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► Classical Transformer (XFMR) — History (1)
- 1830 Henry / Faraday → Property of Induction
- 1878 Ganz Company (Hungary) → Toroidal Transformer (AC Incandescent Syst.)
- 1880 Ferranti → Early Transformer
- 1882 Gaulard & Gibs → Linear Shape XFMR (1884, 2kV, 40km)
- 1884 Blathy / Zipernowski / Deri → Toroidal XFMR (Inverse Type)

- 1885 Stanley (& Westinghouse) → Easy Manufact. XFMR (1st Full AC Distr. Syst.)

http://commons.wikimedia.org/wiki/File:William-Stanley_jr.jpg
http://commons.wikimedia.org/wiki/File:William-Stanley_jr.jpg
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► Classical Transformer — History (2)

- 1889 Dobrovolski → 3-Phase Transformer
- 1891 1st Complete AC System (Gen. + XFMR + Transm. + El. Motor + Lamps, 40Hz, 25kV, 175km)

http://commons.wikimedia.org/wiki/File:Doliwo-Dobrowolsky.jpg
http://commons.wikimedia.org/wiki/File:Doliwo-Dobrowolsky.jpg
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► Valve-Controlled MF Transformer Link DC/AC Converter
- Isolated Medium Frequency Link DC/AC Converter

1923 !
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- Electronic Transformer ( f1 = f2)
- AC or DC Voltage Regulation & Current Regulation / Limitation / Interruption

1968!
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► Electronic Transformer
- Inverse-Paralleled Pairs of Turn-off Switches
- 50% Duty Cycle of Input and Output Stage

- f1 = f2 → Not Controllable (!)
- Voltage Adjustment by Phase Shift Control (!)
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- Input / Output Isolation
- "Fixed" Voltage Transfer Ratio (!)
- Current Limitation Feature
- f ≈ fres (ZCS) Series Res. Converter

1971
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- Input / Output Isolation
- "Fixed" Voltage Transfer Ratio (!)
- Current Limitation Feature
- f ≈ fres (ZCS) Series Res. Converter

1971!
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- No Isolation (!)
- "Transformer" with Dyn. Adjustable Turns Ratio

1980!
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- Soft Switching in a Certain Load Range
- Power Flow Control by Phase Shift between Primary & Secondary Voltage

1991



Transformer Basics
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► Classical Transformer — Basics (1)
- Magnetic Core Material * Silicon Steel / Nanocrystalline / Amorphous / Ferrite
- Winding Material * Copper or Aluminum
- Insulation / Cooling * Mineral Oil or Dry-type

- Operating Frequency * 50/60Hz (El. Grid, Traction) or 16 2/3Hz (Traction)
- Operating Voltage * 10kV or 20kV (6…35kV)

* 15kV or 20kV (Traction)
* 400V

- Voltage Transfer Ratio * Fixed
- Current Transfer Ratio * Fixed
- Active Power Transfer * Fixed (P1 ≈ P2)
- Reactive Power Transfer * Fixed (Q1 ≈ Q2)
- Frequency Ratio * Fixed (f1 = f2)

- Magnetic Core 
Cross Section

- Winding Window



15/205

► Classical Transformer — Basics (2)
- Advantages

• Relatively Inexpensive
• Highly Robust / Reliable
• Highly Efficient (98.5%...99.5% Dep. on Power Rating)
• Short Circuit Current Limitation

- Weaknesses

• Voltage Drop Under Load
• Losses at No Load
• Sensitivity to Harmonics
• Sensitivity to DC Offset Load Imbalances
• Provides No Overload Protection
• Possible Fire Hazard
• Environmental Concerns

• Construction Volume
Pt … Rated Power
kw … Window Utilization Factor (Insulation)
Bmax … Flux Density Amplitude
Jrms … Winding Current Density (Cooling)
f … Frequency

• Low Frequency → Large Weight / Volume

ω

  
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► Classical Transformer — Basics (2)

- Scaling of Core Losses

- Scaling of Winding Losses

- Higher Relative Volumes (Lower kVA/m3) Allow to Achieve Higher Efficiencies
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► Classical Transformer — Basics (2)
- Advantages

• Relatively Inexpensive
• Highly Robust / Reliable
• Highly Efficient (98.5%...99.5% Dep. on Power Rating)
• Short Circuit Current Limitation

Welding Transformer (Zimbabwe) – Source: http://www.africancrisis.org



Solid-State Transformers
For Future Traction Vehicles
and Smart Grid
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► Classical Locomotives
- Catenary Voltage 15kV or 25kV
- Frequency 162/3 or 50Hz
- Power Level 1…10MW typ.

- Transformer Efficiency 90...95% (due to Restr. Vol., 99% typ. for Distr. Transf.)
Current Density 6 A/mm2 (2A/mm2 typ. Distribution Transformer)
Power Density 2…4 kg/kVA
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► Next Generation Locomotives
- Trends * Distributed Propulsion System → Weight Reduction (pot. Decreases Eff.)

* Energy Efficient Rail Vehicles → Loss Reduction (would Req. Higher Vol.)
* Red. of Mech. Stress on Track → Mass Reduction (pot. Decreases Eff.)

- Replace Low Frequency Transformer by Medium Freq. (MF) Power Electronics Transformer (PET)
- Medium Frequ. Provides Degree of Freedom → Allows Loss Reduction AND Volume Reduction
- El. Syst. of Next Gen. Locom. (1ph. AC/3ph. AC) represents Part of a 3ph. AC/3ph. AC SST for Grid Appl.

ACLF DC ACLF ACMF ACMF DC  
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► Next Generation Locomotives
- Loss Distribution of  Conventional  &  Next Generation Locomotives

- Medium Freq. Provides Degree of Freedom → Allows Loss Reduction AND Volume Reduction
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► Next Generation Locomotives

- Basic Front End Converter Topologies

- Direct Matrix Converter  
- Indirect Matrix Converter
- DC Link AC-DC-AC Converter 



Solid-State Transformers
Traction Vehicles
Smart Grid
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► Advanced (High Power Quality) Grid Concept
- Heinemann (2001)

- MV AC Distribution with DC Subsystems (LV and MV) and Large Number of Distributed Resources 
- MF AC/AC Conv. with  DC Link Coupled to Energy Storage provide High Power Qual. for Spec. Customers

►

► ►

►

►

►
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► Future Ren. Electric Energy Delivery & Management (FREEDM) Syst.
- Huang et al. (2008)

- SST as Enabling Technology for the “Energy Internet”

• Integr. of DER (Distr. Energy Res.) 
• Integr. of DES (Distr. E-Storage) + Intellig. Loads
• Enables Distrib. Intellig. through COMM
• Ensure Stability & Opt. Operation

• Bidirectional Flow of Power & Information / High Bandw. Comm. → Distrib. / Local Autonomous Cntrl

IFM =  Intellig. Fault
Management
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► Smart Grid Concept
- Borojevic (2010)

•Hierarchically Interconnected Hybrid Mix of 
AC and DC Sub-Grids

• Distr. Syst. of Contr. Conv. Interfaces
• Source / Load / Power Distrib. Conv.
• Picogrid-Nanogid-Microgrid-Grid Structure
• Subgrid Seen as Single Electr. Load/Source
• ECCs provide Dyn. Decoupling
• Subgrid Dispatchable by Grid Utility Operator
• Integr. of Ren. Energy Sources

•ECC = Energy Control Center  

• Energy Routers
• Continuous Bidir. Power Flow Control 
• Enable Hierarchical Distr. Grid Control
• Load / Source / Data Aggregation 
• Up- and Downstream Communic.
• Intentional / Unintentional Islanding

for Up- or Downstream Protection
• etc.
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► SST Functionalities

- Protects Load from Power System Disturbance

• Voltage Harmonics / Sag Compensation
• Outage Compensation
• Load Voltage Regulation (Load Transients, Harmonics) 

- Protects Power System from Load Disturbance

• Unity Inp. Power Factor  Under Reactive Load
• Sinus. Inp. Curr. for Distorted / Non-Lin. Load
• Symmetrizes Load to the Mains
• Protection against Overload & Output Short Circ.

- Further Characteristics

• Operates on Distribution Voltage Level (MV-LV)
• Integrates Energy Storage (Energy Buffer)
• DC Port for DER Connection 
• Medium Frequency Isolation → Low Weight / Volume
• Definable Output Frequency 
• High Efficiency
• No Fire Hazard / Contamination Comm.

Comm.
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► SST Efficiency Challenge

- Medium Freq. → Higher Transf. Efficiency Partly Compensates Converter Stage Losses

LF Isolation
Passive (a) 

Series Voltage Comp. (b)  
Series AC Chopper (c)

MF Isolation                 
Active Input & Output Stage (d)
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► Terminology

McMurray Electronic Transformer (1968)
Brooks Solid-State Transformer (SST, 1980)
EPRI Intelligent Universal Transformer (IUTTM)
ABB Power Electronics Transformer (PET)
Borojevic Energy Control Center (ECC)
Wang Energy Router
etc. Comm.

Comm.



Classification of SST 
Topologies

Partitioning of AC/AC Power Conversion
Partial or Full Phase Modularity
Partitioning of Medium Voltage
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► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- 1st Degree of Freedom of Topology Selection:

• DC-Link Based Topologies
• Direct/Indirect Matrix Converters
• Hybrid Combinations
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► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- 1st Degree of Freedom of Topology Selection:

• DC-Link Based Topologies
• Direct/Indirect Matrix Converters
• Hybrid Combinations

• 1-Stage Matrix-Type Topologies 
• 2-Stage with MV DC Link (Connection to HVDC System)
• 2-Stage with LV DC Link (Connection of Energy Storage)
• 3-Stage Power Conversion with MV and LV  DC Link
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► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- 1-Stage Direct Matrix-Type
- McMurray (1968) — Electronic Transformer

- Electronic Transformer = HF Transf. Link & Input and Output Solid-State Switching Circuits
- AC or DC Voltage Regulation & Current Regulation/Limitation/Interruption

McMurray 
1968
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► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- 1-Stage Direct Matrix-Type
- McMurray (1968) — Electronic Transformer

- 50% Duty Cycle Operation @ Primary and Secondary Sides
- Output Voltage Control via Phase Shift Angle

McMurray 
1968
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Harada
1996

► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- 1-Stage Direct Matrix-Type
- Harada (1996) — Electronic Transformer 

(Based on Patent from McMurray)

- Experimental Verification (200V/3kVA) of
Basic Operation and Control Characteristic
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► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- Direct Matrix-Type 1ph. AC/DC Converter
- Mennicken (1978, f = 200Hz)

- Targeting Traction Application 
- Combination of Forced Commutated VSC & Thyristor Cycloconverter
- VSC Defines Transformer Voltage & Generates Thyristor Converter Commutation Voltage
- Energy Flow Defined by Control Angle of Thyristor Converter !

Mennicken
1978
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► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- Direct Matrix-Type 1ph. AC/DC Converter

- Mennicken (1978, f = 200Hz)

- Experimental Verification (Switching Frequency f =200Hz, fN=162/3 Hz)

Mennicken
1978
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► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- Direct Matrix-Type 1ph. AC/DC Converter
- Östlund (1993)I-Input, V-Output (McMurray, Mennicken)

- Targeting Traction Applications
- Novel AC Current Control Concept for Mennicken Syst.
- Several Switchings of the VSC within Cycloconv. Cycle
- Lower Transformer Flux Level (Size) / Requires Transformer Flux Balancing Control

Östlund
1993
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Mennicken
Kjaer 2001

Norrga 2002

► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- Direct Matrix-Type 1ph. AC/DC Converter
- Mennicken

• Kjaer et al. (2001)
• Norrga (2002)

- Extension of the Topology of Mennicken - VSC Capacitive Snubbers & Turn-off Cycloconv. Switches
- New Control Scheme Ensuring  ZVS for the VSC and  ZCS  for the Cycloconverter  (Matrix Conv.)
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► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- Direct Matrix-Type 1ph. AC/DC Converter
- Norrga (2002)

I-Input, V-Output (McMurray, Mennicken)

- Simulation Results and Extension to MV Input
- VSC Quasi-Resonant Commutation Ensuring ZVS for Low Load (Current Insufficient for ZVS)

Norrga 2002



42/205

Ladoux
1998

► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- Direct Matrix-Type 1ph. AC/DC Converter
- Ladoux (1998)

I-Input, V-Output (McMurray, Mennicken)

- Targeting Traction Applications
- Dual Structure Association (VSC & CSC)  &  Phase Control &  Dual Thyristor Control (ZVS)
- Soft Commutation of All Switches 
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Enjeti 1997
Krishnaswami 2005

Kimball 2009

► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- Direct Matrix-Type 1ph. AC/AC Converter
- Enjeti (1997) V-Input, V-Output, θ = 0
- Krishnaswami (2005) Liu (2006) V-Input, I-Output
- Kimball (2009) V-Input, V-Output

- f1 = f2, 
- Input Power = Output Power (and No Reactive Power Control)
- Same Switching Frequency of  Primary and Secondary Side Converter
- Power Transfer / Outp. Volt. Contr. by Phase Shift θ of Primary &  Sec. Side Conv. (McMurray)
- θ = 0 (shown) Allows to Omit Output Filter Ind. (V-Output), But does Not Allow Output Control

(a)
(b) (c)

(a)

(b)

(c)
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Enjeti 1997
Krishnaswami 2005

Kimball 2009

► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- Direct Matrix-Type 1ph. AC/AC Converter
- Enjeti (1997) V-Input, V-Output, θ = 0

- Realization of Matrix Stages with Conventional IGBT Modules
- Cascaded Converter Input Stages for High Input Voltage Requirement
- Single Transformer / Split Winding Guarantees Equal Voltage Sharing
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Enjeti 1997
Krishnaswami 2005

Kimball 2009

► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- Direct Matrix-Type 1ph. AC/AC Converter
- Kimball (2009) V-Input, V-Output

- ZVS Strategy
- ZVS Range Dependent on Load Condition & Voltage Transfer Ratio (Stray Ind. as Design Parameter) 
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► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- Direct Matrix-Type 1ph. AC/AC Converter
- Yang (2009) V-Input, I-Output

- Topological Variation of the Basic 1ph. AC/AC DAB Topology 
- Three-Level Input Stage, Center-Tap Secondary Winding Rectifier Stage

Yang 2009
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► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- Indirect Matrix-Type 1ph. AC/DC Converter
- Weiss (1985) I-Input, V-Output

- AC/DC (Rectifier Bridge, No Output Capacitor) and Subsequent MF AC Voltage Generation
- Secondary Side Rectifier and DC/DC Boost Converter for Sinusoidal Current Shaping
- Switching Frequency f = 400Hz 

Weiss 1985
!

VSI

DC/DC Boost
Converter
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► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- Indirect Matrix-Type 1ph. AC/DC Converter
- Weiss (1985) I-Input, V-Output

- AC/DC (Rectifier Bridge, No Output Capacitor) and Subsequent MF AC Voltage Generation
- Secondary Side Rectifier and DC/DC Boost Converter for Sinusoidal Current Shaping
- Switching Frequency f = 400Hz 

Weiss 1985!

VSI DC/DC Boost
Converter
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► Basic SST Structures (1): Partitioning 
of AC/AC Power Conversion

- Indirect Matrix-Type 1ph. AC/AC Converter
- Lipo (2010) V-Input, I-Output

- AC/DC Input Stage (Bidir. Full-Wave Fundamental Frequ. GTO Rect. Bridge, No Output Capacitor) 
- Subsequent DC/DC Conversion & DC/AC Conversion (Demodulation, f1 = f2) 
- Output Voltage Control by Phase Shift of Primary and  Secondary Side Switches (McMurray)
- Lower Number of HF HV Switches  Comp. to Matrix Approach

Lipo 2010!

AC Input Voltage
Rectifier Output Voltage

Transformer Input Voltage
Spectrum of Transformer Voltage

(b)

(a)

(c)

(b)

(a)

(c)
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Ayyannar
2010

► Basic SST Structures (1): Partitioning
of AC/AC Power Conversion

- DC-link-Type (Indirect) 1ph. AC/AC Converter

- AC/DC   – DC//DC – DC/AC  Topologies
- Dual Act. Bridge-Based DC//DC Conv. (Phase Shift Contr. Relates Back to Thyr. Inv. / McMurray)

- Alternatives: AC//DC — DC/AC Topologies
AC/DC — DC//AC Topologies

(Ayyanar, 2010)



Classification of SST 
Topologies

Partitioning of AC/AC Power Conversion
Partial or Full Phase Modularity
Partitioning of Medium Voltage
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► Basic SST Structures (2): Partial or 
Full Phase Modularity

- 2nd Degree of Freedom of Topology Selection:

• Phase-Modularity of Electric Circuit
• Phase-Modularity of Magnetic Circuit 

*  Phase-Integrated SST
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► Basic SST Structures (2): Partial or 
Full Phase Modularity

- Enjeti (1997)

- Example of Three-Phase Integrated (Matrix)
Converter  &  Magn. Phase-Modular Transf. - Example of Partly Phase-Modular SST 

- Steimel (2002)



Classification of SST 
Topologies

Partitioning of AC/AC Power Conversion
Partial or Full Phase Modularity
Partitioning of Medium Voltage
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► Basic SST Structures (3): Partitioning 
of Medium Voltage 

- 3rd Degree of Freedom of Topology Selection:

- Multi-Cell and Multi-Level Approaches:
• Low Blocking Voltage Requirement
• Low Input Voltage / Output Current Harmonics
• Low Input/Output Filter Requirement 

- Single-Cell / Two-Level Topology

ISOP = Input Series / 
Output Parallel
Topologies
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► Basic SST Structures (3): Partitioning 
of Medium Voltage

- 3rd Degree of Freedom of Topology Selection:

- Multi-Cell and Multi-Level Approaches:

* Two-Level Topology 

Akagi 
(1981)

McMurray 
(1969)

Marquardt Alesina/ 
Venturini
(1981)

* Multi-Level/
Multi-Cell
Topologies
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► Basic SST Structures (3): Partitioning 
of Medium Voltage

- Bhattacharya (2012)

- 13.8kV → 480V
- 15kV Si-IGBTs, 1200V SiC MOSFETs
- Scaled Prototype

20kHz22kV 800V

DC-DC Converter
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► Basic SST Structures (3): Partitioning 
of Medium Voltage

- Akagi (2005)

- Back-to-Back Connection of MV 
Mains by MF Coupling of STATCOMs  

- Combination of Clustered Balancing 
Control with Individual Balancing Control

DC-DC Converter
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► Classification of SST Topologies

- Very (!) Large Number of Possible Topologies 

- Partitioning of Power Conversion → Matrix & DC-Link Topologies
- Splitting of 3ph. System into Individual Phases → Phase Modularity
- Splitting of Medium Operating Voltage into Lower Partial Voltages → Multi-Level/Cell Approaches

Degree of Power
Conversion Partitioning

Degree of
Phase ModularityNumber of Levels

Series/Parallel Cells

- Enjeti (2012)



Coffee
Break



High-Power DC-DC 
Conversion

DAB Converter
HC-DCM-SRC System
Stored Charge Dynamics
MF Transformer Design
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► Dual Active Bridge
- DeDoncker (1991)

- Two Voltage Sources Linked by an Inductor
- Operated at Medium/High Frequencies 
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► DAB — Common Bridge Configurations

- Half-Bridge

- Full-Bridge

- Two Voltage Levels from each Side

- Three Voltage Levels from each Side
Additional Freewheeling State
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► DAB — Common Bridge Configurations

- Neutral Point Clamped (NPC, Multilevel)

- NPC / Full-Bridge Configuration

- Three Voltage Levels from each Side
- Operation as Voltage Doubler

- Suitable for Higher MV/LV Ratios
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► DAB — Phase-Shift Modulation
- Power Transfer Controlled through Phase Shift between MV and LV Bridges

- Fundamental Model suitable for       
Calculation of Power Transfer
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► DAB — Phase-Shift Modulation
- All Switching Transitions done in ZVS Conditions (within a Certain Operating Range)

- Soft Switching Range
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► DAB — Phase-Shift / Duty Cycle Modulation
- Additional Degrees of Freedom Can Be Utilized to Optimized Targeted Criteria
- For Example: Minimization of the RMS Currents through the Transformer (ETH, Krismer, 2012)

- Not Possible in Half-Bridge Configurations
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► DAB — Triangular Current Mode
- Duty Cycles and Phase Shift Utilized to Perform Zero Current Switching (ZCS)

ZCS on
MV SideZVS on

LV Side
ZCS on MV 

and LV Sides

ZCS on MV Side
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► Three-Phase Dual Active Bridge
- DeDoncker (1991)

- ZVS of All Devices within Certain Power Range
- ZCS Only Possible at One Operating Point



High-Power DC-DC 
Conversion

DAB Converter
HC-DCM-SRC System
Stored Charge Dynamics
MF Transformer Design
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► Half-Cycle Discont.-Cond.-Mode Series-Res.-Conv. (HC-DCM-SRC)
- Power Supplies for Robots — RWTH, Esser (1991)

- Energy Transfer Through the Robot’s Arm Joints

! !
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► Half-Cycle Discont.-Cond.-Mode Series-Res.-Conv. (HC-DCM-SRC)
- Operating Principle: Resonant Frequency ≈ Switching Frequency

- The Input/Output Voltage Ratio is Close to Unity Independent on Power Transfer (Steigerwald, 1988)
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► Half-Cycle Discont.-Cond.-Mode Series-Res.-Conv. (HC-DCM-SRC)
- Equivalent Circuit for Transient Analysis — Esser (1991)

- Output Voltage is VLV ≈ VMV∙n for Any Output Power
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► Half-Cycle Discont.-Cond.-Mode Series-Res.-Conv. (HC-DCM-SRC)
- Dujic (2012)

- LLC Structure to Reduce Switching Losses
- Zero-Current-Switching of All Devices



High-Power DC-DC 
Conversion

DAB Converter
HC-DCM-SRC System
Stored Charge Dynamics
MF Transformer Design
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► ZCS and ZVS of IGBTs
- Analysis of IGBT Losses Under ZCS Conditions for the Triangular Current Mode DAB
- Tested on an NPC Half-Bridge Structure Based on 1.7kV IGBTs

- 1.7kV Field-Stop IGBT-Based Testbench - NPC Half-Bridge Connected to MF 
Transformer and LV Side Full-Bridge
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► Triangular Current Mode DAB Operation
1) NPC Half-Bridge Applies
2) The NPC Half-Bridge Commutates to

Freewheeling, Achieving ZCS on S1

- NPC Bridge Structure and Experimental Waveforms
for 166kW / 20kHz and Power from MV to LV and LV
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► Triangular Current Mode DAB Operation
1) NPC Half-Bridge Applies
2) The NPC Half-Bridge Commutates to

Freewheeling, Achieving ZCS on S1

- NPC Bridge Structure and Experimental Waveforms
for 166kW / 20kHz and Power from MV to LV and LV
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► Standard TCM-DAB ZCS Operation
- Large Current Spike in S1 when 

Switching Zero Current
- Large Turn-On Losses on S3

(Even at ZCS)

- 1.7kV IGBT NPC Half-Bridge - NPC Bridge Structure and Experimental Waveforms for 
166kW / 20kHz and Power from MV to LV 
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► Measurement of IGBT Stored Charge Behavior
- Exp. Measurement of Internal Charge
- Dynamic Behavior of Charge Carriers

- 1.7kV IGBT Test Circuit for
Charge Behavior Analysis

- Experiment used to Study Stored Charge Dynamics
Ortiz (ETH 2012)
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► Measurement of IGBT Stored Charge Behavior
- Field-Stop 1.7kV IGBT
- 62mm Package

- IGBT Charge Control Equation - Experimental stored charge dynamic behavior
on 1.7kV field-stop IGBT
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► Measurement of IGBT Stored Charge Behavior
- Field-Stop 1.7kV IGBT
- 62mm Package

- IGBT Charge Control Equation - Experimental stored charge dynamic behavior
on 1.7kV field-stop IGBT and Resonant Sine Pulse
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► Residual Current Switching — ZVS
- Low Turn-Off Losses due to Low 

Switched Current
- Virtual Elimination of Turn-On

Losses

- 1.7kV IGBT NPC Half-Bridge - NPC Bridge Structure and Experimental Waveforms for 
166kW / 20kHz and Power from MV to LV 
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► Residual Current Switching — ZVS
- Minimum Losses around 40A @120°C and MV → LV
- Minimum Losses around 70A @120°C and LV → MV

- Total Reduction of ≈37%@120°C for  MV → LV
- Total Reduction of ≈50%@120°C for  LV → MV

- ZCS Losses for Both Power Flow Directions and
25°C & 120°C for 166kW Transferred Power



High-Power DC-DC 
Conversion

DAB Converter
HC-DCM-SRC System
Stored Charge Dynamics
MF Transformer Design
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► MF Transformer Design — Transformer Types
- Main Transformer Types as Found in Literature

- Transformer Construction Types Very Limited by Available Core Shapes in this Dimension Range
- Shell-Type has Been Favored Given Its Construction Flexibility and Reduced Parasitic Components

Coaxial Cable Shell-Type Core-Type
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► MF Transformer Design — Transformer Types
- Main Transformer Types as Found in Literature

- Transformer Construction Types Very Limited by Available Core Shapes in this Dimension Range
- Shell-Type has Been Favored Given Its Construction Flexibility and Reduced Parasitic Components
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► MF Transformer Design — Winding Arrangements
- Coaxial Cable Winding

• Extremely Low Leakage Inductance
• Reliable Isolation due to Homog. E-Field

• Low Flexibility on Turns Ratio
• Complex Terminations

- Heinemann (2002)
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► MF Transformer Design — Winding Arrangements
- Coaxial Windings 

• Tunable Leakage Inductance
• More Complex Isolation
• Total Flexibility on Turns Ratio
• Simple Terminations

- Hoffmann (2011)

- Steiner (2007)
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► MF Transformer Design — Litz Wire Bundles
- Case Study: Litz Wire (Tot. 9500 strands of 71µm Each) with 10 Sub-Bundles 
- Current Distribution in Internal Litz Wire Bundles Depends Strongly on Interchanging Strategy

- Total Copper Losses for 10 Bundles: 438W

10 Bundles 950 with 71µm Strands Each
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► MF Transformer Design — Litz Wire Bundles
- Case Study: Litz Wire (Tot. 9500 strands of 71µm Each) with 10 Sub-Bundles 
- Current Distribution in Internal Litz Wire Bundles Depends Strongly on Interchanging Strategy

- Total Copper Losses for10Bundles: 438W
- Total Copper Losses for 8 Bundles: 353W

10 Bundles 950 with 71µm Strands Each
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► MF Transformer Design — Litz Wire Bundles
- Effect of Termination Type on Bundle Current Distribution

- All Bundles with Equal Lengths and Bulk Solder Connection 
- Relatively Good Current Distribution if Center Bundles Are Disconnected
- High AC Resistance of Termination Is Expected due to High Frequency Effects

Soldering at once
thread cut into solder



97/205

► MF Transformer Design — Litz Wire Bundles
- Effect of Termination Type on Bundle Current Distribution

- Each Bundle Soldered Separately to Busbar
- Different Lengths and Induced voltages Cause Asymmetric Current Distribution
- Total Copper Losses for 8 Bundles: 360W
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► MF Transformer Design — Litz Wire Bundles
- Effect of Termination Type on Bundle Current Distribution
- Utilization of Common Mode Chokes for Symmetrization of Litz Wire Currents
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► MF Transformer Design — Litz Wire Bundles
- Effect of Termination Type on Bundle Current Distribution
- Utilization of Common Mode Chokes for Symmetrization of Litz Wire Currents

- Losses decrease (Only) by 2% → Possible Uneven Distribution Within Litz Wire Bundle
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► MF Transformer Design — Cold Plates Cooling
- Heat Conducted from Inner Parts (Winding/Cores) to Outer Actively Cooled Cold Plates 

- Pavlovsky (2005)
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► MF Transformer Design — Water Cooling
- Hollow Aluminum Conductor with Forced Water Cooling
- Isolation:   De-Ionized Water or MIDEL

- Hoffmann (SIEMENS, 2011) - Heinemann (ABB, 2002)
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► MF Transformer Design — Cold Plates/Water Cooling
- Nanocrystalline 160kW/20kHz Transformer (ETH, Ortiz 2013)

- Combination of Heat Conducting Plates and Top/Bottom  Water-Cooled Cold Plates
- FEM Simulation Comprising Anisotropic Effects of Litz Wire and Tape-Wound Core
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► MF Transformer Design — Cold Plates/Water Cooling
- Nanocrystalline 160kW/20kHz Transformer (ETH, Ortiz 2013)

- Losses Generated in Internal Cooling System Amount to ca. 20% of Total Transformer Losses



104/205

► MF Transformer Design — Isolation
- Specially Designed Isolated Housing for High Isolation to Ground

- Steiner (Bombardier, 2007)
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► MF Transformer Design — Isolation
- Glass-Fiber Container

Engel (ALSTOM, 2003)
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► MF Transformer Design — Isolation
- Mixed-Frequency (LF + Switching Frequency) Voltage Stress on Isolation
- Unequal Dynamic Voltage Distribution
- Potentially Accelerated Aging

- Negligible Dielectric Losses
- Specific Test Setup Required for Insulation Material Testing 

RMS Electric Field
LF,  NPC-Cells, H-Cells

Bottom: w/o Shield
Top: With Shield
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► MF Transformer Design — Acoustic Noise Emissions
- Magnetostriction of Core Materials (Zhao, 2011)

• Nanocrystalline ~ 0ppm
• Amorphous ~ 27ppm

- Other Influences from Production Processes, 
Shapes and Assembly Procedures Affect the 
Emitted Noise

- Acoustic Noise Emitted at 2·fs (!)
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► 3ph. SST Concepts
- Phase-Modular (3ph. Comb. of 1ph. Units)  or - Direct or Indirect Matrix Type Topologies  or
- Direct 3ph. Topologies - DC-Link Based Topologies

- Frequently     1ph. AC/3ph. AC Converter Topologies Analyzed Instead of Full 3ph. Systems
- Frequently     Unidir. (MVLV) Topologies Proposed/Analyzed Instead of Bidir. Systems

- 1ph. AC/3ph. AC Conv. Topologies are Directly Applicable for Traction Applications
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► Phase-Modular Direct Matrix-Type 3ph. SST Concepts

- Venkataramanan (2000)

- Only Interesting for Low-Voltage / Low-Power Applications
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► Partly Phase-Modular Direct Matrix-Type 3ph. SST Concepts
- Enjeti (1997) - Steimel et al. (2002)

- Steimel: Thyristor Cycloconv. Commut. Voltage  Impressed by MV VSI (Mennicken, 1978)
Thyristor Recovery Time Limits Switching Frequency to fP≈200Hz (α=150°)
Reactive Power Demand of  the Thyristor Cycloconverter
Implementation of Cycloconv. with (Turn-Off) RB IGCTs (6.5kV) allows fP ≈ 500Hz

- Enjeti: Three-Limb Core could be Employed for Realiz. of MF D-y-Transformer  (Enjeti, 1997) 
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► Direct 3ph. Direct Matrix-Type 3ph. SST Concepts
- Venkataramanan (2000)

- No Energy Storage / DC Port
- Large Number of Power Semiconductors (24)
- Limited  IGBT Blocking Capability does Not Allow MV Application of Basic Conv. Topology 
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► Direct 3ph. Direct Matrix-Type 3ph. SST Concepts
- Mohan (2009)

- Reduced HV Switch Count (Only 2 HV Switches @  50% Duty Cycle / No PWM)
- LV Matrix Converter  Demodulates MF  Voltage to Desired Ampl. / Frequency
- Switching CM Voltage Eliminated at Generator Terminals by Proper MC Control
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► Direct 3ph. Direct Matrix-Type 3ph. SST Concepts
- Mohan (2009)

- Equivalent Circuit of the Transformer for SWp-on and SWn-off  and  Input Phase a Voltage of MC
- Clamp Circuit Sinks Energy Stored in the Leakage Inductance 
- Clamp Voltage = 2 x Grid Line-to-Line Voltage
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► Indirect Matrix-Type Direct 3ph. SST Concepts
- Enjeti (2003)

- Modification of Direct MC Topology Proposed by Venkataramanan (2000)

- Formation of Transf. Voltage Involving all Phases a,b,c and  Ensuring Balanced Flux
- Transformer Sec. Voltage Rectified into Fluctuating DC Link Voltage Vdc
- Vdc Converted into VA, VB, VC by Space Vector PWM  for Mains Current Control 
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► DC-Link Based Direct 3ph. SST Topologies

- Lower Number of Switches (20) Comp. to Matrix Approach (24)
- Three-Stage Power Conversion (3ph.AC/DC – DC//DC – DC/3ph.AC) → Eff. Red.
- Limited  IGBT Blocking Capability does Not Allow MV Application of Basic Conv. Topology 
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► DC-Link Based Direct 3ph. SST Topologies

- M-Level Topology  & HV IGBTs for Incr. Input Voltage Capability (Front-End and DC/DC Conv.)
- Current Doubler Rectifier for Increasing Output Current Capability / Low Output Current Ripple
- Bidirectional Extension by Switches Antiparallel to Rectifier Diodes Possible (Snubber) 
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► DC-Link Based Direct 3ph. SST Topologies
- EATON (Patent Appl. WO 2008/018802, Inv.: M.J. Harrison, 1997)

- Only Interesting for Low-Voltage / Low-Power Applications 
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► DC-Link Based Direct 3ph. SST Topologies 
- Proposed for Energy Storage Systems (Enjeti, 2012)

- MV Side Series Direct Matrix Structure with Single 3ph. MF Transformer Core 
- Single LV Side 2-Level 3ph. Inverter 
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► DC-Link Based Fully Phase Modular SST Topologies 
- Akagi (2005/2007)

- Application for MV Motor Drives Replacing the 50/60 Hz Transformer
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► DC-Link Based Fully Phase Modular SST Topologies 
- Akagi (2005)

- Back-to-Back Connection of MV Mains by MF Coupling of STATCOMs  
- Combination of Clustered Balancing Control with Individual Balancing Control
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► DC-Link Based Partly Phase Modular SST Topologies 
- van der Merwe (2009)

- SST Concept Without Accessible MV DC Bus
- Extension to Bidirectional Power Flow by Replacing the Passive Rectifiers with Active Systems
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► DC-Link Based Partly Phase Modular SST Topologies 
- Steimel et al. (2002)

- Electronic Power Transformer for 110/20kV and 110/10kV Applications 
- Truck Movable Temporary Replacement of Failed Conventional Transformer 
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► DC-Link Based Partly Phase Modular SST Topologies 
- Steimel et al. (2002)

- Configuration of Cells for 10kV and 20kV MV System 
- Implementation of Soft-Switching DC/DC Module (Self Balancing of DC Link Voltages, Cable Transf.)
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► DC-Link Based Partly Phase Modular SST Topologies 
- Steimel et al. (2002)

- Multi-Loop Control Structure of the Electronic Power Transformer

… controlled via vS
according to
the MV system
load state
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► Multilevel  &  Input Series Output Parallel (ISOP) SST Topologies

- Multi-Level or  Cascaded H-Bridge Interfaces for MV Connection  
- Parallel Connection of Modules on the LV Side for Distribution of High Output Current 
- Low Total Input Voltage / Output Current Harmonics (Low Ind. Volume / Low Cap. Curr. Stress)
- Cascaded H-Bridges Preferable due to Voltage Balancing Problem and Scaling of ML Converters
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► Classification System for Multi-Level & Multi-Cell Power Converters
- Clare/Wheeler et al. (2001)

• Classification of Structures with HV (Side A) and MV (Side B) DC Link
• Nomenclature for Topological Arrangement 

• Structure of HF Transformer Defined by L,M,N

• Transformer Classification Independent of Number of DC Links 

►

Side A    Side B
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► Classification System for Multi-Level & Multi-Cell Power Converters

- Complete Converter Structures
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► UNIFLEX Project 
- EU Project (2009)

- Advanced Power Conv. for Universal and Flexible Power Management (UNIFLEX) in Future Grids
- Cellular 300kVA Demonstrator of 3-Port Topology  for 3.3kV Distr. System & 415V LV Grid Connection
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► UNIFLEX Project 
- EU Project (2009)

- Advanced Power Conv. for Universal and Flexible Power Management (UNIFLEX) in Future Grids
- Cellular 300kVA Demonstrator of 3-Port Topology  for 3.3kV Distr. System & 415V LV Grid Connection
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► UNIFLEX Project 
- EU Project (2009)

- AC/DC-DC//DC-DC/AC Module (MF Isolation, 1350V DC Link) and Prototype @ Univ. of Nottingham
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► SiC-Enabled Solid State Power Substation
- Das (2011)

- Fully Phase Modular System
- Indirect Matrix Converter Modules (f1 = f2)
- MV ∆-Connection (13.8kVl-l, 4 Modules in Series)
- LV  Y-Connection (465V/√3,  Modules in Parallel)

- SiC-Enabled 20kHz/1MVA “Solid State Power Substation”
- 97% Efficiency / 25% Weight / 50% Volume Reduction (Comp. to 60Hz)
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► SiC-Enabled Solid State Power Substation
- Das (2011)

- Fully Phase Modular System
- Indirect Matrix Converter Modules (f1 = f2)
- MV ∆-Connection (13.8kVl-l, 4 Modules in Series)
- LV  Y-Connection (465V/√3,  Modules in Parallel)

- SiC-Enabled 20kHz/1MVA “Solid State Power Substation”
- 97% Efficiency / 25% Weight / 50% Volume Reduction (Comp. to 60Hz)
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► Transformerless Intelligent Power Substation (TIPS) 
- Bhattacharya / FREEDM Center (2012)

- 13.8kV → 480V
- 15kV Si-IGBTs, 1200V SiC MOSFETs
- Scaled Prototype

20kHz

22kV 800V
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► The MEGACube @ ETH Zürich

- DC-DC Converter Stage
- Module Power      166kW
- Frequency            20kHz
- Triangular Current Mode Modulation

- Structure of the 166kW Module and MV Side Waveforms
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► The MEGACube @ ETH Zürich
- Total Power 1MW
- Frequency 20kHz
- Efficiency Goal 97%

- MVLevel 12kV
- LV Level 1.2kV
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► The MEGACube — MOSFET-based LV Full-Bridge
- Power Rating 55kW
- Losses 0.31kW
- Based on Single TO-247 Devices 
- Water-Cooled

- 55kW Water-Cooled LV Full-Bridge
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► The MEGACube — IGBT-Based LV Full-Bridge
- Power Rating 83kW
- Losses 0.9kW
- Based on ECONOdual IGBT Module
- Water-Cooled

- 83 kW Water-Cooled LV Full-Bridge



142/205

► The MEGACube — MV NPC Module
- Power Rating 166kW
- Losses 3.1kW
- Based on ECONOdual IGBT Module
- Water-Cooled

- 166 kW Water-Cooled MV NPC Module
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► The MEGACube — Air-Cooled Ferrite Core Transformer
- Power Rating 166kW
- Losses (incl. Fan Power) 0.59kW
- Forced-Air-Cooled

- 166 kW  Air-Cooled Ferrite Core Transformer
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► The MEGACube — Water-Cooled Nanocrystalline Transformer
- Power Rating 166kW
- Losses 0.34kW
- Power Density 45kW/dm3

- 166 kW Water-Cooled
Nanocrystalline Core Transformer
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► The MEGACube — TCM 166kW/20kHz Converter Module

- 166kW / 20kHz TCM DC-DC Converter
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► The MEGACube — Resonant 166kW / 20kHz Converter Module

- 166kW / 20kHz HC-DCM-SRC DC-DC System
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MV LF ACLV DC MF AC MV 
DC

LV LF AC

► The MEGALink @ ETH Zürich

- 2-Level VSI on LV Side / HC-DCM-SRC DC-DC Conversion / Multilevel MV Structure
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► Unidirectional DC-Link Based SST Structures

- Ronan et al. (2000)

- AC Input 7.2kV 
- DC/DC 1000V/±275V
- AC Output 120V/240V

- ISOP Modular Topology
- Three-Stage (AC/DC-DC/DC-DC/AC) Approach

Input 
Module

Isolation 
Module

Output 
Module
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► Unidirectional DC-Link Based SST Structures
- EPRI (2009)

- AC Input 8.6kV (15kVl-l)
- DC/DC 3.5kV/400V
- AC Output 120V/240V

- 100kVA 15kV Class Intelligent Universal Transformer (IUTTM)
- Development of HV Super GTO (S-GTO) as  MV Switching Device / SiC Secondary Diodes
- 20kHz Series Resonant DC/DC Converter  Utilizing Transformer Stray Inductance 
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► Unidirectional DC-Link Based SST Structures
- EPRI (2009)

- Outline of 100kVA (4x25kVA) IUT (Pole Mount Layout, 35”H 35”W 20”D, 1050 lbs)
- Natural Air Cooling / S-GTO Module (No Wire Bonds, 50kHz Switching Frequency Target)
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► Unidirectional DC-Link Based SST Structures
- Enjeti (2012)

- SST Application for MV Adjustable Speed Drive  (Unidirectional AC/AC Front End / 3L NPC Inverter)
- Avoids Bulky LF Transformer / DC Link  and Mains Current Harmonics (Active Filter)
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► Unidirectional DC-Link Based SST Structures
- Enjeti (2012)

- SST Appl. for MV Adjustable Speed Drive  (Unidir. AC/AC Front End / Cascaded 2L 1ph.-Inverters)
- Avoids Bulky LF Transformer / DC Link  and  Mains Current Harmonics (Active Filter)



154/205

► Unidirectional DC-Link Based SST Structures
- van der Merwe (2009)

- 5-Level Series Stacked Unidir. Boost Input Stage 
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► Full Power SST Employing LF Transformers 

- 3ph AC Version – G. Venkataramanan (1995)
- No 4-Quadrant Switches Required
- Isolation  with LF Transformer (Not Shown)

- Basic 1ph AC chopper - J.L. Brooks  (1980)
“Solid State Transformer Concept Development”

- Provides AC Voltage Regulation and Low 
Sensitivity to Harmonics

- Isolation Provided with LF Transformer (Not Shown)
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► Full Power SST Employing LF Transformers
- Derived from DC Buck Converter

- J. C. Rosas-Caro (2010) 

* Modular Multi-Cell 3ph. AC Chopper
(Patent SIEMENS)    
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► Partial Power SST Employing LF Transformers 
- P. Bauer (1997)

• Electronic Tap Changer of  LF Transformer
• MV Winding with Power Electronic Switched Tap.
• Two Modes of Operation: 

- Single Tap Position (a)
- PWM Modulated Tap (b) 
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► Partial Power SST Employing LF Transformers 

- Electronic Tap Changer — Complex Control Circuit
- Crowbar for Emergency Ride-Through
- Commutation Sequence of the 4-Quadrant Switches
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► Partial Power SST Employing LF Transformers 
- Enjeti (2003) 

- Controlled Output Voltage: Vo= Vx + Vc
- LF Isolation Transformer
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► Partial Power SST Employing LF Transformers 
- Barbi (2006)

- Controlled Output Voltage:    vo= vi + Δv
- Isolation Provided with LF Transformer (Not Shown)
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► Partial Power SST Employing LF Transformers 
- Shmilovitz (2011)

- Reconfigurable Auto-Transformer
- Switches K1, K2, K3 and K4 Used to Modify Output Voltage

- K2 and K3 = ON

- K1 and K4 = ON

- K1 and K3 = ON
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► Partial Power SST Employing LF Transformers 
- Bala (ABB 2012)

- Reactive Power Compensation (PFC, Active Filter, Flicker Control)
- Available DC Port (Isolated in Option 1a)
- Option 2:         Controlled Output Voltage 
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► Partial Power SST Employing LF Transformers 
- Bala (ABB, 2012)

- Commercial Product (ABB)
- Direct Connection of Input to Output (Bypass) or
- Compensation of Inp. Voltage Sag (Contr. Output Voltage)
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► Electric Railway Systems – A Little History

- Siemens Electric Railway – Werner von Siemens (1879)
- Speed: 7km/h  — Power: 2.2 kW   — Length: 300m
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► Electric Railway Systems – A Little History
- Electrification of European Railways – Steimel (2012)

- 16 2/3 Hz / 15kV AC   - (1912)
- 3kV DC and 1.5kV DC  - (1920) 
- 50Hz / 25kV AC   - (1936)

≈ 6 Turns Around the Earth
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► Electric Railway Systems – Today’s Drive Scheme
- 16.7Hz  1ph.-Transformer Required to Step-Down the

Catenary Voltage to the Drive’s Operating Voltage

- Low Frequency Transformer
- 15% Weight of Locomotive
- e.g. for 2MW ca. 3000kg
- 90-92% Efficiency
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► Trends in Modern Railway Systems
- Electric Multiple Units (EMUs)

e.g. Under-Floor Mounted

- Weight Reduction   
- Energy Efficient Railways

- All Goals Lead to a Medium-Frequency
Isolation / Conversion Syst. (Dujic 2011)



SST Concepts for Traction 
Applications

Railway Systems Voltage/Freq.
Modern Railway Systems’ Requirements
SST Concepts for Traction



172/205

► VSI Commutated Primary Converter
- Menniken (1978) 
- Östlund (1992)

MV LF AC MF AC LV DC
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► Cascaded VSI Commutated Primary Converter
- Hugo (ABB, 2006)
- Pittermann (2008)

MV LF AC MF AC LV DC
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► Cascaded Source Commutated Primary Converter

- Pittermann (2008)

- Module Power    2kW (downscaled)
- Frequency          800Hz
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► Cascaded Source Commutated Primary Converter

- Hugo (ABB, 2006)

- Total Power       1.2MVA/15kV
- Module Power   75kW
- Frequency         400Hz
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► Cascaded H-Bridges with Resonant/Non-Resonant DC-DC Stages
- Steiner (Bombardier, 2007)
- Weigel  (SIEMENS, 2009)

MV LF AC MF AC LV DCMV DC
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► Cascaded H-Bridges with Resonant/Non-Resonant DC-DC Stages

- Weigel (SIEMENS, 2009)

- Module Power    450kW
- Frequency           5.6kHz

- Steiner (Bombardier, 2007)

- Module Power     350kW
- Frequency              8kHz
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► Cascaded H-Bridges with Multi-Winding MF Transformer
- Engel (ALSTOM, 2003)

MV LF AC MF AC LV DCMV DC
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► Cascaded H-Bridges with Multi-Winding MF Transformer

- Engel (ALSTOM, 2003)

- Module Power   180kW
- Frequency            5kHz
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► Cascaded H-Bridges with Multi-Winding MF Transformer

- Taufiq (ALSTOM, 2007)

- Module Power     180kW     
- Frequency              5kHz
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► Modular Multilevel Converter
- Marquardt/Glinka (SIEMENS, 2003)

MV LF AC

MF AC

LV DC
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► Modular Multilevel Converter
- Marquardt/Glinka (SIEMENS, 2003)

- Module Power             270kW
- Module Frequency       350Hz
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► Cascaded H-Bridges and Resonant LLC DC-DC Stages
- Zhao et al. (ABB, 2011)

MV LF AC MF AC LV DCMV DC
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► Cascaded H-Bridges and Resonant LLC DC-DC Stages
- Zhao et al. (ABB, 2011)

MV Module

LV Module

Assembled Converter

- Module Power    170 kW
- Frequency        2kHz



SST Design Remark
Current Ratings
Cooling Considerations
MF Transformer Design
Flux Balancing
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► Current Ratings – Overcurrent Requirements

- MV Transformers must Provide
Short-Circuit Currents of up to
40 Times Nominal Current for
1.5 Seconds (EWZ, 2009)

- Traction Transformers: 150%
Nominal Power for 30 Seconds
(Engel 2003)

- Power Electronics: Very Short
Time Constants!
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► Grid Harmonics and EMI Standards
- Medium Voltage Grid Considered Standards (Burkart, 2012)

• IEEE 519/1547
• BDEW
• CISPR

- Requirements on Switching Frequency and EMI Filtering
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► Semiconductor Cooling and Isolation
- 1.7kV IGBTs → Semiconductor Modules on Cold Plates/Heat Sinks Connected to Different

Potentials (CM Voltage Problems)

- 3.3kV or 6.5kV IGBTs → Isolation Provided by the Modules’ Substrate, No Splitting of the
Cooling System Necessary.

- Hoffmann (2009)
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► Flux Balancing - DC Magnetization
- Higher Losses
- Over-currents
- Audible Noise

- Diff.  Turn-on/Turn-off Times

- Diff. Switch On-Characteristics
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► Flux Density Transducer – The Magnetic Ear
- Shared Magnetic Path between

Main and Auxiliary Core

- Change in Inductance on the Auxiliary
Core is Related to the Magnetization State



191/205

► Flux Density Transducer – The Magnetic Ear
- Compensation Network to

Decouple Main and Auxiliary Flux

- Interleaved Operation for Maximum
Bandwidth (ETH/Ortiz, 2013)
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► Flux Density Transducer – The Magnetic Ear
- Transducer Output for Biased Magnetic

Operation
- Closed Loop Response

- Reference Step 
- Disturbance Rejection



Summary / Outlook
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► Technology Hype Cycle 
- Different State of Development of SSTs for

Smart Grid  and  Traction Applications 

Through of 
Disillusionment

SSTs  for Smart Grids

SSTs for Traction
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► SST Limitations – Application Areas
- SST Limitations 

• Efficiency (Rel. High Losses  3-6%)
• High Costs  (Cost-Performance Ratio still to be Clarified)
• Limited Volume Reduction vs. Conv.  Transf. (Factor 2-3)
• Limited Overload Capability
• (Reliability) 

- Potential Application Areas 

► Applications for Volume/Weight Limited Systems  where  3-4 % of Losses Could be Accepted

• Traction Vehicles
• UPS Functionality with MV  Connection 
• Temporary Replacement of Conv. Distribution Transformer
• Parallel Connection of LF  Transformer and SST (SST Current Limit – SC Power does not Change)
• Military Applications 

SST

CT
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► Application Areas  → SST  Advantages/Weaknesses 

- Traction  - LF Transf. vs. SST - Distribution  - LF Transf. vs. SST

!

!

!!
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► Main SST Optimization Potential 

- Cost & Complexity Reduction  by  Functionality Limitation (e.g. Unidirectional Power Flow)

► Future Research Topics 
- Insulation Materials under MF Voltage Stress
- Low Loss High Current MF Interconnections
- MF Transformer Construction  featuring High Insulation Voltage  
- Thermal Management (Air and H2O Cooling, avoiding Oil)
- “Low” Voltage SiC Devices for Efficiency Improvement

- Multi-Level  vs. Two-Level Topologies with SiC Switches → “Optimum” Number of Levels
- Multi-Objective Cost / Volume /Efficiency  Optimization (Pareto Surface)
- SST Protection (e.g. Overvoltage)
- SST Reliability

- Hybrid (LF // SST) Solutions
- SST  vs. FACTS (Integration vs. Combination of Transformer and Power Electronics) 
- System-Oriented Analysis → Clarify Benefits on System Level (Balancing the Low Eff. Drawback)
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► Future Research Topics 

Done !

To be 
Done…
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► Overall Summary

- SST  is    NOT  a 1:1 Replacement for Conv. Distribution Transformers
- SST  will NOT  Replace  All Conv. Distribution Transformers (even in Mid Term)
- SST  Offers High Functionality  BUT  shows also Several Weaknesses / Limitations

→ SST Requires a Certain Application Environment (until Smart Grid is Fully Realized)
→ SST Preferably Used in LOCAL Fully SMART EEnergy Systems

@ Generation End (e.g. Nacelle of Windmills)
@ Load End - Micro- or Nanogrids (incl. Locomotives, Ships etc.)

→ Environments with Pervasive Power Electronics for Energy Flow Control (No Protection Relays etc.)
→ Environments which Could be Designed for SST Application

- SST is NOT AT ALL Reflecting the Actual Functionality  → EEnergy Router (?)



Thank You!
Questions?
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