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► Classical Transformer (XFMR) — History (1)

■ 1830 Henry / Faraday → Property of Induction
■ 1878 Ganz Company (Hungary) → Toroidal Transformer (AC Incandescent Syst.)
■ 1880 Ferranti → Early Transformer
■ 1882 Gaulard & Gibs → Linear Shape XFMR (1884, 2kV, 40km)
■ 1884 Blathy / Zipernowski / Deri → Toroidal XFMR (Inverse Type)

■ 1885 Stanley (& Westinghouse) → Easy Manufact. XFMR (1st Full AC Distr. Syst.)

http://commons.wikimedia.org/wiki/File:William-Stanley_jr.jpg
http://commons.wikimedia.org/wiki/File:William-Stanley_jr.jpg
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► Classical Transformer — History (2)

■ 1889 Dobrovolski → 3-Phase Transformer
■ 1891 1st Complete AC System (Gen. + XFMR + Transm. + El. Motor + Lamps, 40Hz, 25kV, 175km)

http://commons.wikimedia.org/wiki/File:Doliwo-Dobrowolsky.jpg
http://commons.wikimedia.org/wiki/File:Doliwo-Dobrowolsky.jpg
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► Valve-Controlled MF Transformer Link DC/AC Converter

■ Isolated Medium Frequency Link DC/AC Converter

1923 !
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■ Electronic Transformer ( f1 = f2)
■ AC or DC Voltage Regulation & Current Regulation / Limitation / Interruption

1968!
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► Electronic Transformer

■ Inverse-Paralleled Pairs of Turn-off Switches
■ 50% Duty Cycle of Input and Output Stage

■ f1 = f2 → Not Controllable (!)
■ Voltage Adjustment by Phase Shift Control (!)
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■ Input / Output Isolation
■ "Fixed" Voltage Transfer Ratio (!)
■ Current Limitation Feature
■ f ≈ fres (ZCS) Series Res. Converter

1971
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■ Input / Output Isolation
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1971!
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■ Soft Switching in a Certain Load Range
■ Power Flow Control by Phase Shift between Primary & Secondary Voltage

1991
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► Terminology (1)

■ No Isolation (!)
■ “Transformer” with Dyn. Adjustable Turns Ratio

1980 !
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► Terminology (2)

McMurray Electronic Transformer (1968)
Brooks Solid-State Transformer (SST, 1980)
EPRI Intelligent Universal Transformer (IUT)
ABB Power Electronics Transformer (PET)
Borojevic Energy Control Center (ECC)
Wang Energy Router
etc. Comm.

Comm.



Transformer Basics
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► Classical Transformer — Basics (1)

■ Magnetic Core Material * Silicon Steel / Nanocrystalline / Amorphous / Ferrite
■ Winding Material * Copper or Aluminum
■ Insulation / Cooling * Mineral Oil or Dry-type

■ Operating Frequency * 50/60Hz (El. Grid, Traction) or 16 2/3Hz (Traction)
■ Operating Voltage * 10kV or 20kV (6…35kV)

* 15kV or 20kV (Traction)
* 400V

■ Voltage Transfer Ratio * Fixed
■ Current Transfer Ratio * Fixed
■ Active Power Transfer * Fixed (P1 ≈ P2)
■ Reactive Power Transfer * Fixed (Q1 ≈ Q2)
■ Frequency Ratio * Fixed (f1 = f2)

■ Magnetic Core 
Cross Section

■ Winding Window
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► Classical Transformer — Basics (2)

■ Scaling of Core Losses

■ Scaling of Winding Losses

■ Higher Relative Volumes (Lower kVA/m3) Allow to Achieve Higher Efficiencies
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► Classical Transformer — Basics (3)

■ Advantages

• Relatively Inexpensive
• Highly Robust / Reliable
• Highly Efficient (98.5%...99.5% Dep. on Power Rating)
• Short Circuit Current Limitation

■ Weaknesses

• Voltage Drop Under Load
• Losses at No Load
• Sensitivity to Harmonics
• Sensitivity to DC Offset Load Imbalances
• Provides No Overload Protection
• Possible Fire Hazard
• Environmental Concerns

• Construction Volume
Pt … Rated Power
kw … Window Utilization Factor (Insulation)
Bmax … Flux Density Amplitude
Jrms … Winding Current Density (Cooling)
f … Frequency

• Low Frequency → Large Weight / Volume

ω
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► Classical Transformer — Basics (4)

■ Advantages

• Relatively Inexpensive
• Highly Robust / Reliable
• Highly Efficient (98.5%...99.5% Dep. on Power Rating)
• Short Circuit Current Limitation

Welding Transformer (Zimbabwe) – Source: http://www.africancrisis.org



Img.: www.futuretimeline.net

SST Concept 
Future Traction Applications
Future Smart Grid Applications
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► Classical Locomotives

■ Catenary Voltage 15kV or 25kV
■ Frequency 162/3 or 50Hz
■ Power Level 1…10MW typ.

■ Transformer Efficiency 90...95% (due to Restr. Vol., 99% typ. for Distr. Transf.)
Current Density 6 A/mm2 (2A/mm2 typ. Distribution Transformer)
Power Density 2…4 kg/kVA
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► Next Generation Locomotives (1)

■ Trends * Distributed Propulsion System → Weight Reduction (pot. Decreases Eff.)
* Energy Efficient Rail Vehicles → Loss Reduction (would Req. Higher Vol.)
* Red. of Mech. Stress on Track → Mass Reduction (pot. Decreases Eff.)

■ Replace Low Frequency Transformer by Medium Freq. (MF) Power Electronics Transformer (PET)
■ Medium Freq. Provides Degree of Freedom → Allows Loss Reduction AND Volume Reduction
■ El. Syst. of Next Gen. Locom. (1ph. AC/3ph. AC) represents Part of a 3ph. AC/3ph. AC SST for Grid Appl.

ACLF DC ACLF ACMF ACMF DC  
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► Next Generation Locomotives (2)

■ Loss Distribution of  Conventional  &  Next Generation Locomotives

■ Medium Freq. Provides Degree of Freedom → Allows Loss Reduction AND Volume Reduction



SST Concept
Future Traction Applications
Future Smart Grid Applications

Img.: www.prweb.com
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► Advanced (High Power Quality) Grid Concept

■ Heinemann (2001)

■ MV AC Distribution with DC Subsystems (LV and MV) and Large Number of Distributed Resources 
■ MF AC/AC Conv. with  DC Link Coupled to Energy Storage provide High Power Qual. for Spec. Customers

►

► ►

►

►

►
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► Future Ren. Electric Energy Delivery & Management (FREEDM) Syst.

■ Huang et al. (2008)

■ SST as Enabling Technology for the “Energy Internet”

• Integr. of DER (Distr. Energy Res.) 
• Integr. of DES (Distr. E-Storage) + Intellig. Loads
• Enables Distrib. Intellig. through COMM
• Ensure Stability & Opt. Operation

• Bidirectional Flow of Power & Information / High Bandw. Comm. → Distrib. / Local Autonomous Cntrl

IFM =  Intellig. Fault
Management
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► Smart Grid Concept

■ Borojevic (2010)

■ Hierarchically Interconnected Hybrid Mix of 
AC and DC Sub-Grids

• Distr. Syst. of Contr. Conv. Interfaces
• Source / Load / Power Distrib. Conv.
• Picogrid-Nanogid-Microgrid-Grid Structure
• Subgrid Seen as Single Electr. Load/Source
• ECCs provide Dyn. Decoupling
• Subgrid Dispatchable by Grid Utility Operator
• Integr. of Ren. Energy Sources

■ ECC = Energy Control Center  

• Energy Routers
• Continuous Bidir. Power Flow Control 
• Enable Hierarchical Distr. Grid Control
• Load / Source / Data Aggregation 
• Up- and Downstream Communic.
• Intentional / Unintentional Islanding

for Up- or Downstream Protection
• etc.
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► Smart Grid Enablers / Drivers (1)

■ WBG Semiconductor Technology → Higher Efficiency, Lower Complexity
■ Microelectronics → More Computing Power

… besides CO2 Reduction / 
Ren. Energy Integration etc.

▶ + Advanced packaging (!) ▶ Moore’s Law
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► Smart Grid Enablers / Drivers (2)

■ Metcalfe’s Law

• Moving from Hub-based Concept
to Community Concept Increases
Potential Network Value
Exponentially (~n(n-1) or
~n log(n) )
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► Smart Grid Enablers / Drivers (3)

■ Battery Technology

■ TESLA Announces “The Beginning of the End For Fossil Fuels”
■ Plans to Invest US$ 4-5 Billion in US Gigafactory until 2020
■ Scalable up to Several MWh’s

■ ≈ US$ 300 / kWh
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► SST Functionalities

■ Protects Load from Power System Disturbance

• Voltage Harmonics / Sag Compensation
• Outage Compensation
• Load Voltage Regulation (Load Transients, Harmonics) 

■ Protects Power System from Load Disturbance

• Unity Inp. Power Factor  Under Reactive Load
• Sinus. Inp. Curr. for Distorted / Non-Lin. Load
• Symmetrizes Load to the Mains
• Protection against Overload & Output Short Circ.

■ Further Characteristics

• Operates on Distribution Voltage Level (MV-LV)
• Integrates Energy Storage (Energy Buffer)
• DC Port for DER Connection 
• Medium Frequency Isolation → Low Weight / Volume
• Definable Output Frequency 
• High Efficiency
• No Fire Hazard / Contamination

Comm.

Comm.
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► SST vs. Uninterruptible Power Supply

■ Same Basic Functionality of SST and Double Conversion UPS
• High Quality of Load Power Supply
• Possible Ext. to Input Side Active Filtering
• Possible Ext. to Input Reactive Power Comp.

■ Input Side MV Voltage Connection of SST as Main Difference / Challenge
■ Numerous Topological Options



10 Key Challenges
of SST Design

1. Topology Selection
2. Power Semiconductors
3. Single-Cell vs. Multi-Cell
4. Reliability
5. Medium-Freq. Transformer
6. Isolation Coordination
7. EMI
8. Protection
9. Control & Communication
10. Competing Approaches



Challenge #1/10
Topology Selection

Partitioning of AC/AC Power Conv.
Partial or Full Phase Modularity
Partitioning of Medium Voltage
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► Basic SST Structures (1) 

■ 1st Degree of Freedom of Topology Selection →
Partitioning of the AC/AC Power Conversion

• DC-Link Based Topologies
• Direct/Indirect Matrix Converters
• Hybrid Combinations
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► Basic SST Structures (1) 

■ 1st Degree of Freedom of Topology Selection →
Partitioning of the AC/AC Power Conversion

• DC-Link Based Topologies
• Direct/Indirect Matrix Converters
• Hybrid Combinations

• 1-Stage Matrix-Type Topologies 
• 2-Stage with MV DC Link (Connection to HVDC System)
• 2-Stage with LV DC Link (Connection of Energy Storage)
• 3-Stage Power Conversion with MV and LV  DC Link
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► Basic SST Structures (1)

■ 1st Degree of Freedom of Topology Selection →
Partitioning of the AC/AC Power Conversion

• Mohan (2009)

■ Reduced HV Switch Count (Only 2 HV Switches @ 50% Duty Cycle / No PWM)
■ LV Matrix Converter Demodulates MF Voltage to Desired Ampl. / Frequency

SWn

SWp

13.8kV 
Grid

Wind Turbine

Generator

Rotor

Gear Box
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► Basic SST Structures (1) 

■ 1st Degree of Freedom of Topology Selection →
Partitioning of the AC/AC Power Conversion

■ Indirect Matrix-Type 1ph. AC/AC Converter
■ Lipo (2010) V-Input, I-Output

■ AC/DC Input Stage (Bidir. Full-Wave Fundamental Frequ. GTO Rect. Bridge, No Output Capacitor) 
■ Subsequent DC/DC Conversion & DC/AC Conversion (Demodulation, f1 = f2) 
■ Output Voltage Control by Phase Shift of Primary and  Secondary Side Switches (McMurray)
■ Lower Number of HF HV Switches  Comp. to Matrix Approach

!

AC Input Voltage
Rectifier Output Voltage

Transformer Input Voltage
Spectrum of Transformer Voltage

(b)

(a)

(c)

(b)

(a)

(c)
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Ayyannar
2010

► Basic SST Structures (1)

■ 1st Degree of Freedom of Topology Selection →
Partitioning of the AC/AC Power Conversion

■ DC-link-Type (Indirect) 1ph. AC/AC Converter
■ Dual Act. Bridge-Based DC//DC Conv. (Phase Shift Contr. Relates Back to Thyr. Inv. / McMurray)

■ Alternatives: AC//DC — DC/AC Topologies
AC/DC — DC//AC Topologies

(Ayyanar, 2010)



Challenge #1/10
Topology Selection

Partitioning of AC/AC Power Conv.
Partial or Full Phase Modularity
Partitioning of Medium Voltage
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► Basic SST Structures (2)

■ 2nd Degree of Freedom of Topology Selection →
Partial or Full Phase Modularity

• Phase-Modularity of Electric Circuit
• Phase-Modularity of Magnetic Circuit 

▼ Phase-Integrated SST
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► Basic SST Structures (2)

■ 2nd Degree of Freedom of Topology Selection →
Partial or Full Phase Modularity

■ Enjeti (1997)

■ Example of Three-Phase Integrated (Matrix)
Converter  &  Magn. Phase-Modular Transf.

■ Example of Partly Phase-Modular SST 

■ Steimel (2002)



Challenge #1/10
Topology Selection

Partitioning of AC/AC Power Conv.
Partial or Full Phase Modularity
Partitioning of Medium Voltage
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► Basic SST Structures (3)

■ 3rd Degree of Freedom of Topology Selection →
Partitioning of Medium Voltage 

■ Multi-Cell and Multi-Level Approaches:
• Low Blocking Voltage Requirement
• Low Input Voltage / Output Current Harmonics
• Low Input/Output Filter Requirement 

ISOP = Input Series / 
Output Parallel
Topologies

▲ Single-Cell / Two-Level Topology
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► Basic SST Structures (3)

■ 3rd Degree of Freedom of Topology Selection →
Partitioning of Medium Voltage 

■ Multi-Cell and Multi-Level Approaches:

◀ Two-Level Topology 

Akagi 
(1981)

McMurray 
(1969)

Marquardt Alesina/ 
Venturini
(1981)

◀ Multi-Level/
Multi-Cell
Topologies
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► Basic SST Structures (3)

■ 3rd Degree of Freedom of Topology Selection →
Partitioning of Medium Voltage 

■ Bhattacharya (2012)

■ 13.8kV → 480V
■ 15kV SiC-IGBTs, 1200V SiC MOSFETs
■ Scaled Prototype

20kHz22kV 800V

DC-DC Converter
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► Basic SST Structures (3)

■ 3rd Degree of Freedom of Topology Selection →
Partitioning of Medium Voltage 

■ Akagi (2005)

■ Back-to-Back Connection of MV 
Mains by MF Coupling of STATCOMs  

■ Combination of Clustered Balancing 
Control with Individual Balancing Control

DC-DC Converter
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► Basic SST Structures (3)

■ 3rd Degree of Freedom of Topology Selection →
Partitioning of Medium Voltage 

■ Das (2011)

■ Fully Phase Modular System
■ Indirect Matrix Converter Modules (f1 = f2)
■ MV ∆-Connection (13.8kVl-l, 4 Modules in Series)
■ LV  Y-Connection (465V/√3,  Modules in Parallel)

■ SiC-Enabled 20kHz/1MVA “Solid State Power Substation”
■ 97% Efficiency / 25% Weight / 50% Volume Reduction (Comp. to 60Hz)
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► Classification of SST Topologies

■ Very (!) Large Number of Possible Topologies 

■ Partitioning of Power Conversion → Matrix & DC-Link Topologies
■ Splitting of 3ph. System into Individual Phases → Phase Modularity
■ Splitting of Medium Operating Voltage into Lower Partial Voltages → Multi-Level/Cell Approaches

Degree of Power
Conversion Partitioning

Degree of
Phase ModularityNumber of Levels

Series/Parallel Cells

▲ Enjeti (2012)



Challenge #2/10
Power Semiconductors

.

Img.: www.micromat.at
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► History of Si High-Power Devices

◀ Historical Development of Device 
Technologies

Development of Max. Switching Power ▶

(!)

(!)

Img.: Rahimo/ABB, 2014
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► Available Si Power Semiconductors

■ 1200V/1700V Si-IGBTs Most Frequently
Used in Industry Applications

■ Blocking Capability Up to 6.5kV
■ Proven Heavy-Duty Module Techn. Up to 3.6kA
■ Rel. High Switching Losses 

AMSL

AMSL AMSL

AMSL

Source: H.-G. Eckel/Univ. Rostock

■ Derating Requirements Due to Cosmic Radiation
1700V Si-IGBTs → 1000V max. DC Voltage

Img.: Yole Développement.
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► Si vs. WBG (SiC/GaN) Semiconductors

■ Superior Material Characteristics than Si

■ SiC More Mature than GaN for 
HV Applications

■ Outlook: SiC IGBTs for BV > 10kV

Img.: Morita, 2015.

Img.: Chow, 2015.

(!)
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► (Far Reaching) Outlook for WBG Semiconductors

■ Specific On-State Resistance vs. 
Critical Elec. Field Strength

Img.: http://www.evincetechnology.com/whydiamond.html

(!)

Img.: Chow, 2015.
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► SiC Power Semiconductors

■ Lower Switching Losses ▶ Higher fs, Smaller Passives
■ Higher Blocking Voltages ▶ Fewer Devices, Lower Complexity

Img.: B. Passmore/APEI, 2015.

10kV SiC MOSFET ▶

Img.:
P. Steimer/ABB

Img.: Cree Inc.
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► SiC Semiconductors Available for High-Power Applications

■ Example: All-SiC Traction Inverter (2014)

• 3.3kV/1.5kA SiC Modules in All-SiC Traction Inverter
• 65% Reduction of Size and Weight
• 55% Loss Reduction

▲ Mitsubishi,      2014 ▼

Img: M. Furuhashi/Mitsubishi, 2015
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► Major WBG Semiconductor Application Challenge: Packaging

■ Low Inductance for Fast Switching

• < 2nH for 300A Module
• 15 x Lower Than Conventional

■ Isolation for HV Devices

Img.: M. Röblitz/Semikron, 2015

▲ 15kV/80A, APEI
• Isolation of Gate Drives
• dv/dt Capability of Gate Drives

24kV/30A, Fully Potted, APEI ▶
(!)
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► WBG Semiconductor Reliability Considerations

■ Cosmic Ray Induced Failures

■ Missing Long-Term Field Experience when Compared with Rugged Si Devices
■ Further Research Required

Source: J. Lutz et al.

▲ Therm. Cycling Perf. (600V SiC
Schottky vs. 1200V Si IGBT)

■ Increased Thermo-Mechanical Stress on 
Interface Materials

▶ New Packaging Technologies Will Help!

Source: Griffoni, 2012
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► Vertical (!) Power Semiconductors on Bulk GaN Substrates

■ GaN-on-GaN Means Less Chip Area

▶ Vertical FET Structure



Challenge #3/10
Single Cell vs. Multi Cell

Optimum Number of Levels
DC/DC Conversion

▶ DAB
▶ HC-DCM-SRC
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► Power Electronics in MV Applications

■ Limited Blocking Voltage Capabilities of Si Semiconductors (< 6.5kV)

▶ Direct Series Connection
(or HV SiC!)

▶ Cascading of Converter Cells

■ Modularity
■ Multilevel Output Volt.

• fS ∝ 1/n2 for Same Filter

(!)
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► Basic Trade-Offs Quantified: Switching Losses

■ Cell DC Voltage: VDC ∝ 1/n
■ Switching Frequency for Equal Current Ripple: fS ∝ 1/n2

■ n Cells
Psw ∝ 1/n2

▶ Assumed ▶ Real

▼ Normalized IGBT Turn-Off Energies 

Psw ∝ 1/n2…3
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► Basic Trade-Offs Quantified: Conduction Losses

■ More Cells, More Series Voltage Drops:

■ Reality: Voltage Drop Increases with Blocking Voltage Due to Larger Drift Region     

Pcond ∝ n

Real
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► Loss-Optimal Blocking Voltage Choice

■ Semiconductor Blocking Voltage Choice Equivalent to Choice of Number of Cells Choice!

▶ There Is an Optimum Blocking Voltage
▶ 1200V or 1700V Devices Best for 10kV Line-to-Line Voltage Applications

■ Optimum Blocking Voltages 
for Other Grid Voltage Levels

Psw ~ 1/n 2

Pcond ~ n

1700V

1700V

(For a 10kV Grid Application)
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► Efficiency vs. Power Density Pareto Front

■ Caution:
Minimum Filter Inductance Might be Required from (Application-Dependent) Protection Considerations

vs.



Challenge #3/10
Single Cell vs. Multi Cell

Optimum Number of Levels
DC/DC Conversion

▶ DAB
▶ HC-DCM-SRC
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► Example System: ETH MEGAlink Distribution SST

■ Specifications

• 1 MVA
• 10 kV AC to 800 V DC and 400 V AC
• 1700V IGBTs on MV Side

■ Commonly Envisioned Features

• Voltage Scaling & Galvanic Isolation
• Power Flow Control
• Reactive Power Compensation
• Fault Current Limiting
• DC Interface
• …

DC/DC Converter



Challenge #3/10
Single Cell vs. Multi Cell

Optimum Number of Levels
DC/DC Conversion

▶ DAB
▶ HC-DCM-SRC
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► DAB — Common Bridge Configurations

■ Half-Bridge

■ Full-Bridge

- Two Voltage Levels on Each Side

- Three Voltage Levels on Each Side
Additional Freewheeling State
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► DAB — Common Bridge Configurations

■ Neutral Point Clamped (NPC, Multilevel)

■ NPC / Full-Bridge Configuration

- Three Voltage Levels on each Side
- Operation as Voltage Doubler

- Suitable for Higher MV/LV Ratios
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► DAB — Phase-Shift Modulation

■ Power Transfer Controlled through Phase Shift between MV and LV Bridges
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► DAB — Phase-Shift Modulation

■ All Switching Transitions done in ZVS Conditions (within a Certain Operating Range)

▶ Soft Switching Range
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► DAB — Phase-Shift / Duty Cycle Modulation

■ Additional Degrees of Freedom Can Be Utilized for Optimization
■ For Example: Minimization of the RMS Currents through the Transformer (ETH, Krismer, 2012)

■ Not Possible in Half-Bridge Configurations (No Zero Voltage Intervals)
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► DAB — Triangular Current Mode

■ Duty Cycles and Phase Shift Utilized to Perform Zero Current Switching (ZCS)

ZCS on
MV SideZVS on

LV Side
ZCS on MV 

and LV Sides

▶ ZCS on MV Side (!)



Challenge #3/10
Single Cell vs. Multi Cell

Optimum Number of Levels
DC/DC Conversion

▶ DAB
▶ HC-DCM-SRC
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► Half-Cycle Discont.-Cond.-Mode Series-Res.-Conv. (HC-DCM-SRC)

■ Operating Principle: Resonant Frequency ≈ Switching Frequency

■ The Input/Output Voltage Ratio is Close to Unity 
Independent of Power Transfer (Steigerwald, 1988)

ZCS of All Devices ▶

Img.: D. Dujic, 2012

(!) (!) (!) (!)



78/233

► Half-Cycle Discont.-Cond.-Mode Series-Res.-Conv. (HC-DCM-SRC)

■ Equivalent Circuit for Transient Analysis — Esser (1991)

■ Output Voltage is VLV ≈ VMV∙n for Any Output Power → “DC Transformer”
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► ZCS Losses in IGBTs – Stored Charge Effects

■ Bipolar Device: Free Charges in Drift Region to
Modulate Conductivity

ZCS

Calculated and Measured Stored ▶
Charge in 1700V/150A IGBT4.

Further Reading
G. Ortiz, H. Uemura, D. Bortis, J. W. Kolar, and O. 
Apeldoorn, “Modeling of Soft-Switching Losses of IGBTs in 
High-Power High-Efficiency Dual-Active-Bridge DC/DC 
Converters,” IEEE Trans. Electron Devices, vol. 60, no. 2, 
pp. 587–597, Feb. 2013.
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► Residual Current Switching – ZVS

■ Magnetizing Current Helps Removing 
Stored Charge From Turning-Off Switch S1

• Reduction of Turn-On Losses
• Increased Turn-Off Losses

■ There Is an Optimum!

increasing magnetizing 
current
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► Half-Cycle Discont.-Cond.-Mode Series-Res.-Conv. (HC-DCM-SRC)

■ Efficiency / Power Density Optimization → Pareto Front
• Operating Frequency Used as Free Parameter
• ZCS Losses Included in the Model

■ HC-DCM-SRC Is Capable of Reaching Efficiencies of 99%+
■ The Optimum Frequency at which a 99% Efficiency is Reached is about 7kHz for the HC-DCM-SRC

Specs:
80kW
2.2kV → 800V

▲ ZCS Loss Modeling and Verification

Further Reading
J. Huber, G. Ortiz, F. Krismer, N. Widmer, and
J. W. Kolar, “η-ρ pareto optimization of
bidirectional half-cycle DC/DC converter with
fixed voltage transfer ratio,” in Proc. Applied 
Power Electronics Conf. (APEC), 2013, vol. 1.
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► 166kW / 20kHz HC-DCM-SRC DC-DC Converter Cell

■ Medium Voltage Side 2 kV
■ Low Voltage Side 400 V

▼ Operation at 80kW



Challenge #4/10
Reliability

Basics of Reliability Modeling
Cell-Level Redundancy
“Reliability Bottlenecks”
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► Example System: ETH MEGAlink Distribution SST

■ Modular System ▶ MANY Components!

■ Can Such a System Still Be Reliable?
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► Modeling Reliability: The Failure Rate

■ In General, the Failure Rate λ(t) is a Function of Time

■ Here, Only Useful Life is Considered
• Dominated by Random Failure Distribution
• Constant Failure Rate λ
• [λ] = 1 FIT (1 Fail. in 109 h)    – Typ. Value for an IGBT Mod.: 100 FIT ▶

■ Example Sources for Empirical Component Failure Rate Data
• MIL-HDBK-217F, “Reliability Prediction of Electronic Equipment,” 1995.
• IEC Standard 62380:2004(E), “Reliability Data Handbook,” IEC, 2004.
• Stds. Define Base Failure Rates for Comp. and Factors to Account for Stress Levels (e.g., Temperature)

◀ «Bathtub Curve»

Source: H.-G. Eckel/Univ. Rostock



86/233

► Modeling Reliability: The Reliability Function

■ Expresses Probability of System Being Operational After t Hours

■ General Definition:

■ During Useful Life λ(t) = const. = λ:

■ Then: Mean Time Between Failures:

Caution: MTBF is Not the Time Before Which No Failure Occurs – It’s All Statistics!

■ Average Availability: 
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► Modeling Reliability: Basic Multi-Element Considerations

■ Series Structure 
(e.g. Components of a Single Converter Cell)

■ k-out-of-n Redundancy 
(e.g., Redundancy of Cells in a Phase Stack)

• System is Operational as Long 
as At Least k out of n Sub-
systems (Cells) Are Operational

A. Birolini, Quality and Reliability 
of Technical Systems, 2nd ed. 
Berlin and Heidelberg: Springer, 
1997.

Effect of q Additional Redundant Cells ▶

(General Assumption: Independent 
Elements with Equal Failure Rate.)
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► The “Power of Redundancy” (1)

■ Remember: 

• Area Below Reliability Function!

■ Redundancy Can Significantly Improve System
Level Reliability
▶ 10 Elements + 2 Redundant: Reliability 

Higher than for  5 Elements!
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► The “Power of Redundancy” (2)

■ Value of Reliability Function at t = 25 years

• N Elements
• q Additional Redundant Elements

■ Redundancy Can Significantly Improve 
System Level Reliability

▶ E.g., for N = 40: from 40% to >90% with 2 Additional Redundant Cells
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► Example System: Redundant Cells

■ Modular System 
▶ Simple Redundancy of Cells!

■ Basic Assumptions
• Failure Rate of a Cell: λcell
• Failure Rate of Stack: λcellncell (w/o Redundancy)

Example:
4-out-of-5 Redundancy ▶
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► Types of k-out-of-n Cells Redundancy

■ Standby Redundancy
• Spare Cell In Ready State,

But Not Processing Power
• λ = 0 For Spare Cell

■ Active Redundancy with Load Sharing
• Spare Cell Processing Power
• Reduced Stress of All Cells Due to Lower 

Temperatures (and DC Voltages)

πT,i: Temperature Stress Factor

Note: Qualitative Results!

6 Cells + 1 Red.

6 Cells + 1 Red.

11 Cells + 2 Red.

11 Cells + 2 Red.
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► Reparability

■ Modularity: Faulty Cell Can Be Replaced On-Site; Possibly Even In a Hot-Swap Operation

• Example: Mean Time To Repair (MTTR) of One Week Assumed

■ Multi-Cell Designs Can Still Be Made Highly Reliable By Adding Redundancy!

• Therefore: Reliability Consid. Does not Limit to Choose the 
ηρ-Optimal Number of Cells

■ Preventive Maintenance Can Further Improve System Availability

Further Reading
J. E. Huber and J. W. 
Kolar, “Optimum Number 
of Cascaded Cells for 
High-Power Medium-
Voltage Multilevel 
Converters,” in Proc. 
Energy Conversion Congr. 
and Expo (ECCE USA), 
Denver, CO, USA, Sep. 
2013.

Note: Qualitative Results!

Read “6 Cells Required 
(Blocking Voltage), Plus 3 
Redundant Cells.”
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► Reliability “Bottlenecks” (1)

■ Reliability Improvement by Means of 
Cell-Level Redundancy

• Very Effective

• But Limited by Other Parts of the 
Converter System
- Control
- Auxiliary Supplies
- Communication
- Bypass Devices
- …

R. Grinberg, G. Riedel, A. Korn, and P. Steimer, “On reliability of
medium voltage multilevel converters,” in Proc. Energy Conversion
Congr. and Expo. (ECCE USA), 2013, pp. 4047–4052.

Control Hardware 
Becomes Limiting Factor!

No Redundancy

3 Redundant Cells
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► Reliability “Bottlenecks” (2)

■ Non-Ideal Cell Bypassing Device Limits Useful Number of Redundant Cells

R. Grinberg, G. Riedel, A. Korn, and P. Steimer, “On reliability of
medium voltage multilevel converters,” in Proc. Energy Conversion
Congr. and Expo. (ECCE USA), 2013, pp. 4047–4052.

“Redundancy 
Effectiveness 
Saturation”

FIT
FIT
FIT

Analysis for MMLC Converter



Challenge #5/10
MF Transformer Design

Transformer Types
Litz Wire Issues
Flux Balancing
Noise Emissions
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► General Challenge of MF Transformers

■ Higher Operating Frequency
■ Lower Unit Power Rating

■ Same Isolation Voltage (!) ■ Smaller Active Volume

MV Winding Cooling Through Isolators

■ Solid Isolators → Bad Thermal Conductors
■ Isolation vs. Cooling Trade-Off

■ Oil = Coolant And Isolator (!)
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► MF Transformer Design — Transformer Types

■ Main Transformer Types as Found in Literature

■ Transformer Construction Types Very Limited by Available Core Shapes in this Dimension Range
■ Shell-Type has Been Favored Given Its Construction Flexibility and Reduced Parasitic Components

Coaxial Cable Shell-Type Core-Type



98/233

► MF Transformer Design — Transformer Types

■ Main Transformer Types as Found in Literature

■ Transformer Construction Types Very Limited by Available Core Shapes in this Dimension Range
■ Shell-Type has Been Favored Given Its Construction Flexibility and Reduced Parasitic Components
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► MF Transformer Design — Winding Arrangements

■ Coaxial Cable Winding

• Extremely Low Leakage Inductance
• Reliable Isolation due to Homog. E-Field

• Low Flexibility on Turns Ratio (1:1)
• Complex Terminations

■ Heinemann (ABB, 2002)
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► MF Transformer Design — Winding Arrangements

■ Coaxial Windings 

• Tunable Leakage Inductance
• More Complex Isolation
• Total Flexibility on Turns Ratio
• Simple Terminations

- Hoffmann (2011)

- Steiner (2007)
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► ETH MEGACube: Water-Cooled Nanocrystalline Transformer

■ Power Rating 166kW
■ Losses 0.88kW
■ Efficiency 99.5%
■ Power Density 45kW/dm3

■ 166 kW Water-Cooled
Nanocrystalline Core Transformer
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► ETH MEGACube: MF Transformer Design — Cold Plates/Water Cooling

■ Nanocrystalline 166kW/20kHz Transformer (ETH, Ortiz 2013)

■ Combination of Heat Conducting Plates and Top/Bottom  Water-Cooled Cold Plates
■ FEM Simulation Comprising Anisotropic Effects of Litz Wire and Tape-Wound Core
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► ETH MEGACube: MF Transformer Design — Cold Plates/Water Cooling

■ Nanocrystalline 166kW/20kHz Transformer (ETH, Ortiz 2013)

■ Losses Generated in Internal Cooling System Amount to ca. 20% of Total Transformer Losses

(!)
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► ETH MEGACube: MF Transformer Design – Litz Wire Issues

■ Case Study: Litz Wire 
with 10 Sub Bundles and 9500 x 71µm Strands in Total

■ Unequal Current Sharing Between Sub Bundles
• Flawed Interchanging Strategy
• Influence of Terminations

■ Common-Mode Chokes for
Forcing Equal Current Sharing

-20% 
Losses

(!)
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►MF Transformer Design — Litz Wire Issues

■ Flawed Bundle Interchanging Strategy – Two Other Examples from Different Manufacturer 

• 700 x 0.2mm, 1000 x 0.2mm

• 7 Bundles
• 1 Straight in the Center

■ Effect is Frequency Dependent 
■ Significant for f > A Few kHz
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► Flux Balancing - DC Magnetization

■ Higher Losses
■ Overcurrents
■ Audible Noise

- Diff.  Turn-on/Turn-off Times

- Diff. Switch On-Characteristics

(!)

(!)
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► ETH Flux Density Transducer – The Magnetic Ear

■ Shared Magnetic Path between
Main and Auxiliary Core

■ Change in Inductance on the Auxiliary
Core is Related to the Magnetization State
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► MF Transformer Design — Acoustic Noise Emissions

■ Magnetostriction of Core Materials (Zhao, 2011)

• Nanocrystalline ~ 0ppm
• Amorphous ~ 27ppm

■ Other Influences from Production Processes, 
Shapes and Assembly Procedures Affect the 
Emitted Noise

■ Acoustic Noise Emitted at 2·fs (!)
(w/o DC Magnetization)

Audio Spectrum of miniLINK ▶
DC/DC Running at 9.5kHz



Coffee
Break



Challenge #6/10
Isolation Coordination

Isolation Barrier Positioning
Mixed-Frequency Stress
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► Example System: ETH MEGAlink Distribution SST

■ Cascaded Cells Are On Floating Potential

■ Isolation Required
• Towards Ground
• Towards Adjacent Cells

■ Isolation Voltage: 10kV (nom.)
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► Options for Positioning of the Isolation Barrier

■ Transformer Isolation is Critical
■ Low Thermal Conductivity of Insulation Material

▲ Feasible Variant

ETH MEGAlink Converter Cell ▶

(!)
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► Isolation of Cascaded Cells’ MV Part

■ Components on MV Potential (e.g., Heat Sink)
■ Isolation Towards Cabinet Required
■ Field Grading to Avoid Partial Discharges, etc.

Source: Steiner, 2007



Challenge #6/10
Isolation Coordination

Isolation Barrier Positioning
Mixed-Frequency Stress
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► Mixed Frequency Field Stress

“New” Kind of Electrical Field Stress
■ Large DC or Low-Frequency Component
■ Smaller Medium-Frequency Component

■ Known From Machine Isolation Systems
■ Physical Breakdown Mechanisms Still Unclear

■ Highest Stress for Top Cell in Phase Stack
■ Highest Stress in Transformer Isolation
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► Mixed Frequency Field Stress: Dielectric Losses

■ Dielectric Losses: 

■ Overall Losses Negligible for Efficiency (e.g., 2W)

■ But: ▶ Local Thermal Runaway Possible
▶ Accelerated Aging?

65kW/10kHz Transformer ▼

10kV, 50Hz 1.1kV, 8kHz

(!)
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► Frequency-Dependent Isolation Concept (1)

■ 50Hz Stress Common-Mode
■ MF Stress Differential-Mode (Mostly)

■ Conductive Field Grading Tape Can Reduce CM Stress

• But Would Increase DM Stress

■ Solution: “Semiconducting Tape”

• Frequency-Dependent Conductivity
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► Frequency-Dependent Isolation Concept (2)

■ 10% Reduction of 50Hz (CM) Field Stress
■ No Degradation of MF (DM) Field Stress

Further Reading
T. Guillod, J. E. Huber, G. Ortiz, A. De, C. M. Franck, and J. 
W. Kolar, “Characterization of the Voltage and Electric Field 
Stresses in Multi-Cell Solid-State Transformers,” in Proc. 
Energy Conversion Congr. and Expo (ECCE), 2014.

(!) (!)



Challenge #7/10
EMI

Common-Mode Ground Currents
EMI Limits
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► Basic Problem Description

■ Considering One Phase Stack Including the DC/DC Converters

■ Parasitic Capacitances Between Cells
and Ground

■ Switching Action in One Cell Moves
All Cells At Higher Stack Positions
In Potential

■ Charging Currents: i = C dv/dt

◀ Output Voltage
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► Origin of Parasitic Capacitances to Ground

■ Heatsink to Housing (CHS)

■ Transformer (CT)
• Medium-Frequency: Small Volume
• MV Winding Moves with Cell Midpoint
• Cores and LV Winding are Grounded

■ CT ≈ 650pF >> CHS (Simulation)

◀ 2D FEM Simulation of Electric Field Distribution 
in MF Transformer Winding Window
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► Simulation of Common-Mode Currents

■ Full System Simulation (incl. DC/DC, etc.)
■ Cell Switching Freq. 1kHz, dv/dt = 15kV/μs, Ceq = 650pF

Common-Mode ▲
Eq. Circuit
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► Reality: Parasitic Inductances Create Resonances!

▲ Transfer Function G(s) = IvB,3(s)/VB,3(s)
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► Mitigation: “Global” Common-Mode Choke

■ Single Common-Mode Choke Between the Input Terminals of the Phase Stack

■ Charging Currents Can Still Flow Through Other Cells’ Parasitic Capacitances

▲ Transfer Function G(s) = IvB,3(s)/VB,3(s) for
Lcmc,G = 10mH, Rcmc,G = 10kΩ
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► Mitigation: “Local” Common-Mode Chokes

■ Common-Mode Chokes at the Input Terminals of Every Cell

▲ Transfer Function G(s) = IvB,3(s)/VB,3(s) for
Lcmc,L = 6.2mH, Rcmc,G = 1.5kΩ

Actual Realization ▶

◀ Equivalent Circuit
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► Local Common-Mode Choke Design 

■ Design Procedure
• 2nd order approximation
• LcmcL and RcmcL Chosen To Achive Critical Damping

■ Verification
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► Evaluation of “Local” Common-Mode Choke Concept

■ Possible Realizations of 6.2mH/57Arms CMC

■ Overall Loss Contribution in 1MVA SST is negligible (< 150W)

Further Issues (!)

■ What Are the Limits For Such Common-Mode Ground Currents?
■ Impact of LV SiC’s Higher dv/dt ?

Further Reading
J. E. Huber and J. W. Kolar, “Common-
Mode Currents in Multi-Cell Solid-State 
Transformers,” in Proc. IPEC 2014, 
Hiroshima, Japan, May 2014.



128/233

► Grid Harmonics and EMI Standards

■ Medium Voltage Grid Considered Standards

• IEEE 519/1547
• BDEW
• CISPR

■ Requirements on Switching Frequency and EMI Filtering

?   ?   ?   ?THD, IEEE 519, BDEW, etc. CISPR 11, etc. Burkart/ETH, 2012



Challenge #8/10
Protection

Protection of the SST
Protection of the Grid
Grid Codes
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► Possible Fault Situations

■ Protection Scheme Needs to Consider: Selectivity / Sensitivity / Speed / Safety / Reliability

• Selectivity:   Only Closest Upstream Breaker/Fuse Should Trip to Isolate Faults Quickly
- Different Trip Current Levels
- Different Time Delays

MV Grid ▲

LV Grid  ▼
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► Overvoltages

■ Classification of Overvoltage Situations in MV Grids

■ Fast Protection of Sensitive Power Electronics is Highly Challenging!

(!)



132/233

► Typical LFT Protection Scheme

■ Overcurrent Protection: Fuses
■ Overvoltage Protection: Surge Arresters

Imgs.: http://www.openelectrical.org/Img.: ABB

◀ Surge Arresters

LV and MV Fuses ▶
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► SST Protection Schemes

■ Analysis of Fault Cases and Protection Schemes Missing / Upcoming in ETH Publication

■ Proposed SST Protection Scheme with Minimum Number of Protection Devices

Upcoming Analysis:
T. Guillod, F. Krismer, R. Färber, Ch. M. 
Franck, and J. W. Kolar, “Protection of MV/LV 
Solid-State Transformer in the Distribution 
Grid,” To Be Published, 2015.

Overcurrent

Pre-Charge

Overvoltage
Overvoltage

Overcurrent

(!)



Challenge #8/10
Protection

Protection of the SST
Protection of the Grid
Grid Codes
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Imgs.: http://www.openelectrical.org/

► Short-Circuit Protection in Distribution Grids

■ LFTs Easily Deliver X-Times Rated Current for Tripping Fuses or Breakers
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► Tripping of LV Side Fuses

■ 400V Fuse for 
630kVA Transformer

■ Very High Short-Circuit Currents Required To Trip Fuses
■ Not Possible With Power Electronic Converter (Semiconductors!)

Hours (!) @ 1.5 x IN

0.2s @ 10 x IN

Current [A] ▶

Ti
m

e 
[s

] 
▶
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► Alternative Protection Schemes

■ SST Can Limit Its Short-Circuit Current
■ Load Switches (!= Breakers) Could Be Used To Isolate Faults

■ Integration of SST in Existing LV Distribution System Remains Challenging
■ Communication Between (Protection) Devices Becomes Essential

■ SST Requires a “Smart Grid”

SST

Load Switches

Load



Challenge #8/10
Protection

Protection of the SST
Protection of the Grid
Grid Codes
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► Purpose of Grid Codes

■ General Goal: Ensure Stable Operation of the 
Grid and High Quality of Supply

Liberalization of Electricity Markets

• Many Agents: Grid Operators, Infrastructure Owners, 
Energy Producers, Consumers, etc.

• Interactions Involve Many Aspects:
- Technical
- Organizational (Economical, Legal, etc.)

Distribution Level Grid Codes…

• … Define Minimum Requirements for the Connection To and Operation In the Distribution Grid
• … Regulate Technical Interfaces Between Agents



140/233

► Distribution Grid Codes

■ Focus on Technical Requirements for Equipment Connected to MV or LV Grid

Categorization: Voltage Level

• High Voltage 36…150kV
• Medium Voltage 1… 36kV
• Low Voltage 0.4…   1kV

■ Technical Parts of Grid Codes 
May Refer to Other Standards or
Documents

■ Country/Region-Specific!

Categorization: Type of Plant

• Consumer (Load)
• Producer (e.g., Distributed Generator)

Distribution

Transmission
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► Examples of Technical Requirements for MV Generating Plants

EMI
■ IEEE 519/1547, BDEW, CISPR, etc.
■ Flicker
■ Max. Voltage Rise at PCC < 2%
■ …

Plant Design Aspects
■ Switchgear
■ Protection Equipment and Relays
■ Communication System
■ Star Point Handling 
■ Auxiliary Supplies
■ …

Dynamic Grid Stabilization
■ During a Fault
• No Disconnection (Within Limits)
• Injecting Reactive Current to 

Support Grid
• Islanding Needs To Be Negotiated

Normal Operation
■ Participation in Frequency Regulation

■ Provision of Reactive Power According 
To Grid Operator Requirements

BDEW, Erzeugungsanlagen am Mittelspannungsnetz, 2008.
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► What Applies To SSTs?

■ EMI Requirements
■ Plant Design
■ Reactive Power – Even More Flexibility:

■ Dynamic Grid Stabilization
■ Frequency Regulation

▶ Storage Required
▶ SST as Manager of 

“Virtual Power Plant”

◀ see FACTS Section

(!)



Challenge #9/10
Control & Communication

Smart Grid Integration
Control System Partitioning
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► How To Realize The Control System?

■ Complex System with 
Many Functional Units

■ Multi-Level SPWM with 
Many Cells on MV Side

■ Smart Grid Integration (!)
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► SST Smart Grid Integration

■ SST as “Manager” of a Micro Grid Section

• Novel Protection Schemes
• Micro Grid Can Act as a “Virtual Power Plant”

■ Communication With Other Participants Essential

• Standards 
• Reliability → To Be Defined!
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► SST Control System Partitioning (1)

■ Very Different Timing Requirements

• IGBT Protection: us
• Grid Transients: ms to s

■ Several Hierarchical Layers as Feasible Approach

■ How To Test?

◀ The miniLINK
Lab-Scale Full SST Demonstrator
15kVA, 400VAC ↔ 800VDC↔ 400VAC



147/233

-20ns 20ns0

► SST Control System Partitioning (2)

◀ Meas. Cell Time
Sync. Error < 20ns



Challenge #10/10
Competing Approaches

SST vs. LFT
SST vs. FACTS
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► The Competitor: 1000 kVA LF Distribution Transformer

■ Standard Off-the-Shelve Products
■ Typically Liquid Filled (Oil): Isolation, Cooling

■ Averaged Data from Different Manufacturers

Source: ABB
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► LF Transformer → SST

■ Efficiency Challenge (Qualitative)

■ Medium Freq. → Higher Transf. Efficiency Partly Compensates Converter Stage Losses
■ Medium Freq. → Low Volume, High Control Dynamics 

LF Isolation
Purely Passive (a) 

Series Voltage Comp. (b)  
Series AC Chopper (c)

MF Isolation
Active Input & Output Stage (d)

LF
MF
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► SST vs. LFT Quantified – MV Side Modeling

■ Fully Rated Converter Cell Prototype

■ Filter Inductor Pareto Optimization

■ Material Costs: High-Volume Component Cost Models

■ Cabinets

◀ R. Burkart and J. W. Kolar, “Component cost models for 
multi-objective optimizations of switched-mode power 
converters,” in Energy Conversion Congr. and Expo. (ECCE), 
2013, pp. 2139–2146.
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► SST vs. LFT Quantified – LV Side Modeling

■ Basic Pareto Optimization of Standard 500kVA Inverter/Rectifier

• Calculated Results (Losses, Volumes)

• Good Agreement with Specs of 
Commercially Available Active 
Frontend Converter
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► SST vs. LFT Quantified – AC/AC Conversion

■ AC/AC SST = SST MV + 2 SST LV

(!)

▶ Efficiency Challenge 
Confirmed by Quant. 
Analysis



154/233

► SST vs. LFT Quantified – AC/AC and AC/DC Conversion

■ AC/AC Application

■ SSTs Suitable for Future AC/DC Applications With Direct MV Connection

■ AC/DC Application

Further Reading
J. E. Huber and Johann W. 
Kolar, “Volume / Weight / Cost 
Comparison of a 1 MVA 10 kV / 
400 V Solid-State against a 
Conventional Low-Frequency 
Distribution Transformer,” in 
Proc. Energy Conversion Congr. 
and Expo (ECCE), 2014.



Challenge #10/10
Competing Approaches

SST vs. LFT
SST vs. FACTS



156/233

► FACTS – Flexible AC Transmission System

■ Goal: Influence Power Flows In Order To Optimally Utilize Transmission Capacities

Without Power Electronics
■ Static VAr Compensator (Capacitor & 

Reactor Banks)
■ VRDT
■ Distribution Voltage Regulators
■ Phase Shifting Transformers
■ Generator Excitation Settings

With Power Electronics
■ STATCOM (Static Synchronous Compensator)
• Reactive Power Compensation
• Active Filtering of Harmonics
• Glitch Compensation
■ Active Voltage Regulators
■ UPFC (Unified Power Flow Controller)
• Transmission Level

Img.: Ch. Rehtanz/TU Dortmund
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► Voltage Band Violations in the Distribution System

■ Voltage Band Specified by EN 50160: ±10%

■ Limits Renewable Power Infeed on LV and MV Level
• Max. 3% Voltage Increase on LV Level
• Max. 2% Voltage Increase on LV Level

■ Grid Expansion Necessary Even Though Equipment Capacities Are Not Exhausted
■ SST Can Control Voltages – But So Can Voltage Regulation Distribution Transformer (VRDT), etc.

Source: Maschinenfabrik Rheinhausen GRIDCON Brochure

(!)

+10%

-10%
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Source: Maschinenfabrik Rheinhausen GRIDCON Brochure

► Voltage Regulation Distribution Transformer

■ LFT Extended By A Controlled Automatic On-Load Tap Changer
• Up to 9 Positions, e.g., ±4 x 2.5%
• Up to 700’000 Switching Transitions

■ Max. 11% Voltage Increase on LV Level
■ Max. 13% Voltage Increase on MV Level

VRDT

+10%

-10%
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► SST vs. Voltage Regulation Distribution Transformer

■ SST Control is Continuous and Faster
■ SST Control Range Can Be Larger
■ SST Transfers only Active Power (Complete Decoupling)

■ SST Provides Wider Control Range, → Interesting in High MV Voltage Situations
■ But: Complexity, Costs, Robustness, etc.

(!)
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► Distribution Transformer with Electronic Tap Changer (1)

■ P. Bauer (1997)

• MV Winding with Power Electronic Switched Tap.
• Two Modes of Operation: 

- Single Tap Position (a)
- PWM Modulated Tap (b) 
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► Distribution Transformer with Electronic Tap Changer (2)

■ Electronic Tap Changer — Complex Control Circuit
■ Crowbar for Emergency Ride-Through
■ Commutation Sequence of the 4-Quadrant Switches
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Source: www.walcher.com

► Distribution Voltage Regulators

■ Available for MV or LV Systems
■ Easy Retrofit (No Modification of Existing LFT)
■ Periodic Placement Along a Feeder Possible
■ Voltage Symmetrization

Source: SIEMENS Voltage-Regulator-Catalogue
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► Active Series Voltage Regulators

■ Protection of Sensitive Industrial and 
Commercial Loads from Voltage Disturbances

• Continuous Voltage Regulation
• Correction of Voltage Sags, Unbalances, 

Surges, and Phase Angle Errors
• Harmonic Filtering
• Reactive Power Compensation / Power 

Factor Correction

■ LFT + AVR = VRDT Functionality! Source: ABB PCS100 Brochure
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► Combinations of LFT and SST (1)

■ Bala (ABB 2012)

■ Reactive Power Compensation (PFC, Active Filter, Flicker Control)
■ Available DC Port (Isolated in Option 1a)
■ Option 2:         Controlled Output Voltage 
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► Combinations of LFT and SST (2)

■ Bala (ABB, 2012)

■ Commercial Product (ABB)
■ Direct Connection of Input to Output (Bypass) or
■ Compensation of Inp. Voltage Sag (Contr. Output Voltage)
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► Reactive Power Compensation / Voltage Regulation

■ Static VAr Compensation ■ STATCOM

• Power/Voltage Quality Improvement
• Voltage Regulation
• Compensation of Harmonics, Flicker, 

etc.
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► SST vs. LFT + STATCOM

■ SST’s VAr Capability Depends on Active Power Flow!

• Or: Max. Active Power Flow Limited By Net Reactive Power Demand of Grid Section!

■ SST Provides Complete Decoupling of Reactive Power Flow of MV and LV Grid
• No Propagation of Disturbances
• Different STATCOM OPs in MV and LV Grid
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► SST in Grid Applications

Main Aspects

■ SSTs Are Not a 1:1 Replacement for Conventional Distribution Transformers
■ SSTs Can Integrate Features of Different Components into a Single Unit

■ Main Potential for SSTs in MV-AC to LV-DC Applications 
(DC Grids in Plants or Buildings)

Unique Characteristics
■ LV DC Bus Allows Interfacing Local DC Systems
■ Complete Decoupling AC Parameters
■ Only Active Power Flow Between Grids

Potential Problems
■ Costs !!!
■ Robustness & Reliability
■ Efficiency
■ Compatibility with Existing Protection 

Concepts (e.g., Fusing Currents, etc.)



Smart Grid SSTs
Examples
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► UNIFLEX Project (1) 

■ EU Project (2009)

■ Advanced Power Conv. for Universal and Flexible Power Management (UNIFLEX) in Future Grids
■ Cellular 300kVA Demonstrator of 3-Port Topology  for 3.3kV Distr. System & 415V LV Grid Connection
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► UNIFLEX Project (2) 

■ EU Project (2009)

■ Advanced Power Conv. for Universal and Flexible Power Management (UNIFLEX) in Future Grids
■ Cellular 300kVA Demonstrator of 3-Port Topology  for 3.3kV Distr. System & 415V LV Grid Connection
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► UNIFLEX Project (3)

■ EU Project (2009)

■ AC/DC-DC//DC-DC/AC Module (MF Isolation, 1350V DC Link) and Prototype @ Univ. of Nottingham
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► SiC-Enabled Solid State Power Substation (1)

■ Das (2011)

■ Fully Phase Modular System
■ Indirect Matrix Converter Modules (f1 = f2)
■ MV ∆-Connection (13.8kVl-l, 4 Modules in Series)
■ LV  Y-Connection (465V/√3,  Modules in Parallel)

■ SiC-Enabled 20kHz/1MVA “Solid State Power Substation”
■ 97% Efficiency / 25% Weight / 50% Volume Reduction (Comp. to 60Hz)
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► SiC-Enabled Solid State Power Substation (2)

■ Das (2011)

■ Fully Phase Modular System
■ Indirect Matrix Converter Modules (f1 = f2)
■ MV ∆-Connection (13.8kVl-l, 4 Modules in Series)
■ LV  Y-Connection (465V/√3,  Modules in Parallel)

■ SiC-Enabled 20kHz/1MVA “Solid State Power Substation”
■ 97% Efficiency / 25% Weight / 50% Volume Reduction (Comp. to 60Hz)



175/233

► MEGACube @ ETH Zurich (1)

■ Total Power 1MW
■ Frequency 20kHz
■ Efficiency Goal 97%

■ MV Level 12kV
■ LVLevel 1.2kV
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► MEGACube @ ETH Zurich (2)

■ DC-DC Converter Stage
■ Module Power      166kW
■ Frequency            20kHz
■ Triangular Current Mode Modulation

▲ 166kW / 20kHz TCM DC-DC Converter
(Ortiz, 2014)

▲ Structure of the 166kW Module and 
MV Side Waveforms
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► Matrix-Type SST

■ Proposed for Energy Storage Systems (Enjeti, 2012)

■ MV Side Series Direct Matrix Structure with Single 3ph. MF Transformer Core 
■ Single LV Side 2-Level 3ph. Inverter 



Img.: www.futuretimeline.net

Traction SSTs
Examples
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► Cascaded H-Bridges and Resonant LLC DC-DC Stages (1)

■ Dujic et al. (2011)

■ Rufer (1996)
■ Steiner (1997)
■ Heinemann (2002)

P = 1.2MVA, 1.8MVA pk.
9 Cells (Modular)

54 x (6.5kV, 400A IGBTs)
18 x (6.5kV, 200A IGBTs)
18 x (3.3kV, 800A IGBTs)

9 x MF Transf. (150kVA, 1.8kHz)
1 x   Input Choke
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► Cascaded H-Bridges and Resonant LLC DC-DC Stages (2)

■ Zhao et al. (ABB, 2011)

MV LF AC MF AC LV DCMV DC
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► Cascaded H-Bridges and Resonant LLC DC-DC Stages (3)

■ 1.2MVA, 15kV, 16 2/3 Hz, 1ph. AC/DC Power Electronic Transformer

• Cascaded H-Bridge – 9 Cells
• Resonant LLC DC/DC Converter Stages
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► Cascaded H-Bridges and Resonant LLC DC-DC Stages (4)

■ 1.2MVA, 15kV, 16 2/3 Hz, 1ph. AC/DC Power Electronic Transformer

• Cascaded H-Bridge – 9 Cells
• Resonant LLC DC/DC Converter Stages

▼ Efficiency
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► Cascaded H-Bridges and Resonant LLC DC-DC Stages (5)

■ 1.2MVA, 15kV, 16 2/3 Hz, 1ph. AC/DC Power Electronic Transformer

• Cascaded H-Bridge – 9 Cells
• Resonant LLC DC/DC Converter Stages

▼ Retrofit of Shunting Locomotive 
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► Cascaded H-Bridges with Resonant/Non-Resonant DC-DC Stages (1)

■ Steiner (Bombardier, 2007)
■ Weigel  (SIEMENS, 2009)

MV LF AC MF AC LV DCMV DC
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► Cascaded H-Bridges with Resonant/Non-Resonant DC-DC Stages (2)

- Weigel (SIEMENS, 2009)

- Module Power    450kW
- Frequency           5.6kHz

- Steiner (Bombardier, 2007)

- Module Power     350kW
- Frequency              8kHz
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► Cascaded H-Bridges with Multi-Winding MF Transformer (1)

■ Engel (ALSTOM, 2003)

MV LF AC MF AC LV DCMV DC
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► Cascaded H-Bridges with Multi-Winding MF Transformer (2)

- Engel (ALSTOM, 2003)

- Module Power   180kW
- Frequency            5kHz
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► Cascaded H-Bridges with Multi-Winding MF Transformer (3)

- Taufiq (ALSTOM, 2007)

- Module Power     180kW     
- Frequency              5kHz
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► Cascaded VSI Commutated Primary Converter (1)

■ Hugo (ABB, 2006)
■ Pittermann (2008)

MV LF AC MF AC LV DC
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► Cascaded VSI Commutated Primary Converter (2)

- Pittermann (2008)

- Module Power    2kW (downscaled)
- Frequency          800Hz
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► Cascaded VSI Commutated Primary Converter (3)

- Hugo (ABB, 2006)

- Total Power       1.2MVA/15kV
- Module Power   75kW
- Frequency         400Hz
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► Modular Multilevel Converter (1)

■ Marquardt/Glinka (SIEMENS, 2003)

MV LF AC

MF AC

LV DC
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► Modular Multilevel Converter (2)

■ Marquardt/Glinka (SIEMENS, 2003)

■ Module Power             270kW
■ Module Frequency       350Hz



Future Concepts:
Unidirectional SSTs
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► Unidirectional SST Topologies

■ Direct Supply of 400V/48V DC System from 6.6kV AC
■ Direct PV Energy Regeneration from 1kV DC into 6.6kV AC

■ SST / LFT Comparison for AC/DC Applications

Replace with SST!
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► Unidirectional DC-Link Based SST Structure

■ Ronan et al. (2000)

■ AC Input 7.2kV 
■ DC/DC 1000V/±275V
■ AC Output 120V/240V

■ ISOP Modular Topology
■ Three-Stage (AC/DC-DC/DC-DC/AC) Approach

Input 
Module

Isolation 
Module

Output 
Module
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► Unidirectional DC-Link Based SST Structure (1)

■ EPRI (2009)

■ AC Input 8.6kV (15kVl-l)
■ DC/DC 3.5kV/400V
■ AC Output 120V/240V

■ 100kVA 15kV Class Intelligent Universal Transformer (IUTTM)
■ Development of HV Super GTO (S-GTO) as  MV Switching Device / SiC Secondary Diodes
■ 20kHz Series Resonant DC/DC Converter  Utilizing Transformer Stray Inductance 
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► Unidirectional DC-Link Based SST Structure (2)

■ EPRI (2009)

■ Outline of 100kVA (4x25kVA) IUT (Pole Mount Layout, 35”H 35”W 20”D, 1050 lbs)
■ Natural Air Cooling / S-GTO Module (No Wire Bonds, 50kHz Switching Frequency Target)
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► Unidirectional DC-Link Based SST Structure

■ Enjeti (2012)

■ SST Application for MV Adjustable Speed Drive  (Unidirectional AC/AC Front End / 3L NPC Inverter)
■ Avoids Bulky LF Transformer / DC Link  and Mains Current Harmonics (Active Filter)
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► Unidirectional DC-Link Based SST Structure

■ Enjeti (2012)

■ SST Appl. for MV Adjustable Speed Drive  (Unidir. AC/AC Front End / Cascaded 2L 1ph.-Inverters)
■ Avoids Bulky LF Transformer / DC Link  and  Mains Current Harmonics (Active Filter)
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► Unidirectional DC-Link Based SST Structure

■ van der Merwe (2009)

■ 5-Level Series Stacked Unidir. Boost Input Stage 



202/233

► MF Power Distribution Architecture for Data Centers

■ Bidirectional AC/AC Grid Interface
■ Multi-Winding MF Transformer
■ Unidirectional or Bidirectional 

Loads on Secondaries

■ Hybrid Uni-/Bidirectional Enjeti, 2014
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Source:               2007  

► AC vs. Facility-Level DC Telecom Power Supply Systems

■ Reduces Losses & Footprint
■ Improves Reliability & Power Quality

■ Conventional US 480VAC Distribution

■ Facility-Level 400VDC Distribution → Gain in Efficiency / Complexity

■ E.g. ABB / Green DC Data Center (+190V/-190V DC Distribution)
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Source:               2007  

► AC vs. Facility-Level DC Telecom Power Supply Systems

■ Reduces Losses & Footprint
■ Improves Reliability & Power Quality

■ Conventional US 480VAC Distribution

■ Facility-Level 400VDC Distribution → Gain in Efficiency / Complexity

■ Future Concept: Direct 6.6kV AC → 400V DC  Conversion (Unidirectional) incl. Isolation
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► SST-Based Facility-Level 400V DC Distribution System

■ Reduces Losses & Footprint
■ Improves Reliability & Power Quality

■ Future Concept: Direct 6.6kV AC → 400V DC  Conversion (Unidirectional) incl. Isolation


400 VDC6.600 VAC
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► SST-Based Rack-Level 48V DC Power Supply System

■ Direct / Individual Supply of Racks

■ Future Concept: Direct 6.6kV AC → 48V DC  Conversion (Unidirectional) w. Integr. Storage 

6.600 VAC 48 VDC
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► SST-Based Rack-Level 48V DC Power Supply System

■ Reduces Cost (Losses / Material Effort / Footprint)
■ High Reliability (Maximum Modularity / Redundancy)

■ Future Concept: Direct 6.6kV AC → 48V DC  Conversion / Unidirectional SST w. Integr. Storage 

6.600 VAC 48 VDC

– Distributed 48V Battery 
Buffer on Rack Level
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► SST-Based High-Power 400V DC Supplies

■ Direct Supply of 400V DC System from 6.6kV AC
■ All-SiC Realization (50kHz XFMR)
■ P = 25kW

■ Comparative Evaluation Based on Comp. Load Factors

◀ MCB

◀ MMLC

◀ 5L
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► SST-Based High-Power 400V DC Supplies

■ Direct Supply of 400V DC System from 6.6kV AC
■ All-SiC Realization (50kHz XFMR)
■ P = 25kW

■ Overall Multi-Cell Topology Pareto-Optimization

■ Total Efficiency (6.6kV AC → 400V DC)            98.2% @ 3.2 kW/dm3

– 25 kHz (200kHz)
– 99.6%  
– 6.3 kW/dm3

– 200 kHz 
– 98.6%  
– 6.6 kW/dm3
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► Other Unidirectional SST Applications: Power-to-Gas

■ Electrolysis for Conversion of Excess Wind/Solar Electric Energy into Hydrogen

■ High-Power @ Low DC Voltage (e.g., 200V)
■ Very Well Suited for MV-Connected SST-Based Power Supply

▶ Fuel-Cell Powered Cars
▶ Heating

▲ Hydrogenics 100kW H2-Generator (η = 57%)
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► Other Unidirectional SST Applications: Oil & Gas Processing

■ Future Subsea Distribution Network (Devold, ABB, 2012)

■ Transmission Over DC, No Platforms/Floaters
■ Longer Distances Possible
■ Subsea O&G Processing

■ Weight Optimized Power Electronics
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► Future Hybrid or All-Electric Aircraft

■ Powered by Thermal Efficiency Optimized Gas Turbine  and/or  Future Batteries  (1000 Wh/kg)
■ Highly Efficient Superconducting Motors Driving Distributed Fans (E-Thrust)
■ Until 2050: Cut CO2 Emissions by 75%, NOx by 90%, Noise Level by 65%

Source:
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► Future Hybrid Aircraft

■ NASA N3-X Vehicle Concept using Turboel. Distrib. Propulsion 
■ Electr. Power Transm. allows High Flex. in Generator/Fan Placement
■ Generators: 2 x 40.2MW / Fans: 14 x 5.74 MW  (1.3m Diameter)

Source:   



214/233

► Airborne Wind Turbines

■ Power Kite Equipped with Turbine / Generator / Power Electronics
■ Power Transmitted to Ground Electrically
■ Minimum of Mechanically Supporting Parts
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► 100kW Airborne Wind Turbine

■ Ultra-Light Weight Multi-Cell All-SiC Solid-State Transformer – 8kVDC → 700VDC

• Medium Voltage Port 1750 … 2000 VDC
• Switching Frequency 100 kHz
• Low Voltage Port 650 … 750 VDC
• Cell Rated Power 6.25 kW
• Power Density 5.2 kW/dm3

• Specific Weight 4.4 kW/kg
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► 100kW Airborne Wind Turbine

■ Ultra-Light Weight Multi-Cell All-SiC Solid-State Transformer – 8kVDC → 700VDC

• Medium Voltage Port 1750 … 2000 VDC
• Switching Frequency 100 kHz
• Low Voltage Port 650 … 750 VDC
• Cell Rated Power 6.25 kW
• Power Density 5.2 kW/dm3

• Specific Weight 4.4 kW/kg
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► Future Military Applications

■ MV Cellular DC Power Distribution on Future Combat Ships, etc.

■ “Energy Magazine” as Extension of  Electric Power System / Individual Load Power Conditioning
■ Bidirectional Power Flow for Advanced Weapon Load Demand 
■ Extreme Energy and Power Density Requirements 

Source: 
General Dynamics



A Few Words on 
Education…

Img.: www.oln.org
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► Education: Smart XXX = Power Electronics + Power Systems + ICT

■ Today: Gap in Mutual Understanding
Between the Disciplines

■ Future: 

• Power Conversion → Energy Management Distribution
• Converter Stability → System Stability (Autonomous. Ctrl. of Distributed Converters)
• Cap. Filtering → Energy Storage & Demand Side Management
• Costs / Efficiency → Life Cycle Costs / Mission Efficiency / Supply Chain Efficiency
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► Education: MV Power Electronics – Test Facility

■ Significant Planning and Realization Effort
■ Power Supply / Cooling / Control / Simulation (Integrated)

■ Large Space Requirement / Considerable Investment (!)

Img.:Center for Advanced Power Systems / Florida State University
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► Education: MV Power Electronics – Safety Issues, etc.

■ PhD Students are Missing Practical Experience / Underestimate the Risk
■ High Power Density Power Electronics Differs from Conv. HV Equipment
■ Very Careful Training / Remaining Question of Responsibility

■ High Costs / Long Manufacturing Time of Test Setups
■ Complicated Testing Due to Safety Procedures → Lower # of Publications/Time

… ESPECIALLY @ Medium Voltage (!)



Conclusion & Outlook
SST Evaluation / Application Areas
Future Research Areas
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► SST Ends the “War of Currents”

■ No “Revenge” of T.A. Edison, but Future “Synergy” of AC and DC Systems!



224/233

► SST Limitations – Application Areas

■ SST Limitations

• Efficiency (Rel. High Losses  2-6%)
• High Costs (Cost-Performance Ratio still to be Clarified)
• Limited Volume Reduction vs. Conv.  Transf. (Factor 2-3)
• Limited Overload Capability
• (Reliability)

■ Potential Application Areas

• Traction Vehicles
• UPS Functionality with MV  Connection 
• Temporary Replacement of Conv. Distribution Transformer
• Parallel Connection of LF  Transformer and SST (SST Current Limit – SC Power does not Change)
• Military Applications 

► Applications for Volume/Weight Limited Systems where 2-4% of Losses Could be Accepted
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► Overall Summary

■ SST  is  NOT  a 1:1 Replacement for Conv. Distribution Transformers
■ SST  will NOT  Replace  All Conv. Distribution Transformers (even in Mid Term Future)
■ SST  Offers High Functionality  BUT  shows also Several Weaknesses / Limitations

► SST Requires a Certain Application Environment (until Smart Grid is Fully Realized)
► SST Preferably Used in LOCAL Fully SMART EEnergy Systems

@ Generation End (e.g. Nacelle of Windmills)
@ Load End - Micro- or Nanogrids (incl. Locomotives, Ships etc.)

■ Environments with Pervasive Power Electronics for Energy Flow Control (No Protection Relays etc.) →
■ Environments which Could be Designed for SST Application
■ (Unidirectional) Medium Voltage Coupling of DC Distribution Systems
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► SST Technology Hype Cycle

■ Different State of Development of SSTs for

Through of 
Disillusionment

SSTs  for Smart Grids

SSTs for Traction

▶ Traction Applications
▶ Hybrid / Smart Grid Applications
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► SST for Grid Applications

■ Huge Multi-Disciplinary Challenges / Opportunities (!) 

SST 
Research 

Status Required for 
Successful
Application

Img.: www.diamond-jewelry-pedia.com
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… One Last Comment

Electrification of the 
Developing World
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► Rural Electrification in the Developing World

■ 2 Billion “Bottom-of-the-Pyramid People” are Lacking Access to Clean Energy

→ Urgent Need for Village-Scale Solar DC Mirogrids, etc. 
→ 2 US$ for 2 LED Lights + Mobile-Phone Charging / Household  / Month (!)



Thank You!
Questions?
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