Apubpu + Bpuz?pu’ (650)

where the normalized state-space matrices are calculated using (6.47) and
(6.49) as

Ay, = Dgl ADg, By, = D; BD,, Cpu = D;,l CD;. (6.51)

6.7 Position Controller Design

The overall MALTA control scheme is presented in Fig. 6.6. It features a
cascaded structure, with inner current control loop and outer position control
loop. This is a common choice for the control of electromechanical actuators
as the mechanical time constants are typically much larger than the electrical
ones, thus exhibiting a dynamic separation in the frequency domain. This
allows a largely independent design of both control loops. In the following,
first the position controller and next the current controller are described.

6.7.1 State-Space Augmenting for Integral Control

For the outer position loop a COG control strategy [22] is chosen, which
consists in controlling position and orientation of the mover frame R, rather
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than axial and radial positions p sensed at the sensor planes (i.e. output
control or decentralized approach). The controlled states Epu contain positions
and their derivatives, which allows to realize a controller with proportional
and derivative action on the state’s dynamics. Such controller may result in
non-zero steady-state errors that may be caused by unmodeled disturbances
such as cogging or radial pull forces or any other external mechanical load.
The main aim is to bring the measured positions p to the desired reference
values p*. Therefore, the vector representing the integral of the error

t
ww=[:@%ﬂ—ﬁu»m-ew, (652)

is considered. It should be noted that

Ly O )

For the implementation, the normalized state-space, i.e. per unit, equations are
considered (cf. (6.50)). Consequently, the integral error vector v should also
be normalized. As ¥ has the same dimension and units as [5 it is normalized
with the same normalization matrix (cf. (6.48))

Vpu = D;ll_/) e R>. (6.53)

The augmented per unit state-space equations are equal to

5 (6] [ A O] [in] o [Bn] 4
ot | Vpu “Cou Osxs | |Vpy 0Osxs
S~—— ———— ———— e —
Z =Aaugpu =DBaug,pu
=§aug,pu 8P B &p! (654)
ﬁpu = [Cpu OSXS] : [gpu]
—_——— Vpu
:Caug,pu

where the dimensions of the new state-space system are

z 15 15%15 15%5 5%15
Eaugpu €R Aqugpu €R Baugpu € R Caugpu € R,

6.7.2 Controller Structure and Components

The position controller structure is shown in Fig. 6.7, realized in the nor-
malized, i.e. per unit, system of values. The control action comprises three
components:
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04 UFF,pu
fmmmm oo » Mpuziu Denorma-

lization

€ K, UFB,pu z:\ Upu - @ | Convert to | Liq
Regulator & L dg-Currents
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Fig. 6.7: Structure of the MALTA position controller. From the output measurements
D, the state E is estimated with the state estimator (Kalman Filter) and used for LQR
feedback control. To enhance the performance, the feed-forward force commands
opr (for tracking) and g (steady-state compensation) are added to the feedback-only
component g resulting in the total force command . This is finally converted into
the desired dg-currents j99*,

> Upppu is the feedback component, which is the outcome of the MIMO

controller action g pu = —K¢&augpu;

> Upppu is the feed-forward component, which is used only in the z-
direction;

> Uopy is the zero force component, i.e. the steady-state value of the force.
This component compensates for any parasitic forces such as gravity,
cogging or radial pull forces. This force vector is saved in the control
memory as a function of the axial z-component gy (2).

The most important controller component is the feedback component
z_)'FB,pu, which is described based on the knowledge of the MALTA mover
dynamics. With the feedback controller action, the MALTA mechanical
dynamics reduce to

a § aug,pu

ot = (Aaug,pu - Baug,puKr) gaug,pw (6~55)

Therefore, the design of the control reduces to the determination of the
feedback matrix K;, which once the linearized mechanical state-space model
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Tab. 6.4: LOR control weights for K, design.

9x:9y 325 | 9dx>9dy 10 Gex1> deyl 80 | rx1,TFin 1
9o, 9p 15 dda>9dp 12 Qex2:qey2 80 Tfx2, T'fy2 1
9z 03 9dz 0.3 | Gez 30 | Ifz o1

of the MALTA is formed, cf. (6.54), is straightforward. The position controller
gain matrix K; is obtained by using the MATLAB’s built-in function lqr() as

K, = lqr (Aaug,pu» Baug,pu» Qaug; Raug) > (6.56)

where Auugpu and Baygpu are given in (6.54), Qaug € R15 and Ry € R»5
are equal to

Qaug = diag (qx, 9y>9z> Qas 9B> 9dx> 4dys 9dz> Qdas 9dp> dex1s Geyls Gex2s dey2, qez) >

Raug = diag (g1, 471 Grxes 4ry2 Grz) »
(6.57)

where Q¢ and Ry, minimize the cost function

J @) = /0 (BrigonQueBusern + TRl ) AL (659)

An example of the control weights for the K, feedback matrix design is given in
Tab. 6.4. As there is an infinite number of combinations to choose the values
of K;, tuning the feedback controller component is an iterative process. For
example, if the actuator should reject unknown external mechanical force dis-
turbances very fast, the weights of the position error gex1, gey1, gex2, gey2, ez
should be increased. A regulator where the gain matrix K, is tuned using
Iqr() is called multi-input multi-output (MIMO) Linear Quadratic Regulator
(LQR) [111], which is based on full state feedback. As with the sensor it is
only possible to measure p it is necessary to build a state observer, which is
explained in the following section.

The performances of the position controller are enhanced with feed-
forward components g pu, which are added directly after feedback control
action computation. More specifically, feed-forward control is provided along
the axial direction z in order to improve the transient response to known
references. This is possible with an appropriate force component obtained
through inversion of the plant’s dynamics. If z7;, is the axial position refer-

pu
ence to be tracked, then mpuisu is the feed-forward component, the controller
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knows in advance. Therefore, it can act to follow the commanded reference,
instead of reacting after it has already changed. This allows speeding up the
transient response and tracking faster references, relieving the feedback part
from this task. The feed-forward control in radial direction may be provided
via the first four components of gy, which can be used to counteract any
known radial disturbances, e.g. when the MALTA is moved with parallel
kinematics in pick-and-place robots.

The feed-forward action includes an additional component ¥ p,(2) to
adjust in advance steady-state forces according to the current axial position z.
These include for example a gravity compensation with the two bearing forces
fy1 and fipz and a compensation of irregularities in the radial pull forces
due to asymmetries and manufacturing tolerances. Nevertheless, the feed-
forward steady-state action gy (z) includes also a linear (axial) cogging force
component, which is already passively reduced to very low value by choosing
a distance between the two MALTA stator modules that minimizes cogging.
These components are recorded from the position controller reference signal
in steady-state.

6.7.3 Full State Observer

In order to realize the LQR regulator, explained in the previous section, it is

necessary to have information about the entire state vector &g pu. Since the
sensor only provides measurements of the radial and axial displacements, it
is necessary to build a state observer as shown in Fig. 6.7. The state observer

equation that obtains the estimated states gpu € RV is

épu 3 . . 5
ot = pugpu + Bpuvpu + Kf ppu - Cpugpu > (6‘59)

where K¢ € R j5 a constant matrix and the only unknown in the equation
and calculated as

K = (lqr (A;u C;u, Qobss Robs) ) ! . (6.60)

The design weights Qups € R!*% and R,ps € R are obtained from the
variances of the process and sensor noise, respectively, which are assumed to

be normally distributed. They have the following form
Qo= B o OB
. .61
Rops = diag(a2, ‘7)2:1’ Tz 0';2/2’ a;)
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Tab. 6.5: Control weights for K¢ design.

OO 7:06:107° [ 0% 07, 25107
2 2 -10 2 2 -3

oyl, O'yz 4.53 - 10 ofyl, O'fy2 2.5-10

a? 1.55-1078 o}z 4.9-1073

The values of the variances, given in Tab. 6.5, are determined from open-
loop measurements in order to prevent correlation of the two kinds of noise.
As without feedback control the mover cannot levitate, position sensors
are statistically characterized with no phase currents, i.e. with the mover
resting on the touchdown bearing. Concerning input forces, it is equivalent to
statistically characterize the input currents, as they are directly proportional.
In this case the mover is removed from the machine and DC-currents of 1A
in dg-frame for the bearing and the drive force generation are applied (cf.
(6.40)). This way, the variances in Tab. 6.4 are obtained.

It should be mentioned that a state observer is not mandatory for COG
control. In fact, in most AMBs setups the measurement matrix is square
and invertible. Hence, it is possible to explicitly map measurements back
into COG coordinates as § = P;'(z) p. For the MALTA, as Py(z) in (6.17)
is not invertible, the Moore-Penrose pseudoinverse P(T)(z) should be used
instead. Nevertheless, the use of the (full) state estimate for feedback control
is advantageous. Not only it allows filtering out noise from measurement
data in an optimal sense, but also it provides speed estimates, which can be
used to implement derivative control action. This is highly beneficial, as it
avoids the direct computation of discrete derivatives from the measurement
data, which would result in noise amplification for noisy signals.

6.7.4 Tuning of the Controller

The LOR position controller is tuned by choosing the design weights Q,,s and
R,yg as reported in Tab. 6.4. LOR design often includes some trial and error,
as it is a matter of trade-off between penalization of large state or large input
magnitudes. In the case at hand, in order to gain some insight on the closed
loop system, the controller is tuned iteratively by shaping the singular value
decomposition of the complementary sensitivity function (i.e. the closed loop
transfer function), using the established linearized dynamic model.

The modes x and y, as well as & and f are tuned in the same way, whereas
different weights are chosen specifically for z. With these choices, the result-
ing MIMO position controller closed-loop bandwidth is around 400 rad/s. To
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Uoq,ind = Kina?

Upc/2
Liq + 4x Pl dq Uabc dabe
/|Controllers abe
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Fig. 6.8: Structure of the MALTA current controller. Only one module is considered
for simplicity. There are 4 dg-quantities to be controlled: igq, ioq, ipd, and ipq. Hence,
4 PI-controllers, all designed and tuned in the same way, are used.

further increase the bandwidth of the position controller, an increased band-
width of the inner current control is required such that dynamic decoupling
between the inner and outer control loops is guaranteed.

6.8 Current Controller

The structure of the current control is shown in Fig. 6.8. The control is
designed and implemented in dg-coordinates [112]. Alternatively, a current
controller implementation in abc-coordinates would also be possible. The
control actions are the dg-voltages Ugq, which are transformed into phase
voltages Uyp. according to the transformation introduced in Section 6.5.2.
These are finally converted into equivalent duty cycles dgp. for pulse-width
modulation. The switching frequency of the MALTA inverter is f5, = 100 kHz.
The current controller is designed using the linearized steady-state electri-
cal model in stationary dg-coordinates, i.e. with ¢ = 0 and 6 = 0. The model
is of the form
dig(t) _ Re

_ 1
I I i (t) + auk(t), (6.62)

where k € {0d,0q,bd,bq} denotes the stationary coordinate axes,
cf. Fig. 6.5(b). The PI current controllers are tuned such that the crossover fre-
quency is o = 3000 rad/s, which is considerably higher than the crossover
frequency of the position controller. The phase margin is 60° in order to
ensure a low overshoot of the transient response. The voltages uoq and uoq2
also include an additional feed-forward correction factor ggind = Kind2, to
compensate for the induced voltage due to non-zero linear speed along the
z-axis during operation.

133



Chapter 6. Dynamic Model and Controller Design of the Linear Machine

6.9 Summary

In this chapter, the dynamic operation of the Magnetically Levitated Tubular
Actuator (MALTA) is analyzed. The analysis starts with the dynamic mechan-
ical modeling of the MALTA system by using Newton-Euler equations that
can describe combined translation and rotation of the MALTA rigid mover.
All force types (drive, bearing or attraction) that act on the mover are modeled,
as well as the torques that they create. As the mover position is described by
the translation and rotation of its center of gravity and the position sensor
provides measurements of the radial and axial positions, the sensor system
is modeled and the mapping with the center of gravity coordinates is given.
A LOR feedback controller assisted with feed-forward compensations of the
nonlinearities due to the cogging force and the induced voltage due to linear
motion is employed. The control features a cascaded structure with an inner
(faster) current control loop and an outer position control loop. Additionally,
a mechanical model based observer is designed, which is used to provide
information about the states and state derivatives (speeds) such that high-
frequency noise amplification due to measurement signal differentiation is
avoided.

The implementation of the control system presented in this chapter and
the measurements on the MALTA prototype are shown in the following
Chapter 7.
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Experimental Analysis of the
Linear Machine

This chapter summarizes the experimental analysis conducted on the MALTA
prototype, which shows successful operation of the control system and op-
eration of the proposed MALTA. Additionally, an experiment is conducted
where the mover tilting is controlled, which shows superiority of the MALTA
over the conventional tubular linear actuators. The material presented in this
chapter is also published in [93].

7.1 Introduction

The shown measurements are conducted on the MALTA prototype with
the controller structure described in Section 6.7. In order to record the
shown measurement results, the MALTA prototype was fixed in a stable test-
bench where the commissioning of the MALTA prototype was conducted.
Commissioning assumes determination of the force constants (drive, bearing
and attraction) and cogging force, as well as sensor commissioning. This
data is then used in the implemented controller, either in the form of the
parameters (cf. Tab. 6.1) or the lookup table (cf. dop, in Fig. 6.7). Three
different types of measurement experiments were conducted in which (1)
axial position reference tracking is studied; (2) the statistical metrics of the
closed loop position control are determined and (3) an application example
where the advantages of the MALTA compared to the conventional linear
actuators are shown by radial position reference tracking capabilities.
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7.2 Axial Reference Tracking

In this section the MALTA performs an axial 10 mm stroke. The commanded
stroke shows a successful operation of the MALTA LQG position controller,
which beside the reference tracking maintains the mover’s radial position.
The commanded step is shown in Fig. 7.1(a). The non-zero steady-state drive
force/current that can be observed in Fig. 7.1(d) from around 40 ms onwards
is needed to counteract the cogging force, guaranteeing average steady-state
errors in the order of 1pm (cf. also Tab. 7.1). Due to feed-forward control, the
controller tracks the assigned sigmoid position reference z without overshoot,
which is seen from the measurements in Fig. 7.1(a). It should be mentioned
that typically linear actuators are not allowed to overshoot, as this could
result in damaging mechanical parts/tools.

In Fig. 7.2, the radial position responses to the same axial step of Fig. 7.1(a)
are shown. The radial position control rejects effectively the disturbances
occurring during fast axial motion, maintaining the deviations within +20 pm
(cf. Fig. 7.2(a),(b)). In Fig. 7.2(c),(d) the commanded radial forces are shown.
Also in this case, after reaching steady-state they have a non-zero value. In
particular, fyg; and fyp; are needed to keep the mover levitated and their sum
corresponds in fact to m - g ~ 3.25N. As the mover is unbalanced towards the
first stator module (at the steady-state axial position of 5mm), f;p; is larger
than fip,. It should be mentioned that additional unknown radial disturbances,
e.g. external vibrations, could cause higher radial position deviations.

In both, Fig. 7.1 and Fig. 7.2 the dashed lines are the simulated responses
to the same smooth reference as obtained from a MATLAB Simulink model.
This is built according to the modelling of Section 6.2, derived from first
physical principles. By allowing for the expected differences between model
and measurements due to manufacturing tolerances, unmodeled dynamics
and noise, it can be assessed that the two are in good agreement. An exception
are the measured x; and x; positions, which according to the model should
not be affected by an axial motion. This mismatch could be explained with
the irregular magnetic field distribution inside the two stator modules and
tolerances in the strengths of the permanent magnets of the mover.
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Fig. 7.1: Measurements of the MALTA response for a 10 mm axial stroke. (a) Reference
axial position, simulation and actual response. The reference for z, shown as a black
dashed line, is shaped with a sigmoid profile to improve tracking performances. The
actual z response is shown in red and it tracks the reference with 16.2 ms rise time
and <1.5 % overshoot. (b) Axial position tracking error which stays below 0.6 mm (c)
Axial speed profile. (d) Axial driving force (total) and associated dg-component (only
for Module 1). It is possible to verify the value of the drive constant of Kp ~ 5N/A.
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Fig. 7.2: Measurements of the MALTA response for a 10 mm axial stroke corresponding
to Fig. 7.1. (a-b) Radial responses in x- and y-directions for Module 1 and Module
2. The maximum deviation is contained within £20 um. According to simulations of
the dynamical model, deviations y; and y; are expected, whereas this is not the case
for x; and x. This mismatch can be explained by manufacturing tolerances. (c-d)
Commanded forces from the position controller for Module 1 and Module 2. fyp; is
larger than fyp, at steady-state as the mover is unbalanced towards Module 1. Their
sum compensates the gravity force m - g ~ 3.25N.
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Fig. 7.3: Distribution of the measurement values of the steady-state radial positions of
Module 1 and Module 2. Axial position reference is z* = 0, i.e. the mover is positioned
in the middle. From the 2000 measured samples, the sensor resolution is clearly visible
to be around 1 pm.

Tab. 7.1: Statistical metrics (mean and standard deviation, STD) of the steady-state
position measurements calculated from 2000 measured samples.

Position (Symbol) | Mean (um)  STD (um)  Motion Range (um)
Axial (z) —0.5224 15.4277 +15 x 103
Module 1

x-direction (x) 0.0335 0.3883 +600
y-direction (y1) —-0.0212 0.5579 +600
Module 2

x-direction (x3) 0.0579 0.4827 +600
y-direction () -0.0735 0.4956 +600

7.3 Steady-State Positioning Performance

Positioning performances may be further investigated in steady-state with
the measurements shown in Fig. 7.3 for the case of

p(=[0 0o 0 0 o],

i.e. for amover position in the middle. It can be clearly seen that the measured
radial positions are very close to the sensor resolution of ~ 1um. This is a
good result offered by the chosen eddy-current sensor technique. Tab. 7.1
finally summarizes the statistical metrics of all the measured position signals.
The noticeably higher variance of the axial z position is due to the Hall-effect
sensor technique employed, which is more prone to noise.
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Fig. 7.4: (a) Setup of a typical application with MALTA mounted as an end-effector
of a robot arm. If the robot arm experiences thermal expansions during operation,
the overall precision of the positioning system is compromised. (b) Active tilting and
radial control to provide an appropriate correction of the compromised position.

7.4 Mover Tilting Capability

A special characteristic of the MALTA system is a possibility of actively
controlling the tilting of the mover, cf. Fig. 7.4, which is not possible with
conventional tubular linear machines. This can be exploited for advanced
positioning systems. For instance, in a typical application, an actuator like the
MALTA would be mounted as an end-effector of a robotic arm, cf. Fig. 7.4(a),
for instance in a pick-and-place robot application. If during the operation the
whole setup heats up, thermal expansions of the supporting robotic arm occur.
For example, a robotic arm of 0.5 m length would extend in length by around
~ 65 um, if the temperature rises for 10 °C (temperature expansion coefficient
of steel equal to 13 X 107°/°C is assumed). This would totally compromise
precise positioning of the end-effector if no correction is applied. However,
with the MALTA, these thermal disturbances may be completely decoupled by
active magnetic bearings with the radial precision determined by the precision
of the radial eddy-current position sensor. The thermal expansions may be
measured, e.g. by measuring the position of the MALTA mover with a laser
sensor mounted on a support that is not affected by the thermal expansions.
This feature may justify an effort of integrating MBs into the actuators, as
some of the conventional solutions have water cooling systems in the robotic
arms, which limit temperature changes and thermal expansions.

This concept is demonstrated with the experiment shown in Fig. 7.5. In
this case, a circumference of radius S = 200 um is assigned as a reference to
be tracked along the SP1 plane, whereas the mover should be kept fixed at
the center of the SP2. The reference

ﬁ*(t)=[5c05(27rﬁ,*t) Ssin(2rf,t) 0 0 0]T (7.1)
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Fig. 7.5: Measurements of the mover tilting control. The assigned reference is given

with the expression (7.1).
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is then directly used for integral control and transformed into the appropriate
state reference & = [ oq"/ar] T, with §* = P, (z) p* for full state feed-
back. The controller is employed to track the circumference at f,+ = 2 Hz. The
measurements in Fig. 7.5 show the response of the system for both modules.
It can be seen how the radial motions in Module 1 affect Module 2, where the
controller commands the forces fip; and fyp, that keep the radial position
deviation from the reference center position below 4 pm.

7.5 Summary

The measurement experiments on the MALTA prototype show good axial
reference tracking for a 10 mm axial stroke amplitude with 16.2 ms rise time.
During this axial movement, the radial position of the mover is disturbed and
its deviation from the center is below 20 um. By studying statistical metrics
of the controlled positions in the steady-state, the radial positions exhibit
a standard deviation of ~ 0.5pm and the axial position of ~ 15pum. This
difference between the radial and the axial standard deviations originates
from the larger noise of the axial position sensor.

In the final measurement experiment an application example is proven, in
which mover tilting control of the proposed MALTA is used to compensate
for any thermal expansions that would deteriorate positioning accuracy, e.g.
in a pick-and-place robot application. In this experiment, the mover’s radial
position follows successfully a sinusoidal reference.

With this chapter, the analysis of the MALTA is completed, from its
machine design in Chapter 4 and the inverter and the sensor design in
Chapter 5 and finally with the MIMO control system design and implementa-
tion in Chapter 6 and measurements presented in this chapter. Additionally,
the MALTA is tested with the SISO position controller, whose design and im-
plementation and experimental verification are shown in Appendix A. The
purpose of the SISO controller implementation is to show that the MALTA can
be operated with the SISO controller that does not consider couplings. The
relative gain number of the dynamic model suggests exactly this: both MIMO
and SISO implementations at 400 Hz closed-loop frequency are possible. In
the next chapters, in addition to the linear motion and MBs considered for
the MALTA, rotation is considered, resulting in a linear-rotary actuator. The
analyzed actuator topology is a double stator linear-rotary actuator.
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Design of the
Double Stator Machine

As a step towards the linear-rotary actuator with magnetic bearings (MBs), a
double stator linear-rotary actuator is considered in this chapter, where its
principle of operation, design and optimization details are shown.

8.1 Introduction

Linear-rotary actuators (LiRAs) are used in many applications requiring cou-
pled linear and rotary motion, such as gearbox control actuation in vehi-
cles [113], tooling machines such as drills [114], robotics [115], and industrial
pick-and-place machines [39], [103]. In order to achieve linear and rotary
motion, linear and rotary actuators can be coupled in different ways. In
usual LiRA arrangements, standalone linear and rotary actuators that share
the same mover [103], [39] are displaced axially. The mover consists of two
axially displaced parts (linear and rotary) that produce force and torque by
interacting with the respective part of the two stators. In order to keep the
overlapping area and magnetic interaction between the mover and the stators
constant, the latter are placed apart by an axial distance, which has to be
larger than the axial stroke of the mover. Consequently, this results in an
increased length of the LiRA.

Another approach is to stack the stators radially instead of axially [14],
[116], i.e. by placing them on the inside and outside of a hollow mover. Such a
setup is commonly referred to as a double stator (DS) machine and is shown in
Fig. 8.1. The PMs are arranged such that their North and South poles alternate
in the axial and circumferential direction for the linear and rotary actuator,
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respectively. Further DS LiRA realization options and their force/torque
capabilities are analyzed in Appendix B.

8.2 Machine Topology

The DS LiRA topology, whose design is described in this chapter, is shown in
Fig. 8.1. It has two radially displaced stators:

» Inner Linear Stator: used to generate a linear drive force on the mover.

» Outer Rotary Stator: used to generate the torque and the bearing forces
on the mover. The two outer rotary stators are needed, such that
the bearing force may be generated at two distant axial positions (cf.
Fig. 8.2), which is required to control the tilting of the mover.

The summary of the forces and torques acting on the mover from the two
stators is given in Fig. 8.2.

A degree of freedom in the design of a DS LiRA (cf. Fig. 8.1) is to choose
the arrangement of the inner and outer stators, i.e. whether the actuator has
an inner rotary or linear stator. In the literature [14], the DS LiRA is designed
with the inner rotary and outer linear stator. In this specific case, the actuator
does not have a magnetic bearing feature. If the DS LiRA rotary stator needs
to provide bearing forces on the mover, from the manufacturing point of

Outer Stators ————==%

/lnner Stator

Mover/

Fig. 8.1: Double stator linear-rotary actuator (DS LiRA) with rotary outer stators and
linear inner stator. The outer stators generate torque and the bearing forces on the
mover, while the inner stator generates the linear drive force. Therefore, the mover
consists of two sets of PMs (for rotation and linear motion) and a back iron.
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TFm Tsz
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Fig. 8.2: Forces and torques acting on the mover from the outer rotary stators: Fb1>
sz (bearing forces); To1, Too (axial torques) and from the inner linear stator: E, (drive
axial force).
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Fig. 8.3: Illustration of the heat flows in the DS LiRA excited with the stator losses.
Inner stator exhibits axial heat flow.

view it is beneficial to employ rotary stators, as the radial force is directly
transmitted to the mechanical fixation.

It should be noted that thickness of the mover should be as small as
possible, since it is reducing the space for stator windings. Consequently, this
imposes limit on the PM size, i.e. too thick PM would saturate the mover’s
back iron.

Another challenge in the design of the DS LiRA from Fig. 8.1 is the cooling
of the inner linear stator. If the radial heat flow through the inner air gap is
neglected, all the inner stator heat, generated by its losses, have axial flow
through the stator as shown in Fig. 8.3. To better illustrate this, a numerical
example is considered. In Fig. 8.4 two realizations of the inner stator are
shown, without and with the copper pipe inserted inside the iron core. For
both realizations only copper losses are considered and calculated as

1
Peu = Epcu_]
=4.1x10°W/m3

(8.1)
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Fig. 8.4: Inner stator realizations and respective temperature distributions where one
axial end is attached to a fixed temperature Ty = 0 and the rest is assumed thermally
insulated. Only copper losses of 0.41W/cm3 are assumed. The assumed thermal
conductivities are: iron core: 20 W/(mK), windings: 2W/(mK) and copper pipe:
400 W/(mK). The hole in the middle of the inner stator is used for the sensor cables.
(a) The inner stator with the iron core resulting in rather large temperature difference
between the two axial ends. (b) The inner stator with the iron core and an inserted
copper pipe in order to reduce the temperature difference. The copper pipe wall
thickness is 2.5 mm.
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where p., = 2.27 x 1078 Qm is the specific electrical resistance of copper
considered at 110 °C (assumed possible average winding temperature) and
J = 6 A/mm?. In Fig. 8.4(a) the temperature distribution in the inner stator
without the copper pipe is obtained with 3D-FEM simulation, where at the
one axial end the constant temperature boundary condition Ty = 0 is applied,
while all the other boundaries are assumed thermally insulated. A rather
large temperature difference between the two axial ends of the inner stator
can be noted, which is a consequence of the axial heat flow. In a real machine,
this would cause unequal temperature in the stator windings and, therefore,
unequal winding resistances. This could increase the losses in the hotter
windings, which would further increase the temperature difference.

In order to attenuate this parasitic effect of the axial heat flow, a hollow
copper pipe is inserted inside the inner stator as shown in Fig. 8.4(b). As
can be seen from the temperature distribution, the temperature difference
reduces by almost a factor 2 compared to the case without copper pipe. As
the permeability of copper is i equal to vacuum, the copper pipe reduces the
stator iron core cross section available for the flux guiding, increasing the risk
of the inner stator core saturation. Therefore, one of the design requirements
of the inner stator involves a compromise between the magnetic and thermally
conductive materials. This will be included in the Pareto optimization, which
is shown in the coming sections.

It should be mentioned that the temperature differences in Fig. 8.4 are
the worst case temperature differences, since a complete thermal insulation
of the stator is assumed. In the real machine, heat dissipation from all sides
will be possible (e.g. by convection and/or radiation), not just conduction
through the stator, which will help to reduce the temperature difference.

8.3 Optimization and Design Space

In order to build the DS LiRA shown in Fig. 8.1, its geometry, e.g. size of the
PMs, coils size, copper pipe thickness, to mention a few, should be determined
such that:

> the torque per Watt of outer rotary stator copper loss is maximized,

> the linear drive force per Watt of inner stator copper loss is maximized
and

> no saturation of the iron parts occurs.
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Fig. 8.5: DS LiRA grid search optimization algorithm.

The optimization algorithm is shown in Fig. 8.5, rendering a well known
grid search optimization method. In other words, each point of the discrete
design space is evaluated with the established model and the resulting perfor-
mance is saved, which allows to directly choose the best performing designs.
The optimization starts with the definition of the discrete design space, which
is given in Tab. 8.1. Also, in Tab. 8.1, a set of fixed parameters, important
for the optimization is given. The fixed geometrical parameter values can
come from a certain application where it is necessary to fit the actuator into
the available space. In case a desired force/torque are given, the parameters
determining the outer dimensions (L and D) could not be fixed and would
have to be a part of the swept parameters set. The geometrical parameters
are defined in Fig. 8.6. Most of the swept parameters are relative numbers,
which are related to the geometrical absolute parameters. One of the most
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Tab. 8.1: DS LiRA geometrical discrete design space.

Symbol Description Value
Fixed parameters
Geometrical
L Active length 100 mm
D Outer diameter 100 mm
Az Mover axial stroke 30 mm
Tag Inner and outer air gaps 0.7 mm
Dyole Copper pipe inner diameter 8 mm
Thermal
Tamb Ambient temperature 35°C
Tw Winding hot spot temperature 140°C
Aw Thermal conductivity of the winding 2 W/ (mK)
Acu Thermal conductivity of copper 385 W/ (mK)
Afe Thermal conductivity of iron core 20 W/(mK)
Aalu Thermal conductivity of the aluminum 200 W/ (mK)
Aex Thermal conductivity of the potting epoxy 0.1W/(mK)
Magnetic
B; Permanent magnet remanent magnetization = 1.3T
i fe Stator core relative permeability 400
Electric
ke Winding feel factor 0.6
Np,rot Number of rotary poles 16
Nplin Number of linear poles 16
Ni rot Number of rotary slots 6
Ns lin Number of linear slots 12
Swept parameters
Kin,out Ratio of the mover diameter and 0.46 : 0.02: 0.6
the outer stator diameters
keu—ferot  Ratio of copper and iron 0.78:0.02:0.9
in the outer rotary stator
keu—felin ~ Ratio of copper and iron 0.5, 0.6, 0.7
in the inner linear stator
kpm,rot Relative rotary PM size 0.7:0.1:0.9
pm,lin Relative linear PM size 0.8,0.9
Tm Mover back iron thickness 2.5:0.5:4mm
Tpm PM thickness, rotary and linear 2, 2.5mm
Tpipe Copper pipe thickness 2:0.5:3mm
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Fig. 8.6: Geometry parameters of the DS LiRA used in the optimization.

important relative parameters is the ratio of the mover diameter and the outer
stator diameter
Dy

D’
which determines the volume distribution between the inner and the outer
stator. In other words, this parameter compromises between the torque and
the linear force of the DS LiRA. Another important relative parameter is the
ratio of copper and iron core in the rotary and linear stators

kin,out =

Tw

Afe
kcu—fe,lin =
Acoil Tw t Tfe

kcu—fe,rot =1-

where the geometrical parameters are illustrated in Fig. 8.6. The coil’s angle
Qeoil 18 equal to

2r 251
= —rad,
Ns,rot 72

Aeoil = 0.96 -

where Ng ot = 6 is the number of slots in the outer rotary machine, cf. Tab. 8.1.
For the linear machine it should be noted that the sum

Ty + Tfe = = 8.33 mm,

N, slin

is constant and L and Ng i are given in Tab. 8.1. Similar to the ratio of copper
and iron in the stators, a relative size of the PMs within a pole is given as

_ Opm _ Tpm
kpm,rot = kpm,lin -
271'/Np,rot L/Np,lin

where L, Nj, 1ot and N i, are given in Tab. 8.1.
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Once the discrete set of optimization parameters is defined, a total number
of designs may be obtained as a combination of all the vectors in the swept
parameters in Tab. 8.1 and it is equal to

Nesign = 24192.

After this, the optimization algorithm starts to loop through the possible
discrete designs, where n represents the number of the current design.

In the first step of the optimization loop, a steady-state thermal model,
based on a lumped parameter thermal circuit is solved for the rotary and
linear stator. The thermal model relates the ambient temperature T, and
the winding hot spot temperature Ty, as a function of the copper losses (Pey rot
and Pgyin). It should be noted that only copper losses are assumed in the
optimization, as the DS LiRA is intended to be operated in actuator mode, i.e.
to position the mover from one reference position to another, which leads to
rather low speeds and therefore, the eddy-current losses are neglected. The
thermal model allows to calculate the allowed copper losses, Pey ot and Pey Jin,
for the analyzed DS LiRA geometry n.

The calculated copper losses are used in the next step to determine the
current in the DS LiRA rotary and linear stators. The DS LiRA stators have
three-phases and therefore the currents have the following waveforms

Iy = Arot COS(th + ‘Pz)
iy = Lot cos(wrt + ¢; — 271/3) (8.2)

ic = Iyor cos(wrt + @i + 27/3)
for the rotary stator, and

in = Ijn cos(wrt + 0;)
ig = lin cos(art + 0; — 27/3) (8.3)

ic = Iin cos(wrt + 0; + 27/3)

for the linear stator. In Fig. 8.7 the rotary and linear winding connections
are shown.

The current peak values, I.or and Ijy,, used in the optimization are two
times higher than the continuous DS LiRA current, i.e. they would cause
4 times higher copper losses. By using twice the current in the 2D-FEM
simulation, where the flux density distributions and the resulting torques
and forces are calculated, the chosen design is guaranteed to have twice the
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iA iB iC A IB iC

Fig. 8.7: Three-phase currents in the rotary and linear stator. The electrical resistance
of a single coil in the rotary stator is Ryot, while Ry;, is the electrical resistance of the
series connection of the two concentrated coils wound in a slot.

current overload capability, i.e. with twice the nominal current the iron parts
will not saturate.

At the end of each optimization loop, the results are saved in an array of
structures, such that they can be loaded later and plotted to view the available
performance. The optimization procedure ends once all design combinations
have been evaluated, i.e. when n > Nyegign.

8.3.1 Thermal Model

When changing internal geometry dimensions of a machine, its capability
to dissipate losses changes and therefore, different geometries would have
different losses that cause the same hot spot temperature in the winding. In
order to account for this, a thermal model of the DS LiRA is established that
is evaluated in each optimization loop pass and used to calculate the current
peak values Lot and fyp.

A simplified lumped parameter steady-state thermal model circuit of the
outer rotary stator is shown in Fig. 8.8. The model assumes that the hot
spot in the winding is on its inner radial surface, denoted in the figure as
Tw1, - - -» Tw12, and therefore the losses of a coil pass through the whole coil
in radial direction. The heat flow through the teeth is neglected. In reality,
there would be a heat flow through the teeth and the hot spot would be inside
the winding volume. Therefore, the model assumptions are conservative and
in reality the DS LiRA should be able to dissipate the losses assumed by the
model.

The thermal resistance of the potted DS LiRA coil in the outer rotary
actuator is equal to

hwl

Rhwi=7——
’ /Iw Awl ’
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Fig. 8.8: Steady-state lumped parameter thermal model of the outer rotary stator. In
the point with the temperature Ty the thermal model couples with the inner linear
stator thermal model. Due to circumferential symmetry the assumed hot spot tem-
peratures of each rotary stator are equal, i.e. Ty = -+ = Ty and Ty = - -+ = Tyi2
holds.
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where the heat flow area is

Aw1 = Ww1 Lw1 — Wiooth Liooth-

The thermal resistance of the epoxy layer between the winding and the
aluminum case is calculated similarly as

R _ hexl
th,ex1 — s
/lex Awl
where
_ Ttooth — Tcoil
hexl - T

The thermal resistance of the first part of the outer aluminum case is equal to

L/2
Rth,casel = Ws
al lcase

where the case area is
T
Acase = Z ((D + 2rcase)2 - Dz) .

The thermal resistance of the second part of the outer aluminum case is

R _L/4+2Az

th,case2 = Xl Acase .
By considering the rotary stator thermal model circuit in Fig. 8.8, it can be
noticed that the stator temperatures Ty, . . ., Ty are higher than T, . . ., Ty12,
cf. Fig. 8.9(a). As in the optimization it is of interest to identify the maximum
temperature spot, these temperatures are further considered. Therefore, an
equivalent thermal resistance of interest, between the Ty;1—¢ and Ty may be
calculated as

Rinwi + Ripext + Rin caset

12 B + Rth,caseZ .

Riprot =

The thermal model circuit of the linear stator is shown in Fig. 8.10. Similar

to the rotary stator thermal model, it is assumed that the heat due to copper
losses passes entirely through the potted coils. Also, heat flow through the
teeth is neglected. From Fig. 8.10 it can be seen that the most critical is the
last coil with the temperature Ti1p, i.e. Tep > Teyp > - -+ > Tq. The temperature
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Fig. 8.9: (a) Modification of the rotary stator thermal circuit from Fig. 8.8 where
Twi-6 = Tw1 = - - - = T2 is used. (b) Equivalent thermal resistance between the Ty1-¢
and Ty.

difference between the hot spot of the most critical coil and the front of the
end plate is equal to

Rth,cl
12

11
TC]Z - Tx = Pcu,lin Rth,eqz + Rth,eql Z k+
k=1

where the equivalent thermal resistances are calculated as

R Rth,felRth,cul
theql = 5 5
Rth,fel + Rth,cul

and
(Rth,fel/2 + Rth,fez) : (Rth,cul/2 + Rth,cuZ)

Rth,fel/2 + Rth,er + Rth,cul/2 + Rth,cuZ

Therefore, the equivalent rotary thermal resistance used in the DS LiRA
equivalent thermal circuit (cf. Fig. 8.11) is equal to

Rth,qu =

Rth,cl
Rth,lin = T + 66 Rth,eql + Rth,qu-

The individual thermal resistances are calculated from the geometry, where
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Fig. 8.10: Steady-state lumped parameter thermal model of the inner linear stator. In
the point with the temperature Ty the thermal model couples with the outer rotary
stator thermal model.
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Fig. 8.11: Equivalent thermal model circuit of the DS LiRA.
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the coil radial thermal resistance is
ln(Dins/Din)

Riner =
. 27 Ay Tw

The thermal resistance of the iron part that models the axial heat flow is

obtained as
Tw + Tfe

Afe Afel

Rinfer =

where the area is equal to

T
Afer = Z(Dlzn — (Dhole + 2rpipe)z)‘

The thermal resistance of the copper pipe part that models the axial heat flow

through the pipe is
Tw + Tfe

Afe Acul '

where the cross section of the copper pipe is equal to

Rth,cul =

T
Acur = Z ((Dhole + 2rPiP€)2 - D}Zlole)'

Since the maximum winding temperature should be Ty, in the circuit from
Fig. 8.11 the following expression holds

Tyi—¢ = Terz = Ty

This allows to write a system of two equations from which the unknown
copper losses (Peyrot and Pey jin) may be calculated

Rth,rot 2P, cu,rot — Rth,lin P culin = 0

T = Tamb » (8.4)
2Pcu,r0t + Pcu,lin = ===
Rth,eq3

where the equivalent thermal resistance Ry, q3 is equal to

R Rth,rot Rth,lin
theq3 = 5 . 5 *
Rth,rot + Rth,lin

By solving the system of equations (8.4), the copper losses are obtained as

Rin i
Pcu,rot - 2Rth,eq3 (Rth,r:: + Rth,lin) (Tw - Tamb)
(8.5)
R . .
Pcu,lin = ol (Tw - Tamb)

Rth,eqS (Rth,rot + Rth,lin)
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In the next step of the optimization loop the Ampere-turn peak values
are calculated, by using the obtained copper losses in (8.5). They are used as
an input for the 2D-FEM models of the rotary and linear actuators, where the
torque i and the linear drive force I::Z are calculated.

8.4 Pareto Plots and Selection of the
Optimum Design

In this section the results of the optimization are analyzed and a design of the
DS LiRA is chosen. Since the DS LiRA can rotate the loads and drive them in
linear direction simultaneously, the goal of the optimization is to

» maximize the torque,
» maximize the drive force and
» maximize the circumferential and linear accelerations.

The first two requirements are reasonable performance choices. The last one
helps to balance the first two, i.e. if only the first two are considered, the
resulting design may have a bulky mover that could be difficult to levitate. It
should be mentioned that force and acceleration are the two contradicting
performances, e.g. a larger PM volume in the mover results in higher force,
but lowers the acceleration due to increased mass.

The achievable torque and the drive force of the DS LiRA are shown
in Fig. 8.12 and Fig. 8.13, where the color of the dots represents the cir-
cumferential and linear accelerations. The shown data is deduced from the
Nesign = 24192 designs by considering restrictions on the flux density in the
iron core parts. The following restrictions on the flux density for each point
of the volume are applied

» Outer stator: < 2.1T - (Electrical steel)
» Inner stator: < 1.4 T - (Steel ST52)
» Mover: < 2.1T - (Soft iron)

After applying the restrictions only 158 designs are left, which are plotted in
Fig. 8.12 and Fig. 8.13. From the plotted data, a trade-off between the torque
and the linear force can be noticed, which is expected as the DS LiRA volume
is fixed and by changing the mover diameter the volume distributes between
the rotary and the linear stators.
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Fig. 8.13: Achievable torque f’z and linear force ﬁz of the DS LiRA. The linear acceler-
ation is denoted with the color of the dots.
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Tab. 8.2: DS LiRA chosen design performance.

Symbol Description Value
T, Torque 6.24 Nm
F, Linear force 181.5N
4 Circumferential acceleration 5.3krad/s”
Z Linear acceleration 123.5m/s”
2Pcurot  Copper losses of the outer rotary stators 97 W
Peylin Copper losses of the inner linear stator 18W

Tab. 8.3: DS LiRA chosen design parameters.

Symbol Description Value
Swept parameters
Kin,out Ratio of the mover diameter and  0.56
the outer stator diameters
keu—ferot  Ratio of copper and iron 0.8
in the outer rotary stator
keu—felin ~ Ratio of copper and iron 0.5
in the inner linear stator
Kpm,rot Relative rotary PM size 0.8
Kpmlin Relative linear PM size 0.9
Fm Mover back iron thickness 3 mm
Tpm PM thickness, rotary and linear 2 mm
Tpipe Copper pipe thickness 2.5mm

The chosen design is encircled and denoted with an arrow. From the
shown feasible designs, the chosen one does not have the highest drive force
possible, as can be seen in Fig. 8.12 and Fig. 8.13 where a group of designs
that has higher drive force is denoted. This small drive force compromise
is made because the denoted designs have lower accelerations. The chosen
design performance is given in Tab. 8.2. In Tab. 8.3 the parameters of the
chosen design are given.

The DS LiRA design optimization is performed using 2D-FEM simulations,
where models for the outer rotary machine and the inner linear machine
are analyzed separately as it is assumed that the mover back iron provides
magnetic insulation. This is true as long as the mover back iron is not saturated.
Therefore, to check for the simultaneous influence of the rotary and linear
PMs onto the mover’s back iron flux density, a 3D-FEM model of the DS LiRA
is built and analyzed. 3D-FEM models take much longer time to solve than
2D-FEM ones. Consequently, 3D-FEM analysis of only the chosen design is
performed, which is shown in Fig. 8.14. It can be seen that for the analyzed
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Fig. 8.14: 3D-FEM simulation of the chosen design whose parameters are given
in Tab. 8.3. The simulation is conducted for twice the value of the Ampere-turns
that are continuously possible, which are equal to Niotlrot = 2028.6 A turns and
Minjlin = 685.2 A turns.
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Rotary Stator Winding Linear Stator Winding

Fig. 8.15: The volume available for the winding realization of the outer rotary and inner
linear stator. The winding window area is A¢ ot = 148.7mm? and A j;;, = 47.1mm’.

cross section the flux density in the DS LiRA is the highest in the rotary stator
tooth and reaches around 1.6 T.

8.5 Winding Design

After the optimization, the geometry of the magnetic parts, such as PMs and
the stator iron core are determined. With it, also the volume available for the
winding realization is known, which in Fig. 8.15 is shown for the rotary and
the linear stators. The goal of this section is to determine a wire diameter that
should be used for the realization of the windings, such that for the expected
operating regimes, e.g. maximum torque and/or speed, the resulting induced
voltages and phase currents suit to the inverter supply.

8.5.1 Rotary Stator Winding

The rotary stator winding has a twofold role, the torque and the bearing force
control on the mover, which is achieved by controlling its phase currents.
These currents are controlled with the inverter voltage supply, which has
limited maximum voltage and current that it can generate. Therefore, in the
winding design it is important that these maximum values of the inverter
voltage and current are not exceeded. In the design at hand, it is assumed that
the inverter supply may provide a maximum voltage amplitude of 200 Vpeak,
which suits to the DC-link voltage of 400 V. A maximum inverter phase
current of 10 Apeak is assumed, cf. Fig. 8.16. It should be noted that each coil
of the rotary DS LiRA stator winding is supplied with a dedicated half-bridge
of the inverter.
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Fig. 8.16: Outer rotary stator inverter supply. Each coil of the rotary stator is supplied
with a dedicated inverter half-bridge.

An additional aspect to consider is that the phase inductance increases
with the number of turns as ~ N2 . A too high value could limit the current
control bandwidth and take direct influence on the magnetic bearing stiffness.
Therefore, to have an as low as possible number of turns Ny, in the coil, a
maximum possible diameter Dyire rot Of the wire is chosen.

The upper limit on the wire diameter is determined by the manufacturing
(too large wire diameter is difficult to bend when winding the coil), which
is here set to 1mm. Another upper limit comes from the skin effect in the
conductors. The skin depth is calculated as

2
Seurot = af;u \/\/1 + (peu€q)? + peuwey = 3.26 mm, (8.6)
V 0

where pe, = 1.68 X 1078 Qm, p1y = 47 X 1077 H/m, €y = 8.854 X 1072 F/m and
the electrical angular frequency is equal to

T
© = wR = Nprot 3 3000 rpm = 2513.3 rad/s,

which is the electrical angular frequency that suits to the maximum assumed
mechanical speed of the mover of 3000 rpm that has N, ot = 16 PM poles.
To safely ignore the skin effect in the DS LiRA windings, the wire diameter
should be

Dwire,rot < % = 0.81mm.

With the conducted considerations, Dyire rot = 0.8 mm would be a reason-
able choice for the wire diameter, just the resulting induced voltage in the coil
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Fig. 8.17: Induced voltage amplitude for 3000 rpm mover rotational speed and a
current amplitude of 1014 A turns (twice the continuous value of the current) versus
wire diameter of the coil.

and the phase current should be checked. In Fig. 8.17 voltage and current are
plotted for different wire diameters. The induced voltage is calculated as

Erot = Nrot * WR ¢r0t-
The number of turns of the rotary coil Ny is calculated as

kff Ac,rot )

wire,rot

Nt = round (

where kg = 0.6 is the winding fill factor, A. ot = 148.7 mm? is available coil
window area (cf. Fig. 8.15) and Ayjire rot = ﬂngire ot /4 = 0.5 mm? is the wire
cross section. The flux amplitude gzgmt = 0.1 mWb in the rotor tooth carrying
the coil, is obtained from 3D-FEM simulations and given in Fig. 8.18. In
Fig. 8.15 the phase current amplitude I is calculated as

. 1014 A turns

rot —
N, rot

where 1014 A turns is the Ampere-turn value that in the chosen design results
in copper losses that are twice the continuous losses allowed by the thermal
model, such that the inverter can provide the overload current to the DS LiRA.
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Fig. 8.18: Total flux in different teeth of the outer rotary stator, i.e. flux per winding
turn.

As can be seen in Fig. 8.15, a wire diameter of Dyjre rot = 0.8 mm would
result in an induced voltage much lower (E;,y = 50V) than the 200V, i.e.
the maximum the inverter may provide. Also, the resulting phase current

Lot = 5.7 A is lower than 10 A, the maximum inverter current. Therefore,
finally a wire diameter of

Dwire,rot = 0.8 mm (8~7)

is chosen, which should result in around N;,; = 187 turns.

8.5.2 Linear Stator Winding

For the linear stator supply, the same inverter as for the rotary stator is used,
therefore, the limit for the phase voltage amplitude is Ejn < 200V and the
phase current amplitude limit is lin < 10A.

The maximum assumed speed of the mover is v, = 4 m/s, which results
in an electrical frequency in the winding of

2
w, = —u, =1005.3rad/s,
Tpp

where the pole pair size 7, is equal to
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In order to check for the maximum allowable wire diameter limited by
the skin depth in the wire, (8.6) is used, where the resulting skin depth is
Seculin = 5.2 mm, which limits the wire diameter to

5cu,lin

Dyirelin < = 1.3 mm.

Due to easier manufacturing, a wire diameter of the linear stator winding
of
Dyirelin = 0.5mm (8.8)

is chosen. This winding diameter results in

kit Aclin

) = 144 turns,

wire,lin

Niip = round (

where the winding factor is kg = 0.6, the winding window area Ay, =
47.1mm? and the wire cross section area A.ji, = nD? /4 = 0.2 mm?,

wire,lin
The induced voltage amplitude Elm due to flux linkage with the linear
stator coil is
Elin = Niin - 01, ¢lin =985V,

where a magnetic flux amplitude in the tooth of gZ;hn = 0.672 mWb is obtained
from 2D-FEM simulation. The phase current amplitude is equal to

N 342.6 A turns
Ilin == 24A,
Min

where the used Ampere-turns value is twice the Ampere-turns value that can
exist continuously in the winding, i.e. the inverter may supply the actuator
even in overload condition.

8.5.3 Summary of the Winding Design

The DS LiRA winding design details are summarized in Tab. 8.4.

8.6 Prototype Manufacturing

A DS LiRA prototype of the chosen design (cf. Section 8.4) is built. In
the following sections, the manufactured prototype design is shown and
described.
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Tab. 8.4: DS LiRA winding design.

Symbol Description Value
Rotary stator
Niot Expected number of turns 187 turns
Dyirerot ~ Wire diameter 0.8 mm
Eror Max. expected back-EMF 50V
ot Overload phase current 5.7A
Linear stator
Niin Expected number of turns 144 turns
Dyjirelin ~ Wire diameter 0.5mm
Ejin Max. expected back-EMF 98.5V
Tiin Overload phase current 24A
Rotary Stator Winding Linear Stator Winding

190 turns 2 x 150 turns
0.8 mm wire diameter 0.5 mm wire diameter

Fig. 8.19: Concentrated windings of the rotary stator and the linear stator. The rotary
stator winding is wound using a coil former, while the linear stator winding is wound
directly on the stator core.

8.6.1 Windings for Rotary and Linear Stators

The rotary and the linear stator windings are shown in Fig,. 8.19

The rotary stator winding is wound using a customized winding former
made out of brass. The coil wire is self-bonding, which means that it has a glue
around it that activates at certain temperature and glues the winding turns.
Therefore, the winding does not need a coil former. After winding 190 turns,
the coil is baked in an oven at 200 °C for around 30 min. The achieved winding
fill factor is
190 - Awire,rot

= 0.642,
Ac,rot

kff,rot =
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where Ayirerot = 0.5mm? and A ot = 148.7mm?. Therefore, the assumed
winding fill factor of 0.6 in the design is a good choice.

The linear stator winding is wound directly onto the stator iron core and
cured in the oven at 160 °C for 30 min. The achieved winding fill factor is

150 - Awirelli
kﬁ‘,lin _ wire,lin = 0.625,
Ac,lin

where Ayire lin = 0.2 mm? and A. i, = 47.1mm”. Once more here, the assumed
winding fill factor of 0.6 in the design is a good choice.

8.6.2 Rotary Stator Assembly

The 3D-CAD model of the rotary stator assembly is shown in Fig. 8.20. It
consists of

» 2 stator cores,

> 12 rotary stator concentrated coils,

> 2 position sensor PCBs and

» a power connection PCB where 24 coil wires are soldered.

The assembly ensures circumferential alignment of the stator cores, the axial
distance between the rotary stator cores and the axial alignment with the inner
stator core. To ensure the mechanical stability of the rotary stator assembly
and its alignment with the inner stator, it is inserted into an aluminum case
as shown in Fig. 8.21.

The stator core is built from laminated sheets and the winding coils are
mounted onto it without coil former, cf. Fig. 8.22. The rotary stator cores are
potted with the windings, where the potting molt is shown in Fig. 8.23. In
the first step of the potting procedure the WEVOPOX 2513 and WEVODUR
HC 1003 are mixed in 100 : 13 ratio. The stator and the epoxy are preheated to
60 °C, such that the epoxy gets more liquid and fills each corner of the stator.
After the epoxy is poured in the stator molt, it is cured for 4 hours at room
temperature and after that for 4 hours at 120 °C in the oven.

8.6.3 Linear Stator Assembly

The linear stator assembly is shown in Fig. 8.24. As already described in
Section 8.2 a copper pipe is used for heat conduction and is press fitted into
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Aluminum Case

Outer Stator Assembly
Sensor Shielding

Sensor Board 1 (SB 1)

Fig. 8.21: Outer rotary stator insertion into the outer aluminum case that mechanically
supports the assembly and positions the outer stator with respect to the inner stator.

Rotary Stator Core Rotary Stator Core with Windings
q

Fig. 8.22: Rotary stator core built from laminated steel. The lamination thickness is
0.35mm. Kapton tape is used for the electrical insulation between the winding and
the stator core.
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PTFE Potting Molt Potted Stator
A\ LY

Fig. 8.23: The potting molt is made out of Teflon and is placed through the rotary
stator. The stator is potted with epoxy WEVOPOX 2513 mixed with WEVODUR
HC1003 in a ratio 100 : 13. The epoxy thermal conductivity is 1.4 W/(mK).

the iron core part as shown in Fig. 8.24. This press fit is done by heating up
the iron core (to ~ 150 °C) and cooling down the copper pipe (to ~ —20°C)
and then pressing the copper pipe into the iron core. The inner stator core
is built from multiple pieces, i.e. segments, which are stacked on the iron
core and finally pressed with the face pin nut. The linear stator prototype is
shown in Fig. 8.25.

8.6.4 DS LiRA Stator Assembly

The DS LiRA assembly is shown in Fig. 8.26. The assembly shows the
positioning of the two stators, the outer rotary stator and the inner linear
stator. The linear stator is attached to the end plate, which is than pressed
into the aluminum case of the rotary stator. At the end of the linear stator,
opposite to the end plate, a PCB integrated position sensor with Hall-effect
elements is designed to sense the linear position of the mover. The sensor is
connected with the cables that pass through the copper pipe hole, cf. Fig. 8.25.
In total, the whole assembly employs three PCB integrated sensors (two at
both axial ends of the rotary stator and one in the linear stator). The two
cable glands are used for the power and the data cable. The power cable has
25 X 1mm” wires and its outer diameter is 15.8 mm. The data cable has 25
twisted pairs and an outer diameter of 11.2 mm. The prototype of the DS LiRA
with the rotary and the linear stators assembled is shown in Fig. 8.27.
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Inner Stator Core with Windings

End Plate
Tooth y L v

Pin Nut
Copper Pipe

Fig. 8.25: Three-phase linear stator prototype attached to the end plate. The stator
core material is machined from ST52 steel. The small slits in the teeth are used for the
winding ends that are brought towards the end plate.

8.6.5 Mover Prototype

The mover of the DS LiRA consists of the iron core (cf. Fig. 8.28) that is
sandwiched between the two sets of PMs, used by the outer rotary stator and
the inner linear stator. For the assembling of the outer rotary stator PMs, the
mover has specially made slits for the PMs, such that precise positioning of
the PMs and gluing is possible. The poles of these PMs (North and South) are
alternated in circumferential direction, as denoted in Fig. 8.28.

From the inner side of the mover core the inner linear stator PMs are
assembled, cf. Fig. 8.29. The PMs are at first glued onto an aluminum form
that has slits in axial direction. During the gluing process an iron pipe is
used inside the aluminum form such that the PMs get attracted. Otherwise,
it would not be possible to glue PMs next to each other due to strong attrac-
tion/repulsive forces. Due to mechanical tolerances in manufacturing, the
PMs radial sizes may differ by £0.1mm. As the PMs should fit inside the
mover core, each PM piece is measured and sorted, such that the ones with
larger radial dimension are dropped out and not used. In the last step, the
PMs glued onto the aluminum form are pushed inside the mover core and
glued.

The fully assembled mover is shown in Fig. 8.30. On top of the outer
rotary PMs, the 0.4 mm thick aluminum shield is pulled on the mover over
the PMs. This shield has a twofold role: (1) to mechanically protect the PMs
in case the mover hits the touchdown bearing and (2) it is used by an eddy-
current sensor to sense the mover’s radial position. The same eddy-current
sensor principle as for the MALTA is used, cf. Section 5.3.
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Connection Box X Cable Glances

Outer Rotary Stator
End Plate

Cable Duct

Inner Linear Stator

Fig. 8.27: DS LiRA prototype with outer rotary and inner linear stator assembled.

Mover Core Mover Core with Rotary PMs

Fig. 8.28: Mover back iron core (steel ST52, cf. Section 8.4) with 0.2 mm deep slits for
the PMs and iron core with glued rotary PMs. The PM piece sizes are (2 X 9.2 X 34)mm,
since the PM poles may not be manufactured from a single piece because of mechanical
fragility.
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Linear Stator PMs PM Insertion into the Mover Core

Fig. 8.29: Linear stator PMs are glued onto the Al form with 0.4 mm wall thickness
and inserted from inner side into the mover iron core.

DS LiRA Mover

Al Shield—_

Fig. 8.30: DS LiRA mover with the aluminum shields from the inner and outer sides.
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8.6.6 Summary

In this chapter the DS LiRA machine topology is introduced, optimized and
built in hardware. The main challenge in the design is to reduce the tempera-
ture difference between the first and the last coil of the inner linear stator,
which is caused by the axial heat flow. A solution where a copper pipe is in-
serted into the inner stator core structure is introduced and later on included
in the optimization based on an analytic model of the heat flow. The applied
optimization algorithm is a grid search method, where at first a design space
is generated, i.e. DS LiRA geometrical parameters are varied within a certain
range and the resulting performance is evaluated for each combination of
these parameters. A 3D-CAD model of the chosen design is built with the
assembly of all machine parts including sensor and power connection PCBs.
The manufactured and assembled prototype of the DS LiRA is shown.

As a next step, the inverter and the position sensor for the DS LiRA
are designed and realized in hardware, which is shown in the following
Chapter 9.
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Inverter Supply and Position Sensor
of the Double Stator Machine

To test and drive the DS LiRA, an inverter supply and a position sensor are
needed. This chapter summarizes their main design aspects and the used
specifications.

9.1 Inverter Design Considerations

The inverter driving the DS LiRA should be able to supply its two rotary stators
and the linear stator. The two rotary stators have 2 X 6 phases and the linear
stator has three-phases. Therefore, the inverter should provide in total at least
15 phases. In order for the inverter to be able to supply the MALTA stators
as well, the number of phases is chosen to be N, = 18. In literature, such
multi-phase inverters are used to supply multi-phase machines, where the
number of phases is higher than 3, cf. [117]. The specifications of the inverter
are given in Tab. 9.1. The inverter is operated in pulse width modulation
(PWM, cf. [118]) mode with constant switching frequency.

The schematic of a single inverter phase is shown in Fig. 9.1. The inverter
phase employs an output filter, such that a smooth sinusoidal voltage is
supplied to the corresponding DS LiRA winding. Thus several parasitic effects
are eliminated such as, reflections and/or surge voltages at the winding
terminals in case of a longer supply cable, HF capacitive currents through the
mover, grounding parts and the machine integrated position sensors, which
would increase the SNR of the position sensors. But, it should be mentioned
that the output filter increases the inverter cost the additional hardware
components are needed. Also, the measurement and control effort is increased
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Fig. 9.1: Schematic of the power circuit of an inverter phase, comprising a GaN power
semiconductor half-bridge and an LC output filter. The power semiconductors are
600V, 70 mQ CoolGaN-MOSFETs from Infineon [119]. The output filter capacitor is
divided and attached to the DC+ and DC- rails. Ry and Cq are used for damping of the
filter. In each inverter phase, three measurements are conducted: (1) inductor current
ir,, (2) the output voltage vout and (3) the output current igyt.

from a single current controller and measurement to 3 measurements and
cascaded control loops for ir, vy and iy and the bandwidth of the output
current is limited.

For the whole inverter with 18 phases, 18 X 2 = 36 current measurement
and 18 voltage measurement circuits are needed. Therefore, in total there are
54 measurements conducted at each current/voltage control interrupt.

9.1.1 Filter Inductor Design

One of the most important elements of the output filter is the inductor L.
The inductance value of L influences the losses in the semiconductors, e.g. a
too large inductance value increases the switching losses while reducing the
conduction losses. A low inductance value might reduce switching losses as

Tab. 9.1: DS LiRA inverter specifications.

Symbol  Description Value
Vie DC-link voltage 400V
Vout Output voltage peak for 100 % modulation index 200V
Tout Output current peak 10A
Jout Output fundamental frequency 400 Hz
fow Switching frequency 140 kHz
Nph Number of phases 18
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Fig. 9.2: Total inverter losses including: semiconductor (switching and conduction)
and inductor (copper and core) losses. The RM12 core inductor design that provides
minimum total losses is chosen. The design with the RM14 core is omitted, as the
RMaiz2 core better suits width of the PCB layout of a half-bridge. The inductor design
details are given in Tab. 9.2.

a large inductor current ripple would result in soft switching for low values
of ioyt, while the conduction losses would increase. Additionally, an inductor
with a fixed inductance value might be realized in many different ways, e.g.
using different numbers of wire turns and different wire types, different types
of cores and core sizes, with a typical trend of lower losses for larger volume
designs.

The inductor is chosen based on an optimization for the nominal operating
point, cf. Tab. 9.1. Three different inductor core options are considered (RM1o,
RMi2 and RM1g) with different inductance values in the range from 50 pH
to 280 pH, in the steps of 10 pH. In Fig. 9.2 different inductor design options
are indicated also considering influence on the total losses in the inverter, i.e.
semiconductor losses besides the losses in the inductor itself. At this point of
the design, the layout arrangement of the inverter components is considered
and the RMi2 core fits much better into the design than the RM14. As the
difference in losses between the RM12 and RMi4 cores is small (cf. Fig. 9.2)
(14.1W for RM12 at 80 pH and 13.5 W for RM14 at 100 pH), the RM12 inductor
design is chosen. Detailed parameters of the design are given in Tab. 9.2.
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Tab. 9.2: Inductor design details.

Parameter Value
Core size RMi2
Core material N87
Inductance 80 uH
Number of turns 23(=8+7+38)
Strand diameter 71pm
Number of strands 300
Diameter of wire 1.8 mm

9.1.2 Filter Capacitor

Based on the capacitor evaluations in [120], the ceramic capacitor
C5750X6S2W225KT with X6S temperature characteristic of the dielectric
is chosen. A single discrete component provides a capacitance of 2.2 pF, with-
out any bias voltage. Unfortunately, the capacitance heavily depends on the
bias voltage. For example, for 200 V bias voltage, the capacitance drops by
65 %, i.e. from 2.2 pF to 0.77 uF. To attenuate this effect, the capacitors are
connected as shown in Fig. 9.2, i.e. to DC- and to DC+. Like this, always one
of the capacitors will be biased with higher voltage while the other capacitor
experiences a lower bias, resulting in a total capacitance, which is less depen-
dent on the bias voltage, as shown in Fig. 9.3. Therefore, from the schematic,
the filtering capacitance is C and its value may be chosen such that a certain
desired cut off frequency of the filter (1/ (22VLC)) is achieved. For example,
if a THD of the voltage of around 1% is desired at the filter output, a total
filtering capacitance of C = 4.8 pF should be chosen, assuming L = 80 pH.
This would require 4 discrete capacitors as the total capacitance still drops to
1.54 pF at 200 V (cf. Fig. 9.3). Therefore, considering a safety margin, space
for 3 capacitor connections to DC+ and 3 to DC- is considered for the PCB
layout, such that finally the total number of discrete capacitors may be chosen
to be either 2, 4 or 6 during testing of the inverter.

9.1.3 Filter Damping

The choice of the damping resistor and capacitor Rq and Cq4 in Fig. 9.1 needs
to provide a sufficient damping factor and as low as possible losses. According
to the analysis performed in [122], the damping resistance value should be
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Fig. 9.3: Voltage dependent capacitance of a single discrete C5750X6S2W225KT capac-
itor shown over the bias voltage [121]. By connecting one filter capacitor to DC- and
another one to DC+ (cf. Fig. 9.1), the total differential filtering capacitance increases
and shows less dependence on the bias voltage.

B f(2+n)(4+3n)
Ra = Roa 2n2(4+n)

where Ryg = 4/L/C and n = 1. The damping capacitance is determined as
Cd =nC.

equal to

9.1.4 Heatsink Design

In order to dissipate the losses generated in the power semiconductors, typ-
ically a heatsink is used. To design a heatsink, a certain cooling system
performance index (CSPI) should be assumed (cf. [123]), which represents a
possible thermal conductance Cy, s per volume of the heatsink

W

CSPI = =12 >
Rth,hs : Vhs K dIIl3

where Ry ps = Ct_hlhs is the thermal resistance of the heatsink and Vj its
volume. From the desired temperature difference between the power semi-
conductor junction and the ambient, the required Ry, 1,5 can be calculated and
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therefore, the required volume of the heatsink. To do so, the first step is to
calculate the losses of the half-bridge, which based on the current waveform
and chosen filter inductance are P, p, = 10.2 W. The heatsink volume is deter-
mined for 9 half-bridges, since the inverter in total employs 18 half-bridges,
which are equally partitioned and arranged at opposite sides of the PCB,
such that 9 inverter phase outputs are available for connection on each side.
The losses of 9 half-bridges result as Py oy, = 9Py 1 = 92 W. The equivalent
thermal resistance of the 9 half-bridges may be obtained as

Rth,jc + Rth,vias + Rth,tim Tj - Tamb

Rihtot = 5 + Rihhs =

B

Py onp

where Ry, jc = 0.55K/W denotes the thermal resistance from junction to case.
The thermal resistance of 180 vias in the PCB is Ry yias = 1.23 K/W and the
thermal resistance of the thermal interface material is Ry, tim = 0.5 K/W. It
should be mentioned that these thermal resistances are per half-bridge. If the
temperature difference between the semiconductor junction and the ambient
is assumed to be Tj — Ty = 70 °C, than the required thermal resistance of
the heatsink for the 9 half-bridges results as Riphs = 0.5K/W. Therefore, the
required heatsink volume is

Vhs = 0.17 dm3.

This value is used as a minimum value in the 3D-CAD design of the inverter’s
heatsink.

9.1.5 Inverter Prototype

In Fig. 9.4 the inverter prototype is shown. The inverter features two PCB
boards, a top one, with power and signal tracks and a bottom one where the
inductors and the electrolytic DC-link capacitors are attached. The connector
for the Xilinx ZYNQ 7000 control board to which all the measurement and the
gate signals are connected is placed in the center of the top board. As it can be
seen in the picture, the power semiconductor half-bridges are arranged close
to the edges of the top board and have 2 X 1uF, 500 V Cera Link commutation
capacitors soldered close to them. From bottom, it can be seen that the
heatsinks are directly attached beneath the power semiconductors and also
have fans for forced air cooling.
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Fig. 9.4: Top and bottom view of the inverter prototype. The inverter has a single
power input supplied from a 400 V DC source. There are 6 X 3 phase output power
interfaces. The inverter also features a UART communication interface and a position
sensor interface. The low voltage circuitry is supplied from a 12V auxiliary supply.
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9.2 Position Sensor Design

The position sensor system consists of:
> the radial position sensor (eddy-current based),
> the circumferential position sensor (Hall-effect) and
> the linear position sensor (Hall-effect).

All three sensors are arranged on PCBs which are placed inside the DS LiRA,
cf. Fig. 8.26. The radial and the circumferential position sensors are arranged
on the outer PCBs, while the linear position sensor is arranged on the inner
sensor PCB.

9.3 Radial Position Sensor

The radial and the circumferential position sensors are arranged on the same
PCBs, but feature very different operation principles and design methods.

The radial position sensors are working on the eddy-current principle.
An illustration of its layout is shown in Fig. 9.5. In order to utilize the eddy-
current effect, the surface of the mover must be conductive, e.g. made out of
aluminum or stainless steel, such that an eddy-current ieqqy could be induced.
For the following analysis, the mutual coupling between the pick-up coils
(Lx1, L2, Ly1, Ly,) is neglected and only the couplings between the injection
coil and the individual pick-up coils is considered, i.e. Minj—x1, Minj-x2, Minj—y1
and Mipj_y,. For the typically small radial displacements Ax in the DS LiRA,
which are not larger than 0.6 mm, the change of the mutual inductances may
be assumed to be linear. Therefore, it can be written

OMipi—
Mijy1 = Mo + — Ax
ox
OMipi—
Minj—XZ =M, + LXZAX
ox
aMinj—yl 5 (9'1)
Minj—yl =M, + TA)}
aMinj—yZ
Minj—yZ =M, + TA

where M, is the mutual inductance when the mover is placed in the center
and Ax and Ay are displacements in x- and y-directions, respectively. The
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Fig. 9.5: Eddy-current sensor functioning principle. The sensor consists of an injection
coil Linj and the 4 pick-up coils (also called sense coils) Lx1, Lx2, Ly1, Ly2. The injection
coil encircles the conductive mover surface with the HF current ijyj. In the mover
surface an eddy-current i.qqy is induced with the tendency to compensate the field
of the injection current. When the mover is located in the middle, all the mutual
inductances between the injection coil and the pick-up coils are the same and equal
to Mp. Once the mover is displaced in positive x-direction, the eddy-current in the
mover iqqdy increasingly compensates the field generated by ijn;j in Ly, resulting in a
reduced coupling Mipjx2. In contrast Miyj_y; is increased. The angle « defines the
empty space on the PCB between the pick-up coils. Each pick-up coil has the same
number of turns equal to N.
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partial derivatives of the mutual inductances per x or y are the sensitivities of
the mutual inductance on the change of the mover’s radial position. It should
be noted that these sensitivities of the opposite coils of the same axis (Ly; and
Ly or Ly; and Lyy) have the same absolute value but the opposite sign, i.e.

OMinj—x1  IMinjx2 and OMinj—y1  OMinjy2
ox ax ay oy

Additionally, due to symmetry, these sensitivities are the same in the x- and
y-directions, and, therefore, it may be written

OMinj—x1 _ OMinj—xz _ OMinj-y1 _ IMinj—y2 _ M

ax ax dy dy o’

where dM/or is the mutual inductance radial sensitivity in either x- or
y-direction.

The current in the injection coil is assumed to be sinusoidal with an
amplitude finj and an angular frequency wosc,

iinj = Ainj Sin(wosct)'

The induced voltages in the pick-up coils, in e.g. x-direction (similar applies
for the y-direction), are equal to

i
ot
Qi

ex2 = Minj—x2 TS

€x1 = Minj—xl

Subtracting these two equations results in
€x1 — €x2 = Wosc Iinj (Minj—xl - Minj—xz) cos(@osct).

Considering (9.1), we have
~ oM
Aey = ex1 — exz = Wosc Iinj 2§Ax Cos(wosct)- (9-3)

The voltage Aey is measured over the anti-series connection the pick-up coils
Ly and Ly,. It should be noticed that Aey exists only if there is a non-zero Ax
displacement of the mover. Consequently, Aex may be used for the position
sensing of the mover.
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Delay Line
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Fig. 9.6: Electrical circuit model of the radial eddy-current position sensor in
x-direction. A circuit of same topology is used for y-direction measurement. The
injection coil circuit consists of the oscillator that generates a HF voltage and excites
the current iy in the injection coil Liyj. The induced voltage occurring over the anti-
series connection of the pick-up coils is rectified around 2.5V and low pass filtered,
which finally provides a DC signal Uy proportional to the displacement Ax.

In Fig. 9.6 an equivalent circuit for the sensor in x-direction is shown with
additional electronic components that are needed to transform the induced
voltage Aey at the anti-series connection of the pick-up coils into a DC voltage
Uy € [0...5V] that can be digitized and used in the position controller
software.

The sensor depicted Fig. 9.5 is modeled with coupled inductors (cf.
Fig. 9.6). The current ij,; in the injection coil Liy; is excited with a HF voltage
signal supplied from an oscillator. At the utilized frequency the impedance
WoscLinj of the inductor would be too large and therefore the current i, would
be too small to induce any voltage at the output. Therefore, typically a series
resonance is created by adding an external capacitor Ciyj, which should have

the value .

Cnj = 57—
@i inj

(9-4)
In such circuit, the current i;,; is only limited by the injection coil resistance
Rinj, which is influenced by the skin and proximity effects and typically shows
avalue of ~ 20 Q.

From (9.3) it can be seen that the sensor DC voltage Uy is proportional to

~ oM
Ux ~ 2005 Iinj E Ax. (9:5)
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Fig. 9.7: Eddy-current sensor (cf. Fig. 9.5) geometry optimization. The radial mutual
inductance sensitivities are compared, where the values with respect to the S1 are
shown, i.e. for the S1 sensor geometry featuring M /dr = 100 %. The sensor geometries
S1,...,.56 are considered. Finally, S4 is the chosen for the sensor implementation.

Therefore, to increase the sensitivity of the sensor, i.e. 9Uy/d(Ax), the os-
cillation frequency wiyj, the injection current amplitude finj and the mutual
inductance sensitivity dM/dr should be as large as possible. The oscilla-
tion frequency wqs. is limited by the sensor’s geometry, i.e. after a certain
frequency value (resonant frequency of the sensor), the sensor’s inductive
behavior turns to capacitive and therefore an operation as sensor is not any
more possible. The injection current amplitude finj is limited by Ryy;. The ra-
dial sensitivity of the mutual inductance oM /dr can be changed by changing
the sensor geometry, i.e. by varying the parameters « and N, cf. Fig. 9.5.
In Fig. 9.7 the mutual inductance radial sensitivity is evaluated for various
sensor geometries, which allows to choose the best performing sensor PCB
layout. These results are obtained using Ansys Q3D software. It can be seen
that by increasing the angle « the sensitivity dM/dr reduces, since the area of
the pick-up coils reduces, which may be seen by comparing S1 and S2, S3 and
S4, S5 and S6 sensor designs. Increasing the number of turns N would not
necessarily increase dM/dr, as with a larger number of turns, the pick-up coil
grows in size and shows a larger distance to the injection coil and, therefore,
experiences less magnetic flux. For example, by increasing the number of
turns from N =10 to N = 15, S1 and S4, dM/dr increases, while by increasing
the number of turns from N = 15 to N = 20, S3 and S5, dM/dr does not
change. The sensor designs with the largest 0M/or are Sz and S4. Finally,
the design Sq4 is chosen, even though it shows slightly lower oM /dr, but it
features larger a, i.e. it leaves more PCB space between the pick-up coils that
may be used for the components necessary for the sensor operation. This can
be seen in Fig. 9.8 where the sensor prototype is shown.
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Fig. 9.8: DS LiRA outer position sensor PCBs with radial eddy-current sensors and
circumferential Hall-effect based sensors. The boards also interface the 100 kQ NTC
resistors embedded into the outer stator winding for temperature measurement. The
sensor PCBs feature on-board ADCs for signal digitization and interface the control
board with SPI protocol. The radial eddy-current sensor pick-up coils are realized
with N = 15 turns and a = 22°. Most of the electronic ICs is fitted between the pick-up
coils, which confirms the S4 choice for the sensor design, cf. Fig. 9.7.
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Tab. 9.3: Eddy-current sensor parameters at 1 MHz.

Parameter Simulation value ~ Measurement value
Ly, Lxa, Lyly Ly2 2.2uH 2uH
Linj 97 IJH 100 |.,IH
Minj—x1, Minj—x2, Minj—y1, Minj-y2 0.72 = 1.42 uH 0.68 —1.5puH
Ay=0
3.5 T T T T T
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Fig. 9.9: The measured sensor sensitivity is 1.17 V/mm. The decoupling between the
x- and y-axis is immediately visible.

In order to verify the Ansys Q3D design model, the parameters of the
prototype are measured and compared with the simulations. The measure-
ments are done with the impedance analyzer Agilent and shown in Tab. 9.3.
The self-inductances do not depend on the radial displacement of the mover,
while the mutual inductances are changing by a factor of ~ 2 in the consid-
ered displacement range. Additionally, from the impedance measurements,
it is seen that the sensor’s resonant frequency is 4.2 MHz and therefore, the

oscillation frequency is chosen as

Wose = 27 - 3.2 MHz

resulting in Cip; = 25 pF (cf. (9.4)).
After the sensor design verification, its sensitivity is measured, and shown
in Fig. 9.9.
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9.4 Circumferential Position Sensor

In order to detect the circumferential position of the mover, the field of the
mover PMs is measured with Hall-effect sensors. This is a very well known
method where signals from the two sensors displaced by 90° electrical are
used. As the DS LiRA mover has 8 pole pairs, the Hall-effect elements are
displaced by 90°/8 = 11.25°, as shown in Fig. 9.8. The used Hall-effect sensors
detect the radial field component. The electrical angle is than detected as

U .
(Pel — atan? ( sm,rot) )

cos,rot

where
Usin,rot = A Sin(‘/’el) and Ucos,rot = A COS((Pel)

are the voltage signals measured by the Hall-effect sensors. The function
atan2 returns a correct and unambiguous value for the angle ¢, between —7x
and  [65]. The calculated value should be scaled and shifted, such that the
mechanical mover angle is estimated as

(pel+k2ﬂ'

Pmech = 3

where 8 is the number of pole pairs and k counts the PM pole pair segments
of the mover and it can take integer values between 0 and 7. It should be
noted that the electrical angle values are ¢¢ € [0, 2] and with the integer
number k, the same range for the mechanical angle ¢ is obtained, i.e.
Pmech € [052”]-

The used Hall-effect sensors can sense moderate fields up to +42 mT.

9.5 Linear Position Sensor

The inner linear sensor works on the same Hall-effect principle as the one
for the circumferential position sensing, discussed in Section 9.4. The linear
position sensor implementation is shown in Fig. 9.10. It should be noted that
the 90° electrical degrees shift is achieved by displacing the Hall-effect sensors
axially. The PM pole size is 6.25mm, therefore, the Hall-effect elements
should be displaced by 6.25mm/2 = 3.125mm. This displacement cannot
be controlled exactly, since it also depends on the PCB and the soldering
thickness. Consequently, with the measurements on the prototype it is found

193



Chapter 9. Inverter Supply and Position Sensor
of the Double Stator Machine

Stator

Fig. 9.10: Hall-effect based inner linear position sensor implemented on a PCB and
mounted at the inner stator’s axial end. As it can be seen, the sensor interface cables
pass through the inner stator copper pipe. The sensor has 4 Hall-effect sensor elements
distributed circumferentially, such that mover radial displacements do not distort the
linear position measurement.

that the actual electrical angle between the Hall-effect sensor signals is 85°,
i.e. there is an error of 5°. Therefore, the electrical angle of the linear stator is
estimated as

Us 1
sin,lin _ Sil’l(5°)
0 = atan? cos lin R .6
el cos ( 50) (9 )
where the measured signals are equal to
Usin,lin =A Sin(eel + 50) Ucos,lin =A COS(Gel).

The expression (9.6) compensates for the 5° angle deviation, which can be
proven if the trigonometric identity sin(a+f) = sin(a) cos(f)+cos(a) sin(f)
is used

1 sin(8e) cos(5°) + cos(fe)) sin(5°)
cos(5°) cos(e1) -

sin(0e))
cos(fe1)

Sin(5°)) = (9-7)
Finally, the linear position is calculated from the electrical angle as

p
z=— (0 +k2r),
T
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where k is similar as for the rotational angle ¢mech. The PM pole size is equal
to

T = = 6.25 mm.
plin

9.6 Summary

In this chapter, a design of the DS LiRA 18 phase inverter supply and the
design of the position sensors are discussed. The inverter is built with 600V,
70 mQ GaN power semiconductors from Infineon and is supplied from a 400 V
DC-link. Each inverter phase includes an LC output filter, which provides
smooth voltages to the corresponding DS LiRA winding. The filter inductor
is built with a RMiz2 ferrite core and litz wire winding. The heatsink for the
power semiconductors is designed with CSPI = 12 W/(Kdm3).

The position sensors are realized on three separate PCBs, two integrated
into the outer rotary stator and one into the inner linear stator. The outer
rotary stator sensors are used for the radial and the circumferential position
sensing. The radial position sensors are eddy-current based with a measured
sensitivity of 1.17 V/mm. The circumferential and the linear position sensors
are Hall-effect based and are verified with prototypes.

At this point, all hardware parts of the DS LiRA are designed and man-
ufactured (cf. Chapter 8 and this Chapter 9). Therefore, in a next step
(Chapter 10) the control system design and implementation is considered.
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Controller Design of the
Double Stator Machine

To verify the operation of the DS LiRA, its inverter, and position sensor, a
control system for the DS LiRA is designed, which is shown in this chapter.

10.1 Overview of the DS LiRA Winding
Systems

The DS LiRA has two outer rotary stators and a single inner linear stator.
The rotary stator has 6 tooth windings (cf. Fig. 10.1) with the currents that
control the torque and the bearing forces on the mover. Therefore, in the
rotary stator two three-phase systems are superimposed, the three-phase
system that controls the torque {iy , iyp, irc } and the three-phase system that
controls the bearing forces on the mover {iy, 5, ibp, iv.c }. Therefore, the currents
in the DS LiRA rotary stators are sum of the two components

il ir,a + ib,a ir,a

i2 ir,b - ib,c ir,b

i3 Irc + ibp i

Cl=e T P =W e (10.1)
I4 Ira — lba Ib,a

is Irb + e ibb

g irc = Ipb Ibc
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Fig. 10.1: DS LiRA rotary stator with the 6 tooth windings that superimpose two
three-phase systems, therefore, resulting in 6 different currents in the stator i, ..., is.
The linear stator is three-phase with the currents ia, ig and ic. The DS LiRA machine

parameters are summarized in Tab. 10.1. The rotary and linear currents are controlled
with the supply inverter, operated with constant 140 kHz switching frequency PWM.

where the matrix W is used to decouple the ’rotary’ and the 'bearing’ currents
and it is equal to

100 1 0 0
010 0 0 -1
001 0 1 0
W=11 00 -1 0 o (10.2)
010 1 o0 1
001 1 -1 0

The matrix W is invertible. The phase currents of the two three-phase systems
are such that the rotary component couples with the 16 pole PM field and
is able to generate torque with a winding factor of 0.866, while the bearing
component is such that it can couple with 16 — 2 = 14 poles to generate torque,
which will allow to control the bearing force on the 16 pole mover. This is
known as 2P — 2 self-bearing method, cf. [22].

The linear stator winding is a conventional three-phase winding that
couples with 16 PM poles on the mover and generates the drive force with a
winding factor of 0.866.
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Tab. 10.1: DS LiRA machine parameters.

Symbol  Description Value
Rotary stator

Riot Phase resistance 1.8Q

Lot Phase inductance 2.4mH

Yot Flux linkage 20.7mWb

Kr Torque constant (per rotary stator) 0.21Nm/A

Kp Bearing constant (per rotary stator) 3.7N/A
Linear stator

Riin Phase resistance 6.3Q

Lijn Phase inductance 31mH

Hin Flux linkage 110 mWb

Ky, Force constant 83.5N/A
Mover

m Mass 1.24kg

J Moment of inertia 0.00145 kgm

Ka Attraction constant (per rotary stator)  45.8 N/mm

10.2 Current Controller of the Rotary Stator

As shown in Fig. 9.1 the DS LiRA inverter employs an LC output filter. Beside
controlling the DS LiRA phase currents (iy, ..., ig), this involves additional
controller loops that control the voltages at the filter capacitors (v, ..., Ucs)
and the currents through the filter inductors (i, ..., ire). Similar as the DS
LiRA rotary stator currents, the capacitor voltages and the filter inductor
currents will have rotary and bearing components, i.e. we have

Oc1 Ucr,a + Uch,a iy iLra + iLba
Oc2 Ucr,b — Uch,c iLZ iLr,b - iLb,C
Ue3| _ | Yer,c + Uchb i3 _ iLre + iLbb
Ucq - Ucr,a — Uch,a ’ iLg - iLra — iLb,a
Ucs Ucrb t Uch,c iLs iLrb + iLbe
Uco Ucr,c — Uch,b iLe ILrc — iLbb

For decoupling the rotary and the bearing components of the capacitor volt-
ages and the inductor currents, the same matrix W may be used.

In order to control the voltages and currents, they should be first trans-
formed into the dg-coordinates. The scheme of the measurement and
dg-transformations for the rotary stator of the DS LiRA are shown in Fig. 10.2.
Since the rotary and the bearing current components coexist in the same
winding, after measurement these components should be decoupled, which
is achieved by multiplying the measurements with W', This is done for the
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Chapter 10. Controller Design of the Double Stator Machine

Tab. 10.2: DS LiRA rotary current controller gains.

Symbol  Name Unit Value
PI-1, phase current controllers - i

Ky Proportional gain ~ V/A 20

K; Integral gain V/(As) 10000
PI-2, capacitor voltage controllers - o,

Kp Proportional gain ~ A/V 0.405

K; Integral gain A/(Vs) 3553
P-3, inductor current controllers - i,

Kp Proportional gain ~ V/A 10.23

Ki Integral gain V/(As) 0

inductor currents, capacitor voltages (output voltages) and the DS LiRA rotary
stator currents. Next, the three-phase rotary and the bearing voltages/cur-
rents are transformed into the dg-coordinates by Tyq matrix transformation,
where

T = cos(¢) cos(¢ — 27” cos(p + ZT”

dg = | sin(p) —sin(p — ZT” —sin(p + ZT”) . (10.3)

The electrical angle ¢ used in the transformation is ¢ = ¢, for the rotary
three-phase systems and ¢ = ¢y, for the bearing three-phase systems.

The DS LiRA current controller structure is shown in Fig. 10.3. The
references come from the position controller, that demands certain force or
torque to act on the mover. It can be seen that the controller includes feedback
as well as feed-forward components that enhance the controller operation.
The controller uses measurements shown in Fig. 10.2 and gives outputs that
are algebraically transformed into the duty cycles. The current controller
gains are given in Tab. 10.2. To implement these gains, the current controller
execution frequency should be high. Therefore, it is implemented on ZYNQ’s
7000 FPGA fabric and executed with 280 kHz. As the switching frequency
of the converter is 140 kHz, so called ’double update’ of the duty cycle is
implemented.

10.3 Current Controller of the Linear Stator

The current control of the DS LiRA linear stator is a conventional three-phase
control in the dg-coordinates. The structure of the current measurement
and the controller action are shown in Fig. 10.2, whereas the structure of
the controller itself is given in Fig. 10.3. The controller gains are given in
Tab. 10.3.

200



10.3. Current Controller of the Linear Stator
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Fig. 10.2: Structure of the measurement and decoupling for the current control in
the DS LiRa. The measured quantities are shaded in gray. Finally, the output of the

rotary stator current control are the duty cycles (dj, ...,

de) that are directly applied

for the control of the half-bridges. For the linear stator current control, the measured
three-phase currents are directly transformed into the dg-coordinates and supplied to
the controller.

Tab. 10.3: DS LiRA linear current controller gains.

Symbol  Name Unit Value
PI-1, phase current controllers - i

Ky Proportional gain ~ V/A 60

K; Integral gain V/(As) 30000
PI-2, capacitor voltage controllers - o,

K, Proportional gain ~ A/V 0.405

K; Integral gain A/(Vs) 3553
P-3, inductor current controllers - if,

K, Proportional gain ~ V/A 10.23

Ki Integral gain V/(As) 0
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Chapter 10. Controller Design of the Double Stator Machine

d-Component Controller

WR Lrot ir,q
WL Lyin iq

'UE a+ Usw,d

¢-Component Controller

WR Lrot ir,d wR‘yrot
wr, Llintd 4 ,~+ WL Yiin

qa c,q q L,a c,q

Fig. 10.3: DS LiRA current controller structure for d- and g-components. The same
controller is used for the rotary and the bearing dq quantities, where the components
denoted in orange are used only for the rotary and linear stator quantities. The
most inner controller (P-3) is implemented in the FPGA and executed with 280 kHz
(double update PWM with 140 kHz switching frequency). Therefore, there is no need
to compensate for execution delays in current control loops.
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10.4. Position Controller

dbq
Y1 1
1 + + Y
Y1 mg/2
x F,
2 3©—{P}"
i)
Y5 + + Fu2
OO
Bearing Controller
Yo mg/2
* F.
Linear Controller : *
2 Fcog
+ + T
® ®

Q
%
+
n

Rotary Controller

[} Jo

Fig. 10.4: Structure of the decentralized DS LiRA position control consisting of 6
individual PID controllers, 4 of which control the radial positions, while the other 2
control circumferential and linear positions. The feedback control action is enhanced
with feed-forward components added at the output of the controllers.

10.4 Position Controller

The implemented position control is decentralized consisting of multiple SISO
controllers that control positions in different directions, as shown in Fig. 10.4.
Similar as for the MALTA, a MIMO realization of the position controller
would be possible. Speed controller loops can be omitted since the position
controllers include a derivative 'D’ gain of the position errors. The outputs of
the position controllers are the force references that are used to calculate the
current references for the current controllers in Fig. 10.2. The gains used for
the position controllers are given in Tab. 10.4.

The position control gains are possible in connection with an observer
of the respective positions (modes), otherwise, the control is unstable. The
Luenberger observer assumes a second order differential equation of the

203



Chapter 10. Controller Design of the Double Stator Machine

Tab. 10.4: DS LiRA position control gains.

Symbol  Name Unit Value
Bearing Controllers
K Proportional gain ~ N/m 680
K; Integral gain N/(ms) 10200
Ky Differential gain Ns/(m) 2.55
Saturation limit N 26.2
Rotational Controller
K, Proportional gain ~ N/rad 25
K; Integral gain N/(rads) 99
K4 Differential gain Ns/(rad) 0.8
Saturation limit Nm 0.839
Linear Controller
Kp Proportional gain ~ N/m 125
K; Integral gain N/(ms) 5862
Ky Differential gain Ns/(m) 1
Saturation limit N 166
positions
mog = coq + koq + h(t) (10.4)

where g represents a general coordinate. For translation, ¢ = {x1, y1, x2, y2, 2},
while for rotation ¢ = «. Similarly, for translation my is the mass, while
for rotation it is moment of inertia. The drive input to the system is h(t),
which represents either force or torque. To realize the position observer, a
state-space equation is formed by introducing a new vector variable

-

The state-space equation of the observer in discretized form (Forward Euler)
is
ﬁn+l = Aﬁn +B hn +L (qn - Cﬁn): (10'5)

where the measurement matrix is equal to
c=[1 of.

The other matrices A, B and L are given in Tab. 10.5 for different observer
modes such as bearing xy, y1, x2, y2, rotational « and linear z, which are de-
noted in Fig. 10.4. The time step At is the position controller execution period
that is equal to

At =1/35kHz = 28.57 ps. (10.6)
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10.5. Summary

Tab. 10.5: DS LiRA position controller gains.

Matrix  Bearing Observer  Rotational Observer  Linear Observer

A= 1 At 1 At 1 At
- 2KaBL 0 1 0 1
m
0 0 0
w8 Bl
m J m
Lo 0.06 0 10 0.02 0
= 0 0.04 0 0.005 0 0.09

Further relevant parameters are the attraction constant K, the mass m and
the moment of inertia J of the mover, which are given in Tab. 10.1. It should
be noted that from the assumed dynamics in (10.4), ¢y = 0 for all the three
modes, while for the bearing observer ky = Ka. The parameters my = m/2 in
case of the bearing and linear observer, but my = J for the rotational observer.

10.5 Summary

In this chapter designs of the current and position controllers for the DS LiRA
are explained. As the DS LiRA inverter stage employs an output LC filters, a
control of internal states, such as inductor currents and capacitor voltages is
necessary. Therefore, a cascaded controller structure is established, where a
separation in loop bandwidths must be guaranteed.

For the position control, DS LiRA has 6 degrees of freedom that should be
controlled, therefore, 6 independent SISO PID position controllers are estab-
lished for this purpose. Also, for each of the controlled position modes, there
is a dedicated observer that provides a respective position and its derivative.

In the following Chapter 11 measurement results of an experimental
analysis of the DS LiRA are shown.

205






Experimental Analysis of the
Double Stator Machine

To verify the DS LiRA design and its controller design implementation, an
experimental analysis on the prototype is conducted and measurement results
are shown in this chapter.

11.1  Introduction

The experimental analysis of the DS LiRA with MBs is still ongoing at the time
of writing this thesis. Therefore, the shown measurements are conducted for
the linear motion and rotation separately, i.e. the linear stator and the rotary
stator are tested on separate test-benches. For the linear motion and testing
of the linear stator, the mover is held by dedicated mechanical bearings, while
for the rotation, the MBs are used, i.e. the self-bearing feature of the DS LiRA
is verified.

11.2 Current Control

The switching node voltages of the DS LiRA inverter stages are filtered before
being connected to the DS LiRA phase windings. The LC filter scheme is
shown in Fig. 9.1 and the design and the structure of the current controller
of an inverter output are given in Chapter 10. The controller is realized
with three cascaded loops, cf. Fig. 10.3, where the most inner one controls
the filter inductor current iy, the next outer one (the middle one) controls
the filter capacitor voltage v. and, finally, the most outer one controls the
corresponding DS LiRA phase current.
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Chapter 11. Experimental Analysis of the Double Stator Machine

As for the magnetic levitation, i.e. the MBs, an as high as possible current
control bandwidth is important, only the current controller design for the
rotary stator is shown here. The controllers are tuned according to Tab. 10.3,
which gains are derived using iterative approach, i.e. each time the gain was
increased, it was implemented and tested in hardware. Therefore, the gains
given in Tab. 10.3 yield the maximum possible bandwidth while keeping
the step response stable, which is shown in Fig. 11.1. The step response
of the DS LiRA phase currents was tested in simulation and measurement.
The control is implemented in stationary dg-coordinates and tested on the
current component that generates torque, cf. Fig. 10.2. It should be noted that
only the d-components are shown, while the reference for the g-components
is kept to zero, iy = 0. Due to coupling of the d- and the g-components,
during the transients minor effects are noticed on the g-components, but are
successfully controlled to zero by the controllers.

From the controller response in Fig. 11.1 for i, 4, the DS LiRA current
control bandwidth may be deduced by using the information about the rise
time. The rise time is the time between 10 % and 90 % of the step response,
and is equal to 0.12 ms for i, 4. By using a simple formula [124] that relates
the bandwidth of the closed-loop system and the rise time, the closed-loop
bandwidth may be estimated as

1
= —— = 2.78 kHz. 11.1
fowi = 3 oms (121)

The filter capacitor voltage v, 4 and the filter inductor current ir, 4 controls are
stable as indicated by the step transient waveforms, cf. Fig. 11.1. Additionally,
the simulated waveforms match quite well with the measured ones, which
verifies the current controller models used for the design.

It should be mentioned that typically the inverter stages driving an electric
machine do not employ an output filter, but use the machine inductance for
filtering the current ripple. In that case, the current control is way simpler
and consists of a single control loop and it is not a challenge to implement
the controller to achieve high current control bandwidths. Nevertheless, in
high precision applications, actuator drives typically employ an output filter.

At this stage, once the current control of the DS LiRA is properly tuned,
the position controllers may be analyzed, as done in the following sections.

208



11.2. Current Control

Tr,d
=
=
[}
H ]
=
@)
0 0.2 0.4 0.6 0.8
Time (s)
Ver,d — 7 v:r,d,sim — Vcr,d,sim
_100F~ 1
>
> 1!
g 50 B
GO
of i ‘ ]
0.4 0.6 0.8
Time (s)
T Z'Er,d,sim T iLr,d,sim
Eﬂ\/ E
=] R I e
[}
B ]
=
O -
0.4 0.6 0.8

Time (s)

Fig. 11.1: Measurement and simulation of the d-current i, 4 rotary stator step response
(cf. Fig. 10.2). Only d-components are shown. The g-current reference is kept to zero,
iy ¢ = 0. From the igq current step response, the rise time of 0.12 ms may be deduced
(the time between 10 % and 90 % of the reference value), which gives a closed loop
current control bandwidth of around 2.78 kHz. The waveforms of the capacitor voltage
¢y q and the filter inductor current ir; 4 are shown below. For the performed step
response, the inverter was attached to the DS LiRA rotary stator and tested separately
from the position controller. During the position controller testing, due to separation
in frequency, the current controllers are assumed to ideally impress the desired output
current references.
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Fig. 11.2: Test bench setup for testing the linear inner stator of the DS LiRA. Teflon
bearings support the mover.

11.3 Linear Position Controller

At this moment, the measurements for the linear and rotary stators are
performed separately, i.e. the inner linear stator is tested without the outer
rotary one. In order to support the mover, auxiliary mechanical bearings are
manufactured out of teflon (PTFE) and used in a customized test bench as
shown in Fig. 11.2.

The linear position controller structure is given in Fig. 10.4 and the con-
troller gains in Tab. 10.4. In order to verify the operation of the inner linear
stator, two measurement experiments are conducted, linear reference tracking
and oscillatory operation.

In Fig. 11.3 the linear position reference tracking is shown. The reference
z* is changed from zo = —6 mm to z; = 6 mm using a sigmoid function for
reference generation

Z°(t) =zo+%(zl—zo) (1+erf(tE (t—tr/2))), (11.2)

where t is the time and the rise time ¢, is obtained as
te = |z1 — zo| - 0.01+ 0.027s. (11.3)

In this example ¢, = 147 ms. The pure feedback control has good reference
tracking with the position error zeror not exceeding 0.2 mm, which is 1.7 %
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Fig. 11.3: Step response measurement results of the inner linear stator with a stroke
of 12 mm and sigmoid reference. The controller has good trajectory tracking with
a tracking error that stays below zerror < 0.2mm. The maximum speed achieved
is very low and stays below v, = 0.1m/s, which suits to the electrical frequency of
0;/tpp = 8 Hz. The linear force f; has non-zero steady-state values due to cogging
force compensation. The cogging force has a fundamental harmonic peak of ~ 29N
with a period of 6.25 mm.
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Fig. 11.4: Measurement of the linear position on the test bench shown in Fig. 11.2.
The linear position reference z* oscillates with 20 Hz and an amplitude of 5 mm. The
maximum achieved linear speed during this motion is in the range of 500 mm/s,
which results in the electrical frequency of (500 mm/s)/z,, = 40 Hz, where 7pp =
L/(2Np1in) = 100mm/8 = 12.5mm. The linear force reaches maximum values of

200 N.
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11.4. Rotation and Magnetic Bearing Controller

compared to the performed linear stroke. The linear drive force f; has peculiar
shape due to large cogging force that the linear actuator exhibits.

The oscillatory operation of the inner linear stator is shown in Fig. 11.4.
For the selected operating frequency (20 Hz), an amplitude attenuation is
expected and it is equal to 0.9; furthermore, a quire large phase shift of 52.6°
occurs. It should be mentioned that this is only the action of the feedback
controller and only the cogging force mapped is added to the drive current
reference (cf. Fig. 10.4). Also, the friction from the teflon mechanical bearings
contributes to the increase of the phase shift. In a next step, for the oscillatory
operation, a feed-forward term to the position controller will be added.

11.4 Rotation and Magnetic Bearing Controller

In this section, the experiments with rotation and MBs are conducted without
inner stator. The mover is levitated by the outer rotary stators and circumfer-
ential positioning tasks and continuous rotation are performed.

In Fig. 11.5 and Fig. 11.6 the experimental results for a mover angle step
response are shown. The rotation characteristic quantities are shown in
Fig. 11.5, while the MBs characteristic quantities which occur simultaneously
in the same experiment are shown in Fig. 11.6. The angle step reference o™
from oy = 15° to oy = 180° results in a circumferential stroke of 165°, where
the step function is used for the reference generation. The current controller
limit is set to 3 A. This results in the torque saturation at 2 Kg - 3 A = 1.26 Nm,
where the factor 2 accounts for the 2 rotary stators. During this step response,
the self-bearing operation of the rotary stators held the mover hovering
in the outer DS LiRAs air gap, which is shown by the measurements in
Fig. 11.6, where the radial positions and the respective radial forces are shown.
When performing the circumferential step response, the radial positions are
disturbed, but the radial position controller damps the oscillations rather fast.
The amplitude of the radial position deviation from the center position, for
this extreme positioning task, does not exceed 60 pm.

Another experiment performed with MBs is the constant rotation of the
DS LiRA mover, while levitating it. As it can be seen in Fig. 11.7, the mover
starts from rest and reaches the reference speed of nj, = 60 rpm. It can be
seen that at start the mover is attracted to the bottom of rotary stator 1, while
it is attracted to the top of rotary stator 2. After the start transient has passed,
the mover’s radial position is kept within 20 ym. This is shown in Fig. 11.8
where the radial coordinates of the rotary stators 1 and 2 are plotted. Also,
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Fig. 11.5: Step response measurement results (sigmoid reference) of the rotary outer
stators without inner stator and MBs supporting the mover. The angle stroke reference
step is 180°. The maximum achieved speed is around 700 rpm, which corresponds to
the electrical frequency of 93.33 Hz. The maximum torque is determined by the current
limit of 1.26 Nm/(2Kgr) = 3 A. The response of the MBs, i.e. the radial positions and
forces, are given in Fig. 11.6.
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Fig. 11.6: The radial positions of the DS LiRA that correspond to the circumferential
step response shown in Fig. 11.5. The radial position oscillations stay below 60 um.
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Fig. 11.7: Measurement results of the MBs start-up and speed control response of the
DS LiRA without the inner stator. The speed reference is n}, = 60 rpm.
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Fig. 11.8: Radial x- and y-coordinate distribution of the DS LiRA rotary stators during
a steady-state rotation at n, = 60 rpm. The plotted data is taken from Fig. 11.7 in the
time interval 0.05s < t < 0.5s. It can be seen that the radial position deviation stays

below 20 pm.

Tab. 11.1: Radial position statistical parameters at n, = 60 rpm from 9000 samples.

Symbol | Mean (um)  Standard Deviation (um)

Motion Range (um)

X1
Y1
X2
Y2

—0.41pm
—0.21pm

0.15pm
—0.26 um

3.74 pm
5.41pm
5.01pm
5.87 um

+700 um
+700 pm
+700 um
+700 pm

the radial positions show quite low standard deviation during the rotation, cf.

Tab. 11.1.

11.5 Summary

This section verifies the operation of the DS LiRAs inverter and the inner and
outer stators.

The current control of the DS LiRA inverter employs three cascaded con-
trol loops due to filter stages at each output, which makes its implementation
challenging. The taken measurement results show the successful operation
of the current control with a close loop control bandwidth of the actual DS
LiRAs current of 2.78 kHz.
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The position measurements for the rotary and linear stators are conducted
on separate test benches, i.e. the mover is either moved linearly or rotated.
The linear motion of the mover shows successful operation of the inner stator
where a linear trajectory with 12 mm stroke and 147 ms rise time is tracked
with a position error staying below 0.2 mm. The linear oscillatory motion is
performed with 20 Hz and an amplitude of 5 mm.

Simultaneous rotation and levitation of the mover with the MBs is ver-
ified with measurements taken without the inner stator. For this purpose,
two experiments are conducted: (1) rotary step response and (2) continuous
rotation, where in both cases the mover is hovered with the MBs. In the first
experiment, when performing the rotary step, the radial position is disturbed
and an oscillation of the radial position is observed. The amplitude of this
radial position oscillations stays below 60 pm. In the second experiment, the
mover is rotated with 60 rpm, where the mover is started from resting on the
touchdown bearing. During the rotation, the radial position of the mover
stays within £20 pm from the center with a maximum standard deviation of
5.9 pm.

A further experimental analysis should focus on the simultaneous oper-
ation of the rotary and the linear stator of the DS LiRA, where the mover
performs coupled rotary and linear motion.
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Conclusion and Outlook

12.1  Summary

Linear or linear-rotary actuators' (LiRAs) are used in applications that require
linear or coupled linear and rotary motion, such as pick-and-place robots
in electronics or semiconductor industry, packaging or sorting in food or
pharmaceutical industry, to mention a few. During their operation, they may
be attached to a fixed assembly or to a moving robot arm, parallel kinematics
or gantry system and moved in space to perform certain tasks. The rotor of the
LiRAs is typically called mover and ideally it can simultaneously move linearly
and rotate. More often, in price constrained applications LiRAs are built with
mechanical bearings (steel ball bearings or plastic slider ring bearings), while
in high end applications air bearings may be used.

Depending on the application requirements, the performance of the LiRA
is limited by the mechanical or the air bearings. More specifically, in pick-
and-place applications where the SMD components are getting smaller due
to smaller PCB track distances and footprints, its placements becomes more
challenging since these components are more brittle as a result of the size
reduction. The only way to successfully mount such components is to control
the tilting of the mover and therefore the placing nozzle, which is not possible
with the conventional LiRA. Another example of limited performance is the
limited precision of the conventional LiRA due to eventual thermal expansions
that may occur in the overall mechanical assembly that holds the LiRA. For
example, if the temperature of the parallel kinematics that hold and move the
LiRA increases, the positioning precision is compromised. A radial control of
the LiRA mover position would solve this issue, but this is not possible with

'machines, motors
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either mechanical or air bearings. Finally, not just the performance of the
LiRA is limited by the conventional bearings, but also its usage in application
areas that require extremely high purity or operation in vacuum.

Having in mind the limitations of LiRAs caused by conventional bearings,
this thesis focuses on studying possibilities to integrate magnetic bearings
(MBs) into LiRAs. Two different actuator topologies that feature MBs are
studied in this work: (1) a Linear Actuator with Magnetic Bearings and (2) a
Double Stator Linear-Rotary Actuator.

Linear Actuator with Magnetic Bearings

As a first step of an integration of MBs into the actuators, a coupling of the
linear actuator and the MB is performed, resulting in a so called magneti-
cally levitated tubular actuator (MALTA). Since the MALTA originates from
the conventional tubular linear actuator (TLA), its topology derivation is
explained step-by-step, explaining the stator teeth arrangement from the flux
density distribution requirement in the air gap. An extensive comparison of
the winding realizations is conducted, where both combined and separated
winding types are considered. The chosen winding realization results in a
minimum number of individual phases and the maximum force-per-copper
loss. Immediately after, the geometry of a MALTA prototype is optimized for
the maximum possible drive and bearing force and linear (axial) acceleration,
using a 3D-FEM model. The manufactured MALTA prototype is embedded
into a customized test-bench where flux linkage and force measurements
are performed. The measurement results are matching well with results ob-
tained with the 3D-FEM models. Moreover, the measurement results verify
the decoupling of the bearing and the drive force, necessary to control the
MALTA.

Once the MALTA prototype is established, the inverter power supply
and the position sensors are built. The inverter is suitable for supplying the
18 phases of the MALTA, since it has 24 individually controlled half-bridges.
The inverter integrates a large DC-link capacitor (88 mF), such that it can
stabilize the DC-link voltage during the braking of the MALTA mover (accel-
eration and deceleration of the mover results in motor and generator mode).
Due to the high number of phase currents that need to be controlled, a large
number of current measurements needs to be taken (18), resulting in a cor-
respondingly high number of digital pins required from the control board
(18 X 3 = 54 pins assuming 3 pin single sided ADCs). Therefore, the Xilinx
ZYNQ Z-7020 SoC is used, with 152 available digital pins. A position sensor
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that provides the linear and the radial position information of the MALTA
mover is built. The linear sensor is Hall-effect based and the influence of
the mover’s radial motion onto the sensor output due to PM field change is
resolved by placing 4 Hall-effect elements distributed along the circumference.
The radial position sensor is eddy-current based, where the achieved radial
position resolution is 0.75 um/bit, out of 1600 bits that quantize the mover’s
radial play within the touchdown bearing limits.

Once all the hardware pieces are built, i.e. the MALTA electromechanical
part, its position sensor and the inverter supply, a control system is developed
and implemented. In the first attempt, the control system is developed based
on the full MIMO dynamic model of the MALTA’s mover, that assumes
couplings between certain axes. The derivation of the model starts from the
first principles, by writing the Newton-Euler equations of motion, which results
in a nonlinear model that is in the next step linearized. The requirement for
the position controller bandwidth is derived based on the position of the
farthest unstable pole. The designed position controller is LQR type.

The experimental analysis of the MALTA shows successful levitation and
linear position control. In an axial reference tracking experiment with a stroke
of 10 mm, the axial force reaches a positive peak of 15N during the acceler-
ation and a negative peak of ~ —14 N during the deceleration of the mover.
In this positioning maneuver the radial positions of the mover, supported by
the integrated MBs, are staying within +20 um. To assess the quality of the
MALTA’s positioning, the standard deviation of a steady-state position is cal-
culated based on 2000 measured position samples, which results in ~ 0.5 pm
for the radial positions and 15.4 um for the linear (axial) position. This differ-
ence in positioning quality of the radial and linear directions originates from
the position sensor noise and range (in general Hall-effect sensors are noisier
than eddy-current ones). As a last experiment, a very important measurement
that verifies the tilting capability of the MALTA mover is performed. Namely,
a sinusoidal radial position reference with an amplitude of 200 um is applied
on one axial end, while the other axial end of the mover is kept in the center.
This measurement proves mover tilting control in any circumferential angle
possible.

Double Stator Linear-Rotary Actuator with
Magnetic Bearings

The double stator linear-rotary actuator (DS LiRA) with MBs is built with outer
rotary stators and an inner linear stator. The challenge of cooling the inner
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stator by promoting axial heat flow is addressed. A solution where a copper
pipe is integrated into the inner stator geometry is proposed. In order to build
a DS LiRA prototype, its geometry is optimized first. Since the magnetic and
the thermal aspects play an important role in this case (the inserted copper
pipe reduces the iron volume, while increasing the thermal conductivity of
the inner stator), an optimization procedure that couples magnetic 2D FEM
models and analytic thermal models is performed. It is based on a grid search
method, where 24192 designs are evaluated. The grid search method does
not require any cost function definition and it can calculate the performance
over a wide range of the design space, i.e. it will not converge to the local
performance maximum. The only drawback is increased computational effort,
i.e. each point of the design space is evaluated. The final design is chosen
based on the Pareto plots, generated from the optimization results. The 3D-
CAD model of the DS LiRA and its parts is developed and the prototype
manufactured. The outer stator windings are potted.

The inverter supply of the DS LiRA has 18 half-bridges with LC output
filters. The inverter is supplied from 400 Vdc and should provide 10 Apeak
output current with the fundamental frequency in the range of 0 — 400 Hz. A
reduced optimization of the filter inductor is performed and a design with
80 uH and RMaiz2 ferrite core is chosen, as it results in a minimum of the
total (semiconductor + inductor) losses. The switching frequency is 140 kHz.
The heatsink is designed based on a cooling system performance index of
CSPI = 12 W/(Kdmd).

The operation of the DS LiRA eddy-current position sensor is explained
in detail. It consists of a HF injection coil and four pick-up coils, two per x, y
axes. To maximize the sensitivity, the sensor geometry is optimized using
Ansys Q3D software. The chosen sensor design operates at 3.2 MHz injection
frequency and features a sensitivity of around 1.17 V/mm. The circumferential
and linear position sensors are based on Hall-effect elements.

The control of the torque and the bearing forces is performed by the
outer rotary stators, while the linear (axial) drive force is established by the
inner linear stator. As the same windings in the rotary stator generate the
torque and the bearing force, the phase currents contain two components,
which are deduced from the measured phase currents by algebraic additions
and subtractions, formally expressed with the matrix W. Because of the
output filter, the current controller is designed with three cascaded control
loops, with the most inner one controlling the filter inductor current, the
middle one controlling the filter output capacitor voltage and the outer one
controlling the actual DS LiRAs phase current. Each of the rotary stators
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has two dedicated PID position controllers that control the DS LiRA’s mover
radial position in x- and y-direction. Therefore, in total the DS LiRA employs
4x PID controllers for the radial position control and, 1x PID controller for
the torque control and 1x PID controller for the linear force control.

The measurement result conducted on the DS LiRA inverter prototype
show a current controller bandwidth of ~ 2.78 kHz. The commissioning and
experimental analysis of the DS LiRA is conducted separately for the linear
and rotary stators. The measurement results taken with the inner linear stator
show successful linear reference tracking with a stroke of 12 mm and a rise
time of 147 ms, where the tracking error stays below 0.2 mm. An oscillatory
motion of the linear stator with 20 Hz and an amplitude of 5mm is also
successfully performed. The most important experiment is the operation of
the MBs with the rotary stators. In this regard, two experiments are conducted,
rotary position step response and continuous rotation, while hovering the
mover with the MBs. During step response, a somewhat higher oscillation
of the mover’s radial position of 60 um is observed. During the continuous
rotation, the radial position of the mover stays within 20 ym. Future work on
the prototype should focus on the simultaneous operation of the inner linear
and the outer rotary stators.

12.2 Outlook

In this thesis possible options for the realization of a linear and a linear-rotary
actuator (LiRA) with magnetic bearings (MBs) are studied. Two of them are
realized and verified in hardware. In order to bring the LiRA concept with
MBs closer to a practical application and finally make it a successful product,
the following aspects should be considered in further research:

» Linear and circumferential position sensors: The implemented sensors
for the linear and the circumferential position measurement are Hall-
effect based, where the field from the mover’s PMs is measured and its
position deduced. At the moment the sensors are placed at the axial end
of the machine, where the field is distorted due to end effects. For future
designs, it is suggested to test and place the Hall-effect elements “inside”
the machine, where the end effects are not pronounced (especially in
the case of the linear position sensing).

As shown in measurements where the standard deviation of the Hall-
effect sensors is & 15um, high precision (e.g. around or below pm)
cannot be achieved. Therefore, position encoders should be tested as
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alternative. It should be noted that the encoders are very sensitive to
radial displacements, which are allowed with MBs. Additional issues
with encoders are their sensor grids that are always manufactured flat
and not in tubular shape, which does not allow their placing onto the
mover. For future high precision LiRAs with MBs, it is suggested to
develop sensor grids that could be used for tubular shaped surfaces and
potentially feature higher tolerance on radial position displacements.
In this regard, engraving of the encoder grid directly onto the MB LiRAs
mover could be an interesting solution.

Radial position sensing through a conductive surface: In high purity
applications, typically the stator and the mover of the LiRA are en-
capsulated in a stainless steel enclosure, to allow high purity hygienic
designs. Consequently, the radial eddy-current sensor must be capable
of sensing the movers position through a conductive stainless steel wall
of the stator. For these applications, such sensor should be developed.

Sustainability of severe radial accelerations: In pick-and-place applica-
tion, MBs of the LiRA would be exposed to very high radial accelerations
(up to 30g), that may disturb its operation. The consequences could be
instability of the MBs and increased losses due to high currents needed
to compensate for the radial inertial forces. These aspects should be
analyzed and the LiRA with MBs should be tested in parallel kinemat-
ics. The following measures could help to increase the robustness and
reduce eventual high losses: (1) As the trajectory of the parallel kine-
matics is known, the resulting radial inertial force can be estimated and
provided as a feed-forwarded signal to the position controller, which
should increase the control robustness; (2) When exposed to high radial
accelerations, in order to reduce the required MB forces, the mover
could be displaced from its center position such that the passive radial
pull force opposes the inertial force and compensates it, partially or en-
tirely. Eventually, in such cases resting of the mover on the touchdown
bearings could be allowed.

Gravity compensation: In applications where the LiRA operates in ver-
tical position, it is important to provide “gravity compensation” and to
ensure that the mover does not fall out in case power supply interrup-
tions. This caution measure is necessary to avoid eventual injury and/or
damage of surrounding equipment. In case of the LiRA with MBs, this
measure could eventually be realized by having the touchdown bearing
surface made out of a material with higher friction, where the radial
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pull force of the mover would be able to hold it, i.e. prevents it from
falling out. Such approach is not possible with conventional LiRAs.

Cost analysis: Finally, the LiRA with MBs will become a successful prod-
uct in some applications once it is cost competitive with conventional
solutions. Therefore, for a desired application, a cost analysis should be
performed to predict when in the future the MB LiRA might become
cheaper than a conventional system. For the analyzed applications, the
LiRA with MBs has a good chance to be cost competitive, as it allows
savings in the design of parallel kinematics, lower maintenance and
longer lifetime.

225






Appendices






MALTA SISO Position Controller

The MALTA radial and axial positions of the mover are controlled by the mag-
netic forces. In order to actively control these magnetic forces, understanding
of the MALTA mover dynamics is necessary, which is why in Chapter 6 a
mechanical dynamic model is derived that finally resulted in a coupled MIMO
system. Therefore, in the same chapter, an LQG MIMO controller is designed,
which is a straightforward task if a linearized state-space model is provided.
In a later Chapter 7 the controller is implemented and its operation is verified
with measurements.

In this Appendix, a rather simplified approach for controller design is
taken, where each direction (e.g. for radial x or y) is treated as independent,
i.e. mechanically decoupled, and a dedicated SISO PID controller is designed
for it. This approach is verified by implementing the controller and providing
measurement results.

A.1  MALTA Control Algorithm

The MALTA control block diagram is shown in Fig. A.1. A cascaded control
structure can be recognized, with inner (faster) current control loop and outer
(slower) position control loop. For each control variable, an individual single-
input single-output (SISO) controller is used. Therefore, in total 8 current
controllers (4 per module) and 5 position controllers (4 for radial positions
and 1 for the axial position) are needed.

The outer position controllers are realized as Proportional-Integral-
Derivative (PID) controllers which translate the position error 7* — 7 at the
controller input into a corresponding force F. at the controller output. In
particular, the radial positions x>, y(?) sensed at each module are con-
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A.1. MALTA Control Algorithm

trolled with the corresponding bearing forces F,gl’z), F;l’z) generated by the
same module. It should be pointed out that a derivative component is needed
in order to stabilize the mechanical system, as it shows second order double
integrator dynamics. Furthermore, this is implemented with a relocation on
the feedback path, i.e. it is computed directly from the output 7 rather than
the control error 7* — 7. This allows suppressing a zero in the resulting closed
loop transfer function, as can be verified analytically, with the advantage of
reducing overshoot and ringing in the response.
Based on the bearing and thrust force constants (cf. Chapter 3)

9 or .
Kp = 7 XpmA: Ky = —¥\, (A1)
Tpp

the force commands are then converted into the corresponding desired dg-
current commands 13(1’2), which are the setpoints for the inner current con-
trollers. The advantage of the complex space vector model of the MALTA
is now apparent, as it allows controlling a highly sophisticated multi-phase
machine with established control techniques. In fact, each transformed dg-
current component evolves then like a first order RL network, which can be
regulated with a simple Proportional-Integral (PI) control. Moreover, with a
minimal number of only four controlled quantities, it is possible at any point
in time to assign all of the nine phase voltages.

The measured axial position z is used to compute the linear electrical angle
for the dg-transformation. Additionally, it is used for the feed-forward action
ﬁg(z) by the position controller, which compensates for the gravity and other
detent forces such as cogging force and the radial pull force. The function
Fg (z) is experimentally recorded using the position controller reference signal
in steady-state.

Due to the cascaded control structure, the bandwidth specification for the
current controllers can be directly derived from the desired performances of
the outer position control loop. The requirements for radial and axial position
control are slightly different and are discussed separately in the following.

The needed dynamics of the radial position are determined for the x(%?)-
and y(?)-directions and are the same for both modules (Module 1 and Module
2). Therefore, in the following the module notation is omitted and only x and
y are used.

Furthermore, it is assumed that the radial subsystems of Module 1 and
Module 2 are totally independent and each module is suspending one half
of the rotor mass. If it is further assumed that the x- and y-direction are
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completely decoupled, the accelerations are obtained as

2 2
ax = - F,, ay = - Fy, (A.2)

where a, = d°x/dt* and ay = d*y/dt* are the radial accelerations and m is
the rotor mass. In (A.2) half the mass is accelerated as each of the modules
lifts only a half of the rotor. In the Laplace domain, the open loop transfer
function of the plant representing the radial positions is equal to

{x(s).y(s)) _ 2

Gow(s) = -
oL(s) Frey) () T s?

(A3)
where s = £(d/dt) is the Laplace transform of the time derivative. The
desired radial position is zero at all times, i.e. the rotor is located in the center
of the stator. Hence, the main specification for x and y can be expressed
in terms of rejection of the external mechanical disturbing forces (gravity
force and the radial pull force) that deviate the rotor from its center position.
The most relevant are the radial pull forces Fy pun, Fypun between the rotor
PMs and the stator. These destabilizing radial pull forces are measured to
be linearly proportional within the possible mechanical air gap to the radial
displacement (small signal) according to the radial pull constant Kp,uy

FpuH,x =X Kpull, Fpull,y =Yy Kpulls (A4)

and represent an input disturbance for the radial subsystems (A.2). The value
of the radial pull constant for the MALTA is measured to be K,y = 8330 N/m
[35].

In a classic feedback control, the closed loop bandwidth requirement of
the control system may be imposed by the disturbances as [125]

WRW > WD, wp such that ||G]gu(ja)D)” =1 (A.5)

where wpw is the required closed loop bandwidth and Ggu is the open loop
disturbance transfer function in per unit (unit-magnitude scaled). Since the
disturbance is the radial pull force, the open loop disturbance transfer function
is equal to the radial position plant (A.3), i.e. Gp = GoL. As the requirement
(A.5) is applied in a per unit system, the transfer function Gp should be
normalized. For example, for the radial x-direction the Gp is normalized
using the maximum expected displacements x and the pull force ﬁpull,x as

X(S)/J% _ 2I<pull
Fe(s)/E,  ms*’

Gp'(s) = (A.6)

232



A.1. MALTA Control Algorithm

Tab. A.1: MALTA motor parameters.

Symbol  Quantity Value
Electrical

R Phase winding resistance 2.2Q

L Phase winding inductance 2.0mH
Mechanical

m Mover mass 0.360 kg
Force Constants

KL Drive constant per module 5.2N/A

Kp Bearing constant per module 5.2N/A

Kpun  Radial pull constant per module  8330N/m

where F, = X Kpu- Using (A.5), the angular frequency wp is calculated as

wp = +/2Kpu1/m. Therefore, the closed loop bandwidth of the radial position
controller should be larger than

Kpull

WBW > ~ 220rad/s, (A7)
where the values for K,y and m are given in Tab. A.1. The same applies
analogously for the radial subsystem in y-direction.

In order to guarantee the appropriate dynamic decoupling between the
inner and outer control loops, the current control bandwidth has to be at least
5 times higher than the outer position controller bandwidth wpw, i.e. at least
1100 rad/s.

The axial position z evolves similarly according to the axial subsystem
dynamics a, = F,/m, where a, = d?z/dt? is the axial acceleration and m is
the mass of the MALTA rotor. The specifications for z depend on the desired
dynamics and are usually specified in the time domain for a step response,
mainly in terms of the desired rise time t,. In order to tune the inner current
control loop, the closed loop bandwidth should be given, which can be related
to the rise time as fzw ¢, = 1/3 [124], where fzw = wpw/27. Typical rise times
of tubular linear motors with similar size are in the range of ¢, = 20 ms [126].
Therefore, to achieve this rise time, the closed loop bandwidth of the axial
position controller should be larger than ~ 110 rad/s, which is half of the
requirement for the radial position controller that has to suppress the radial
pull disturbances (cf. (A.7)).

Finally, in order to achieve a proper dynamic decoupling from the position
controller, the current controllers are tuned to a bandwidth of 3000 rad/s,
which gives some margin to allow for faster position controller designs and
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is useful to suppress radial and axial deviations even under stronger external
disturbances. In fact, for this purpose, the final bandwidth of the radial
position controllers is chosen to be around two times larger than the minimum
required bandwidth wpw in (A.7), i.e. wpw =~ 400 rad/s.

The corresponding position and current control PID gains are listed in
Tab. A.2.

Tab. A.2: Position and current controller gains.

Variable Kp K1 Kp
iogs ibd 8.01V/A  8.45kV/(As) -
iods ing 8.01V/A  8.45kV/(As) -

x x(2) 39kN/m 1.8 MN/(ms) 150 N's/m
y, 5@ 39kN/m 1.8 MN/(ms) 150Ns/m
z 2.44kN/m  42.87kN/(ms) 35.07Ns/m

A.2 Measurements and Results

In this section the implemented control algorithm is verified with experi-
mental measurements. All the signals are measured with internal sensors,
collected by the firmware and transmitted to a user interface after the ex-
periment is concluded. The following experiments are performed: (1) the
system is started and stable levitation of the rotor is achieved (cf. Fig. A.2);
(2) linear motor operation is performed by giving a sinusoidal reference along
the axial direction (cf. Fig. A.4). The measurements show stable levitation
and successful decoupling of the bearing and thrust force control.

A.3 Soft Start-Up

Initially, the MALTA rotor is located in its rest position on the touch-down
bearing (x(()l) = 0.1mm, yél) = —0.7mm, zop = —1mm). In order to avoid abrupt
controller responses and provide a smooth lift up instead, the reference is
shaped to guide the rotor from its start position to the center of the machine
(xD* = 0, y* = 0) as shown in Fig. A.2(c). The selected reference is a
filtered step with a cutoff frequency of ~ 67rad/s, i.e. the step response of
the first order system

1
R(s) = —— A8
() 0.015s+1 (A.8)
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Fig. A.2: Measurements of the MALTA start-up experiment where the rotor in its

initial position touches the touch down bearing (xél) = 0.1mm, y(gl) = —0.7mm and

zo = —1mm) and lifts up to the reference value (xM* = g, y(D* = 0 and z* = 0). Radial
positions of the first module (™, y(l)) and the axial position (z) are shown. The
shown force components are denoted in the control block diagram shown in Fig. A.1.
The current dq0-components responsible for the respective force components are
labeled on the right side of the plots.
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discretized at the sampling time T; = 50 ps, which reaches the final value in
0.1s. This is then appropriately scaled to reach the zero position starting from

the initial x(()l) and yél) positions as

x 0 =) (1= (1)), (A.9)
y O =y (1 (1)), (A.10)

where r(t) = L7} (R(s)/s) is the step response of (A.8) and £~! the inverse
Laplace transform operator. The positions xél) and yél) are measured dur-
ing an offset calibration routine executed once before the regular machine
operation is started.

1)
ully

3.53N, with g = 9.8 m/s? as acceleration of gravity, the integral part of the

In order to overcome pull and gravity forces F; and F; = gm/2 =

controller starts increasing the commanded F}El) (cf. Fig. A.2(e)). As soon as
the balance condition

(1 _ () ~
F = Fpull,y +Fy ~ 83N (A.11)

is reached, the rotor lifts up. This happens at 0.005s, when the current
(1)
g

Ky i((;i) ~ 8.3 N, which verifies the derived bearing constant.

component i reaches the value 1.42 A, producing the bearing force F}ED =

The rotor then approaches the center of the machine with small overshoots
(below 10 %) both in x- and y-directions and finally reaches the steady state
at around 0.06 s, with an error which remains confined within +1pm.

Simultaneously, also the axial position z reaches the zero setpoint, with a
steady state error of £20 um. The larger deviation in axial direction comes
from the higher amount of axial sensor noise, which is due to the chosen
Hall-effect sensing method.

Moreover, in Fig. A.2(b) one can observe that F, and the corresponding
current component i(()l) show a non-zero average value of * 0.5Nand = 0.05 A
respectively, which are needed in order to compensate the cogging force and
to maintain the rotor in the desired axial position. It should be noted that
the plotted F, is the overall thrust force, i.e. the sum of the individual forces
produced by the two modules, whereas ié;)
component only of the first module.

is the corresponding current
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Fig. A.3: Experimental verification of the Bode magnitude and phase diagrams for the
closed loop axial sub-plant of MALTA. The solid blue line corresponds to the predicted,
analytically derived closed loop transfer function, whereas the red stars represent ex-
perimental measurements at the corresponding frequencies f, = {1,3,5,...,19, 21}Hz,
i.e. regular intervals of 2 Hz from 1 up to 21 Hz. The 17 Hz experiment is shown in the
time domain in Fig. A.4 (the measurement highlighted in violet).

A.4 Linear Motor Operation

The linear motor operation is tested and verified with a periodic sinusoidal
axial movement, where the mass of the mover serves as a load. This kind of
experiment is well justified for applications such as pick-and-place robots in
semiconductor/electronics industry. In such cases, the mass of the moved and
placed components is much smaller then the mass of the mover. In Fig. A.3,
the Bode magnitude and phase diagrams for the closed loop axial sub-plant
are shown. These are derived analytically from the simplified axial model and
by using the PID gains of Tab. A.2. Furthermore, they are experimentally
validated with axial position measurements for different frequencies of the
sinusoidal reference, and the computed magnitudes and phases are reported
in the diagram. In particular, f, is chosen at regular intervals of 2 Hz from
1 up to 21Hz. As can be observed, the predicted and measured frequency
responses are in good agreement and the mismatches appearing after 100 rad/s
can be justified with the neglected eddy-current breaking effects and other
nonlinearities.
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Fig. A.4: Measurements of the MALTA linear motor operation, where a sinusoidal
reference for the axial position is given, z* = 5mm cos(2x 17 Hz). The response is
attenuated by a factor of 0.707 (-3 dB) as the closed loop axial position controller
bandwidth is tuned to 17 Hz. The radial position is slightly disturbed during the axial
movements of the rotor and stays between +8 pm. The radial forces are nonzero such
that radial pull onto the rotor is compensated during the linear motor operation.
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A.5. Summary

The controlled axial system is capable of tracking sinusoidal references
up to 10 rad/s, whereas faster signals would experience some amplification,
which is however below 2 dB. After around 100 rad/s, the gain of the system
starts rolling off with a —40 dB/dec slope. The phase shift between reference
and measured signals reaches —90° for frequencies at around 100 rad/s and
keeps decreasing towards —180°.

Therefore, the frequency of f, = 17 Hz(= 107 rad/s) for motor operation
is chosen to verify the bandwidth of the axial control system. In fact, in
Fig. A.4(a) it can be observed that the amplitude of the measured axial po-
sition signal is reduced by —3 dB with respect to the original Az, =10 mm
peak-to-peak amplitude, resulting in Azp, = 7mm. Additionally, as also
expected a phase shift of ¢ ~ 95° is observed (cf. Fig. A.4(a)).

The commanded F, in Fig. A.4(b) oscillates accordingly with AF,,, =
29.26 N to provide the required acceleration.

Meanwhile, the radial positions oscillate slightly around their steady state
position, but remain limited within +8 um error thanks to the fast radial
control tuning.

The corresponding bearing forces keep the rotor levitated while reacting
against the disturbances from the fast axial motion. In particular, the average

value of F}El) is 1.6 N, which corresponds to the force required to balance the

gravity force Fy. Concerning F,El), an average value of —0.37 N instead of the
ideal value 0 can be observed. This is due to the radial pull force created by
manufacturing tolerances of the real prototype.

A.5 Summary

Two different measurement experiments that verify the SISO position con-
troller are shown, start-up and linear motor operation. In the start-up exper-
iment, the rotor of the MALTA is successfully lifted from rest to its center
position. In the linear motor operation, the MALTA axial position is varied
with a sinusoidal reference with a stroke of 10 mm and a mechanical frequency
of 17Hz. During this operation mode, the radial position deviation stayed
below +8 um. These results verify the proposed models and the position
controller design.
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Double Stator Machine with a
Single Set of PMs

The double stator linear-rotary actuator (DS LiRA) considered and built-in
this thesis is shown in Chapter 8. Its mover consists of the back iron and the
PMs that interact with the linear stator from the inner side of the back iron
and the PMs that interact with the rotary stator from the outer side of the
back iron. Therefore, the back iron of the DS LiRA is sandwiched between
the two sets of the PMs, linear and rotary.

In this Appendix, a DS LiRA with a single set of PMs, that can suffice the
operation of the linear and the rotary stator, without back iron, is considered.

B.1 Introduction

The advantage of the LiRA with radially stacked stators over that with axially
displaced stators is its lower axial length. However, the requirement of a
back iron results in a high mass and moment of inertia (MoM) of the con-
ventional mover (CM). As a result, the dynamics (linear and circumferential
accelerations) of the DS LiRA with CM are limited, which restricts its usage to
applications with high force and torque demands rather than those requiring
high dynamics.

The DS LiRA with CM designed in [14], which is similar to the one shown
in Fig. B.1, is used as an example in the following considerations. Based on
the mass densities of the employed steel and rare earth PMs, an average mass
density of the CM of 7 x 10 kg/m? is assumed, resulting in an overall CM
mass of = 11.7 kg. Given the rated force of the actuator of 650 N, the achievable
axial acceleration is estimated to be ~ 55m/s?, where bearing friction has
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Outer Stator Inner Stator
(Linear) (Rotary)

(@)

Inner PMs

Outer Ring PMs
(b) &

Mover Back Iron

Tpm,in

Fig. B.1: (a) DS LiRA with inner rotary and outer linear actuators, where rp, denotes
the mover thickness. (b) CM of the DS LiRA with two sets of PMs. The radial thickness
of the mover is rm = Tpm,in + Firon * Tpm,out-
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B.2. Proposed Double Stator Actuator

been neglected. This acceleration is about one third of that achieved by LiRAs
used in applications requiring high dynamics. A LiRA which achieves a
maximum linear acceleration of 150 m/s? is presented in [39]. Aside from
this, manufacturing of a DS LiRA with CM is challenging, as PMs have to be
placed and fixed on both sides of the CM back iron.

In order to increase the dynamics and resolve the issues related to manu-
facturing of the DS LiRA with CM, two ironless mover layouts with a single
set of PMs are proposed in this chapter.

B.2 Proposed Double Stator Actuator

In this section, a DS LiRA with two different ironless mover layouts incorpo-
rating only a single set of PMs is proposed to overcome the drawbacks of the
DS LiRA with CM (see Section B.1). The arrangement of PMs in the proposed
mover is chosen such that North and South poles alternate in the axial and
circumferential direction. Two possible layouts that fulfill this requirement
are shown in Fig. B.2. Based on an unfolded view of the mover, the PM pole
sizes in axial and circumferential direction can be identified and are denoted
by 7, and 7, respectively. Subsequently, the proposed layouts are referred
to as DM and SM, for the arrangements featuring diamond-shaped PMs (see
Fig. B.2(a)) and square-shaped PMs (see Fig. B.2(b)), respectively.

Figure B.3 shows the radial component of the PM flux density B, at the
inner and outer side of the mover. The alternation of the PM poles in the axial
and circumferential direction is clearly visible for the CM (see Fig. B.3(a)).
For the DM and SM, the PM pole alternation is interrupted compared to the
CM. Nevertheless, a higher magnitude of the PM flux density is possible for
the DM and SM for the given mover thickness because of thicker PMs. While
the magnitude of B, for the CM is ~ 0.38 T, Br ~ 0.52 T is reached for the DM
and SM.

The unfolded version of the PM arrangement shown in Fig. B.2 is used
in planar actuator systems. For example, a synchronous PM planar motor
with a similar PM arrangement is shown in [127]. A magnetically levitated
moving-magnet planar actuator with single layer windings in the stator is
proposed in [87]. A planar actuator with multilayer windings in the stator
and a PM arrangement in the mover that is similar to the unfolded DM (see
Fig. B.2(b)) is analyzed and optimized in [128].

A LiRA with a PM arrangement as shown in Fig. B.2(b) and a single
stator is proposed in [129]. The stator of this LiRA is slotted with double
layer windings, i.e. linear and rotary windings, that are radially displaced.
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Appendix B. Double Stator Machine with a Single Set of PMs

Fig. B.2: Proposed ironless mover layouts for the DS LiRA with a single set of PMs.
Mover layout with (a) diamond-shaped PMs referred to as DM, and (b) square-shaped
PMs referred to as SM. The sizes of the axial and circumferential poles are denoted by
7z and 7, respectively. The mover thickness is equal to the PM thickness, rm = rpm.
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Tab. B.1: Parameters of the simulated actuators shown in Fig. B.3.

Parameter (Symbol) Values
PM remanent flux density 13T
Iron relative permeability 500

CM DM M
Inner PM thickness (7pm,in) 1mm - -
Outer PM thickness (7pm,out) 1mm - -
Back iron thickness (7iron) 2mm - -
PM thickness (rpm) - 4 mm 4 mm
Mover thickness (1) 4mm 4mm 4mm
Inner mover radius 11.5mm 11.5mm  11.5mm
Outer mover radius 15.5mm  15.5mm  15.5mm
Circumferential pole size (z,) 36° 36° 36°
Axial pole size (z) 7.5mm 7.5mm 7.5mm




B.2. Proposed Double Stator Actuator

“A[oAryoadsar <41 pue 22 £q pajousp dI€ SUOTIIIIP [RIIUIINIID PUL
[erxe u1 sazrs 1red 9[oJ ‘T°g ‘qe], Ul USAIS d1e s1ajoureted 91} Jo 1s91 Y], '9PIS I9INO I} 10J W G'G] PUR IPIS IUUI 9Y} 10J W GT'TT
aIe UMOTS ST 1g yoTym 10J suorysod [eIper o], *A[9A1109dSar ‘W G*G] PUL W G'I] I8 SIDAOUI [[ 10] IIPRI 1IN0 pUe IoUUl aY[, ‘NS
(3) pue ‘WA (q) ‘WD () :19A0wW 3y} JO IPIS I2INO PUB IdUUI dY] Je g Juauodwod AJISUsp xn[j [erper ay) jo uonenuis W :€'q "S1y

@) (@ (e)

L.LV0
19910

(trru) 08 ug

o]

1

z (per) & wur) z
0 ;

qlI

90
(L) g

souny L9G0

K

245



Appendix B. Double Stator Machine with a Single Set of PMs

The manufacturing effort of such a stator is high as the stator core is slotted
both in circumferential and axial direction. Another LiRA, again with PM
arrangements as shown in Fig. B.2, is proposed in [130]. Linear and rotary
actuation in this LiRA are achieved by two separated stators, which are
dislocated circumferentially. This results in several drawbacks of the system,
such as the requirement for a back iron in the mover and the existence of a
radial magnetic pull originating from the asymmetrical LiRA geometry in
the circumferential direction. In the proposed DS LiRA, no radial magnetic
pull exists, since the radial dislocation of the stators results in a symmetrical
geometry.

B.3 Basic Characteristics of the Conventional
and Proposed Double Stator Actuators

In this section, a comparative analysis of the DS LiRA with CM and the
proposed DS LiRAs with a DM and SM is provided. The back iron in the CM
accounts for about half of the mover thickness (see the proposed designs
in [16]). If the mover contains only PMs, iy = Fpmin + "pm,out holds. In order
to obtain a fair comparison, only PM material is assumed in the movers.
Therefore, the back iron of the CM is replaced by PM material and the mover
thickness is shared equally between the inner and outer PMs, pmin = "pm,out
(see Fig. B.4), resulting in a theoretical idealized CM (iCM). In the DM and
the SM, no mechanical support is assumed, which also results in theoretical
idealized DM and SM (iDM and iSM). It should be noted that such movers
cannot be manufactured and therefore are used only for first step comparative
purposes in this section.

The comparison is carried out considering rare-earth PMs. The parameters
of the compared LiRAs are provided in Tab. B.2. The available space in
radial direction is shared equally between the inner (rotary) and outer (linear)
actuator windings. The force and torque of each analyzed LiRA are determined
using magnetostatic FEM models. The electrical loading is chosen such that
15 W of copper losses are dissipated in each of the actuators. This assumed
value for the electrical loading stems from the simplified lumped-parameter
thermal model that was established for tubular actuators of similar size in [16].
While the actual admissible electrical loading depends on the application and
available cooling of the LiRA, the assumed constant electric loading provides
a good basis for relative comparison.
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Actuators
WM icM
P AR " (SR o o
T T5at { © G
/ I —
Tpm,in Tag,in pr,in
DM and SM iDM and iSM
"pr TEINTINRIREINR . 25 °" TR
Tpm %
x L)
TCI“ ﬁ rag,in ﬁ
Sec. IV Sec. III

Fig. B.4: Summary of the analysis scenarios. Initial analysis is conducted in Sec-
tion B.3, in which the movers are solely made of PM material. Therefore, for CM there
is no back-iron and for DM and SM there is no mechanical support. In Section B.4,
DS LiRAs with physically manufacturable movers are further analyzed and compared.
Inner and outer magnetic air gaps are denoted as r,g in and rag out, respectively. Inner
and outer mechanical air gaps are equal to ragin = rer and ragout — rpr, respectively,
where r¢r and rpy are carbon rod and PM protection thicknesses (see Section B.4 ).

Tab. B.2: Parameters of the DS LiRAs for which the performance is shown in Fig. B.5.

Parameter (Symbol) Values
PM remanent flux density 1.3T
Iron relative permeability 500
PM mass density 7550 kg/m?
Iron mass density 7870 kg/m?
Stator length (L) 60 mm
Outer stator diameter (D) 50 mm
Number of poles (N,,) 10
Number of poles (N) 8
Pole size (7,) 36°
Pole size (1) 7.5 mm
Inner and outer air gaps 0.7 mm
Stator back iron thickness 2mm
iCM iDM iSM
Inner PM thickness (7pm,in) 1-2 mm - -
Outer PM thickness (7pm,out) 1-2 mm - -
Mover back iron (Firon) o - -
PM thickness (rpm) - 1-4mm  1-4mm
Mover thickness (ry) 2-4mm  1-4mm  1-4mm
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B.3. Basic Characteristics of the Conventional and Proposed Double Stator
Actuators

Axial Acceleration

| Circum.
|Acceleration
/

Torque }‘

oL 100%
200% .

—

Fig. B.6: Relative comparison of the designs from Fig. B.5 with a PM thickness of
1mm. The mover thickness is 2 mm for the iCM and 1mm for the iDM and iSM.
Compared designs are encircled in Fig. B.5 .

A comparison of the axial force and acceleration is shown in Fig. B.5
on the left hand side, while a comparison of the torque and circumferential
accelerations is shown in Fig. B.5 on the right hand side. The analysis has been
carried out for different mover thicknesses, where the FEM simulation points
are marked by blue asterisks (3¢) for the DS LiRA with iCM, red rhomboids
(®) for the DS LiRA with iDM and green squares (M) for the DS LiRA with
iSM. The minimum PM thickness has been set to 1 mm, which results in a
minimum mover thickness of the iCM of 2 mm, since it has two sets of PMs
displaced radially. Contrarily, the minimum thickness of the iDM and iSM is
1mm.

Even though the axial force of the DS LiRA with iCM is the highest, the
iSM reaches the highest axial acceleration. This is due to the PM volume in
the iSM being almost cut in half compared to the iCM or iDM. A similar trend
can be observed for the circumferential LiRA properties. The circumferential
acceleration of the LiRAs with the iDM and iSM is similar, while the iDM
features a higher torque.

A relative comparison of the achievable torque, force, and accelerations,
for the same copper losses in the actuator windings, is shown in Fig. B.6.
Compared to the iCM, the proposed mover layouts (see Fig. B.2) can achieve
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Appendix B. Double Stator Machine with a Single Set of PMs

higher axial and circumferential accelerations for the same amount of copper
losses.

B.4 Manufacturing of the Proposed
Double Stator Actuator

Manufacturing constraints and their influence on the design and the per-
formance of the actuator are studied in detail in this section. The proposed
mover concepts were shown in Fig. B.2 without any mechanical support.
The suggested manufacturing steps for the DM are outlined in Fig. B.7. The
complete mover consists of three parts: a carbon rod, a 3D-printed fixture for
the PMs, and the PMs. The ease of manufacturing of such an arrangement,
compared to the CM with two sets of PMs, has several advantages. The PMs
for the CM have to be fixed to both sides of the back iron (see Fig. B.1(b)),
which is a challenging task considering the forces between the PMs. More-
over, the PMs are prone to breaking due to their small thickness to length

ratio

g 1
L (B.1)

when optimized for high dynamics [16], see Fig. B.1(b). Contrarily, all PMs
feature the same shape (e.g. North and South poles for the DM shown in
Fig. B.7) in the proposed manufacturing scenario, which simplifies fabrication.
The PM pieces are mounted from only one side of the mover and the risk
of breaking is low, as the thickness to length ratio is higher. The proposed
mechanical support for the SM is conceptually the same, with the 3D-printed
fixture (see Fig. B.7) having a shape that suits the respective PM arrangement
(see Fig. B.2(b)).

Another important manufacturing aspect of the DS LiRA is the radial sup-
port of the mover. The conventional approach is to use mechanical bearings or
air bearings. Such bearings require an additional mechanical assembly, which
increases the mass and moment of inertia of the mover. To overcome this
disadvantage, the proposed concept is planned to employ magnetic bearings
(MBs) [22] in the final realization.

B.4.1 Performance Comparison

The introduction of the mechanical support for the DM (see Fig. B.7) and SM
influences the DS LiRA design and performance, i.e. it increases the size of
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Fig. B.7: Manufacturing concept for the proposed double stator actuator. The thickness
of the carbon rod is r¢y = 0.5 mm.
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Fig. B.8: Relative comparison of the designs from Fig. B.6 with manufacturing limi-
tations being considered.

the mover and the magnetic air gap (see Fig. B.4). The related effects on the
performance are shown in Fig. B.8. An electrical loading resulting in 15 W of
copper losses is chosen, which is identical to that used above. The geometrical
parameters, physical properties, and absolute values of the performance
with included manufacturing limitations are given in Tab. B.3. In order to
consider a lightweight carbon rod with a wall thickness of ¢, = 0.5 mm for
the mechanical support of the proposed DM and SM, the inner magnetic
air gap is enlarged to 1.2 mm. The outer air gap is also enlarged to 1.2 mm,
providing increased space for additional mechanical protection of the PMs.
These manufacturing constraints degrade the performance of the proposed
DS LiRAs, which is seen from the comparison of Fig. B.6 and Fig. B.8. The
accelerations for the DS LiRA with DM and SM are calculated including the
mass and moment of inertia of the carbon rod and 3D-printed fixture. Even
with the included manufacturing constraints, the proposed DS LiRAs achieve
higher accelerations than a DS LiRA with CM.

B.4.2 Cogging Torque and Force

Due to the interaction of the mover PMs with the inner and outer stator
iron, a cogging torque T¢, and a cogging force Feog act on the mover. The
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B.4. Manufacturing of the Proposed Double Stator Actuator

Tab. B.3: DS LiRAs with included manufacturing constraints.

Parameter Values

Number of poles in RA 10

Number of poles in LA 8

Number of slots in RA 6

Number of poles in LA 6
Geometrical parameters CM DM SM
Inner PM thickness (rpm,in) 1mm - -
Outer PM thickness (7pm,out) 1mm - -
Mover back iron (rizon) 2 mm - -
PM thickness (7pm) - 1mm 1mm
Carbon rod thickness (r¢r) - 0.5mm  0.5mm
PM mechanical protection (7pr) - 0.5mm  0.5mm
Mover thickness (ry) 4 mm 1mm 1mm
Magnetic air gaps 0.7mm 1.2mm 1.2mm
Mechanical air gaps 0.7mm 0.7mm  0.7mm
Physical properties (Unit)

Mover mass (g) 240 52 36
Mover MoM (x10~%kg m?) 51.5 9.35 6.54
Performance (Unit)

Axial force (N) 35.9 7.1 7.0
Torque (N m) 0.3 0.11 0.081
Axial acc. (m/s?) 150 134 194
Circumferential acc. (rad/s?) 5825 11764 12393
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Appendix B. Double Stator Machine with a Single Set of PMs

amplitude of the cogging torque/force can be estimated by [131]

dR
d{p.z}’

where ¢ denotes the PM flux crossing the air gap and R is the total reluctance
through which the flux passes. The waveform of the cogging torque/force
can be described by means of a Fourier series expansion [132], [133]. The
fundamental period of the cogging torque/force can be determined as [131],

[134]

{T;:og: Fcog} ~ ¢2

(B.2)

(rry . {360 L}

- , B.
fog = LCM(N, Np) (B:3)

where L is the stator length of the linear actuator, Njs is the total number of
slots in the stator (either linear or rotary), N}, is the number of poles (for the
linear actuator Nj, is the number of poles covered by the stator, while in the
rotary actuator Nj, is the total number of poles), and LCM() denotes the least
common multiple function. The fundamental cogging torque period for the
rotary actuator is

. 360°

= =12°, B.
feog = T.CM(6, 10) (B.4)

while the period of the fundamental component of the cogging force for the

linear actuator is
F 60 mm
T

=———=25 . B.
cog LCM(6, 8) mim ( 5)

Cogging torque waveforms of the DS LiRA designs from Tab. B.3 are
shown in Fig. B.g. The period of the fundamental component of the cogging
torque is estimated by curve fitting of the waveforms. As a cogging torque
(or force) is undesired (especially in high-precision positioning systems), it
is usually compensated for by feed-forward control of a current reference
that depends on the circumferential and axial position ¢ and z, respectively.
The current component that compensates for the cogging torque increases
the copper losses in the rotary actuator windings of the DS LiRA with CM
by about 0.4 W, which is very low due to low cogging torque. Hence, the
increase of copper losses in the DM and SM LiRAs for this compensation is
negligible.

Cogging force waveforms of the DS LiRA designs given in Tab. B.3 are
shown in Fig. B.10 for an axial stroke of the mover from —7.5 mm to 7.5 mm.
The period of the fundamental component of the cogging force is estimated
by curve fitting of the waveforms from Fig. B.10. This obtained value agrees
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Cogging Torque (mNm)

0 5 10 15 20 25 30 35
p-Axis (°)

Fig. B.g: Cogging torque of the DS LiRA designs given in Tab. B.3.

Cogging Force (N)

-6 -4 -2 0 2 4 6
z-Axis (mm)

Fig. B.10: Cogging force of the DS LiRA designs given in Tab. B.3.
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Fig. B.11: Relative comparison of the performance with a load.

with Tfog calculated in (B.5). Compensation of the cogging force waveform by
a feed-forward current increases the copper losses of the DS LiRA with CM
by 0.5W. Again, the increase of copper losses for this compensation in the

DM and SM LiRA is negligible.

B.4.3 Influence of Mechanical Load

In manufacturing applications, a DS LiRA can be used to pick and place dif-
ferent objects, e.g. electronic components that are placed on a printed circuit
board. The mass and inertia of such components are negligibly low. However,
in order to carry these components, a nozzle needs to be mounted to the
end of the mover. Considering the dimensions of the mover, a nozzle with
Mioad = 30 g and Jjpaq = 6 X 107 kg m? is assumed to be attached to the mover.
Consequently, the DS LiRA designs from Tab. B.3 have a modified mass and
moment of inertia of the movers, resulting in the updated performance char-
acteristics provided in Tab. B.4. The relative reduction of the performance is
shown in Fig. B.11. Therefore, special care should be taken when designing a
DS LiRA with a DM or SM, as its performance (acceleration) strongly depends
on the additional mechanical load. The latter depends on the application of
the DS LiRA, for which a further application-specific optimization is possible.
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Tab. B.4: Performance of DS LiRAs with a mechanical load attached to the mover.

Parameter Values
Physical properties (Unit) CM DM SM
Mover mass (g) 270 82 66
Mover MoM (x10~%kg m?) 57.5 1535 12.54
Performance (Unit)

Axial force (N) 35.9 7.1 7.0
Torque (N m) 0.3 0.11 0.081
Axial acc. (m/s?) 133 86.6  106.1
Circumferential acc. (rad/s?) 5217 7166 6459

B.4.4 Summary of the Conducted Comparison

Double stator LiRAs with CM, DM and SM are compared in this section in
terms of actuation properties (achievable torque and force), dynamics (circum-
ferential and axial accelerations), cogging torque and cogging force. DS LiRA
with CM achieves higher torque and force, which in some applications is not
needed (e.g. high speed pick-and-place packaging robots) as throughput is
determined by accelerations. Proposed DS LiRAs with DM or SM have double
circumferential acceleration and about 30 % higher axial acceleration in case
there is no load at the mover, see Fig. B.8. The additional load can deteriorate
the dynamics, which is shown in Fig. B.11 where an additional load with
Mioad = 30 g and [ipaq = 6 X 107° kg m? is assumed. Nevertheless, it should be
kept in mind that manufacturing of DS LiRAs with DM and SM is simpler.
Cogging torque and force of the proposed DS LiRAs with DM and SM are
much lower, see Fig. B.g and Fig. B.10, which is an important aspect as they
cause disturbances in positioning systems.

B.5 Simplified Planar Hardware Setup

In order to verify the FEM models used in the analysis, a simplified planar
actuator is implemented. The hardware setup of the actuator is shown in
Fig. B.12. It consists of a planar mover and two planar stators, which are
placed above and below the mover. Each of the stators features three con-
centrated coils with 100 turns of insulated copper wire with a diameter of
0.4mm. The implemented mover resembles the SM type analyzed in this
chapter. During the manufacturing procedure of the mover, the PMs are
initially arranged in a 3D printed fixture (see Fig. B.12), before 1mm thick
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Planar SM Planar Stator
3D Printed ..
PMs Fixture Winding
Planar DS LiRA

Upper Stator ) Planar SM

Fig. B.12: Simplified planar hardware setup. Not all PMs are mounted in the photo of
the planar SM.
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Planar SM
Ty

m{?

Cod
2.9.9.4
AANA

X+ oo PN

i

Fig. B.13: Geometry and coordinate system of the simplified planar hardware setup.
All dimensions are in mm. The upper and lower air gaps are 2.2 mm. Pole sizes are
Tx = Ty = 8 mm.

Tab. B.5: Comparison of simulated and measured results for the flux linkage.

Lower Stator
Flux linkage FEM simulation 3.4mWb
Flux linkage Measurement 3.3mWb

carbon fiber plates are glued from both sides for mechanical stability. The
dimensions of the stator and the mover geometry are provided in Fig. B.13.

The comparison of the FEM simulation results with measurements is
carried out for the flux linkage. The measurement results for the flux linkage
are obtained by integrating the induced back-EMF in the windings of the
lower and upper stators. To induce the back-EMF, the mover is driven in the
y-axis direction (see Fig. B.13 for the orientation of the coordinate system).

Further, the flux linkage is studied for different mover positions in the
y-axis by using a FEM model of the planar setup. In Fig. B.14, the flux linkage
waveforms are shown for a single winding turn of the lower and upper stator
coils. The flux linkage for the turns in the lower stator is ~ 34 pyWb. This
value is multiplied by the number of turns of the manufactured coils (100)
and compared to the measured flux linkage in Tab. B.5. The results show
a good agreement of the measurement and FEM simulation results, which
verifies the correctness of the employed FEM models.

The waveform of the flux linkage in the lower stator can be modeled as

A0) =N 05 Z300). (B.6)
y

where N represents the number of turns in the coil, \ifL,y =34 uWb from
Fig. B.14, and 7, = 8 mm is the pole size in the y-direction. The flux linkage
in the upper stator due to the same movement in the y-direction is modeled
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Appendix B. Double Stator Machine with a Single Set of PMs

— ) 3
m Lower Stator
=
&
,CMG 0
=
3
b -20
=
_40—8 -6 -4 -2 0 2 4 6 8
y-Axis (mm)
40 Upper Stator
3 We
o 5.5 uWh
&0
g0 i
=
3
- -20f ]
= W‘

1
>~
jan)

-6 -4 -2 0 2 4 6 8
y-Axis (mm)

Fig. B.14: FEM simulation results for the flux linkage per turn of the lower and upper
stators of the planar setup shown in Fig. B.13. Flux linkages i1, {2 and i3 are flux
linkages of the coils 1, 2 and 3 of the lower and upper stator, respectively. Asterisks
represent FEM simulation points. The coil numbers are denoted in Fig. B.13 (right).
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B.6. Summary

as

Jo(y(1) = Nty cos (Tfy(t)) Huome (K1), (B)
Y

where ‘i’U,y = 2.75 uWb from Fig. B.14 and ¢y ofset (x(2)) is the offset that
depends on the x position of the mover. ‘i’U,y represents an undesired coupling,
since ideally no change of the flux linkage in the upper stator is expected for a
movement in the y-direction. The ratio of the induced back-EMF amplitudes
in the upper and lower stator windings due to a movement in the y-direction
is Ey/EL = ‘ifu,y / ‘ifL,y ~ 8.1%. Therefore, for the planar actuator shown in
Fig. B.13, the undesired back-EMF is about 8.1 % of the expected back-EMF.
Coupling effects between the stators in the LiRA, with a DM or SM, will be
studied in future work.

B.6 Summary

State-of-the-art double stator (DS) linear-rotary actuators (LiRAs) are mainly
used in high force/torque applications, such as tooling machines. Their usage
in highly dynamic applications is limited by the bulky mover design, referred
here as conventional mover (CM). CMs employ two sets of permanent magnets
(PMs) and a back iron. In order to increase the dynamics of the DS LiRA, two
different ironless mover concepts with a single set of PMs (DM and SM) are
proposed in this chapter. Moreover, manufacturing steps for the proposed
mover layouts are provided. After accounting for manufacturing constraints,
an axial acceleration of the proposed DS LiRA with SM is around 30 % higher
than that of a DS LiRA with CM, while the circumferential acceleration
nearly doubles. Additionally, the cogging torque and the cogging force of the
proposed DS LiRAs are negligible compared to those of the DS LiRA with
CM. Manufacturing of the proposed movers (DM and SM) is simpler. On
the other hand, due to lower torque and force of the DS LiRAs with DM
and SM, accelerations decrease faster in case an additional load is attached
to the mover compared to the DS LiRA with CM. The advantage of a CM
having two sets of magnets is that the mover can be optimized either for
high circumferential or high axial acceleration, which is not possible with the
proposed DM and SM as they feature only a single set of magnets.
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