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Abstract 

In today’s industry high-speed and high-power-density drives are attracting much interest, e.g. for 
applications with mesoscale gas turbine generator systems or turbocompressors for fuel cells. In all 
high-speed drive systems the bearing technology is a key component. Therefore, this paper presents 
the analysis of an active magnetic bearing suitable for a permanent magnet machine, being part of a 
high-speed electrical drive system. The analysis has its focus on the detailed characterization of the 
magnetic forces, the coupling between the different axes and the verification of the theoretical 
considerations by means of 3D-FEM simulations. To understand the behavior of the bearing forces 
is needed to implement the position control to the prototype of the bearing system, which already 
has been built. 

Introduction 

In the industry the demand for high-speed and high-power-density drives was increasing over the 
last few years, and the trend to more compact and higher speed drives still continues [1]. An 
example is the PCB drilling industry, where the trend is to produce smaller diameter holes. In order 
to attain the same productivity as today the drilling machines have to rotate at much higher speeds 
(more than 300,000 rpm). The trend for turbocompressors is towards smaller power ratings and with 
the scaling of turbo machinery, they therefore require higher operating speeds [2], [3]. One 
application is in a fuel cell air compressor that requires 120,000 rpm at 12 kW [4] and another is in 
a 70,000 rpm, 131 kW turbo compressor connected to a PM machine and inverter [5]. Future 
automotive fuel cells will require low power air compressors, which are small and lightweight, and 
directly driven by high-speed electrical drives. Ultra-micro gas turbines with power outputs up to 
several hundred watts are being investigated for 
use in portable power applications [6]. 
High rotational speeds however, pose some big 
challenges to the bearing system. Therefore, 
this paper presents the design and analysis of an 
active magnetic bearing suitable for a 
permanent magnet machine, which is part of a 
high-speed electrical drive system. The 
machine and the magnetic bearings are 
integrated into one system and the power and 
control electronics for both drive and bearing 
are optimized for high-speed operation and 
minimal volume. The motivation for this work 
is to achieve a compact design of a combined 
radial axial magnetic bearing to ensure a 
compact drive system. Fig. 1. Cut-away view of the electrical drive and the two 

radial-axial bearing units mounted on two sides. 
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Concept / System 

The active magnetic bearing is constructed together with a 1 kW, 500’000 rpm permanent-magnet 
machine developed at ETH Zurich [1]. The machine and the magnetic bearings are integrated into 
one system and the power and control electronics for both the drive and bearing are optimized for 
high-speed operation and minimal volume. The rotor is driven by a 1 kW permanent magnet 
synchronous machine and a bearing unit is placed at each end of the rotor as depicted in Fig. 1. The 
overall size of the system is a maximum diameter of 55 mm and a rotor length of 96 mm. Most of 
the active magnetic bearing systems have two separate bearings for the axial and the radial 
direction. This is the easiest way to produce a magnetic bearing but it also requires more space for 
the two separate devices. In order to reduce the overall size of the bearing and drive system, which 
is an important consideration in ultra-compact high-speed machines, the combination of the radial 
and axial bearing is one attractive possibility. The chosen concept, depicted in Fig. 2, combines the 
two bearings by using a radially magnetized permanent magnet ring as source of the bias flux for 
both the radial and the axial bearing [7]. The bias flux created by the permanent magnet ring alone 
does not provide any force. It has to be superimposed by a control flux for both the radial and the 
axial bearing force. In Fig. 2, both the radial and the axial control flux paths are depicted. In one air 
gap, the bias flux and the control flux add together, whereas in the opposing air gap they subtract. 
The resulting difference of magnetic flux density in these two air gaps creates the carrying force and 
can be controlled by the sign and amplitude of the control current in the control coils. The bearing 
force in one air-gap is deduced from the stored magnetic energy in the air-gap. Applying this to the 
case, where there are two opposite forces and the magnetic field is created by a bias flux density B0 
combined with a control flux density Bc results in a total magnetic force acting on the rotor 
according to 
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where Aδ is the active pole shoe area. For small deflections x of the shaft position the bearing force 
Fx in x-direction can be linearised for very simple cases as 

 ,x ix x rxF k i k x     (2) 

 

Fig. 2. Axial and radial cut view showing the magnetic flux paths. 
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where kix is the force-current factor and krx the force-displacement factor in x-direction. kr is also 
called negative stiffness of the magnetic bearing since without a control current the force acts as a 
negative spring force and thus is instable. The idea is to characterize the magnetic bearing via these 
two parameters. For the shown concept it will be shown that the relation is not that simple. 

Analysis and Modeling of the Bearing Forces 

   Equivalent Circuit Model. In order to characterize the bearing and to analyze the system 
stability for different points of operation a model of the combined radial-axial magnetic bearing has 
to be built. In a first approach, the magnetic bearing is modeled as an equivalent magnetic circuit as 
depicted in Fig. 4. Hereby, the permanent magnet is modeled by a magnetic voltage source PM in 
series with the reluctance RPM. The reluctances of the airgaps are dependent on the dimensions of 
the airgap and are defined as 
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for a homogenous field distribution within the gap. In reality, also stray flux effects have to be 
considered by adding reluctances for the stray paths as well. Performing comparative 3D-FEM 
simulations help to identify the relevant stray paths. For this reason a simplified model of the axial 
part of the bearing, as shown in Fig. 3(a), was modeled and the paths of the magnetic flux were 
analyzed. Including the most relevant stray flux paths in an equivalent circuit as seen again in 
Fig. 3(a) as an overlay, allowed comparing the results of the equivalent circuit with the FEM 
simulation results. In Fig. 4, the equivalent model of the complete combined radial-axial magnetic 
bearing, the stray reluctances are were incorporated in the main reluctances for the sake of 
simplicity. 
The currents injected in the control coils of the magnetic bearing are modeled as magnetic voltage 
sources cx+, cx-, cy+, cy- and cz-. As the control coils for each radial bearing are connected in 
series, the two corresponding voltage sources are oriented such that their magnetic fluxes add 
together in the main magnetic path. In Fig. 4 the main magnetic paths for the three bearing 
directions are illustrated by the bold gray lines. Due to the equal ampere-turns in each axis, the 
condition 

 and ,cx cx cx cy cy cy             (4) 

is true. Assuming the rotor in its center position, the radial airgap reluctances Rx+, Rx-, Ry+ and Ry- 
are equal. Therefore, the magnetic flux created by cx+ and cx- will flow entirely in the main 
magnetic path depicted in bold gray on the left side of Fig. 4. However, if we assume the rotor to be 
displaced in x-direction, the reluctances Rx+ and Rx- differ and therefore not the entire flux will flow 
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Fig. 3. (a) Equivalent circuit of axial bearing fluxes and (b) details of fluxpaths as observed in 3D-FEM simulation. 
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in the main path. Part of it will flow through the airgaps in the y-axis and the z-axis and 
consequently constitute a coupling flux x-coupling. Thus, if all the radial reluctances are equal – the 
rotor is then in its center position – the y-axis is independent of the control flux created by the 
magnetomotive force cx. On the other hand if the rotor is deflected from its center position the four 
radial airgap reluctances are not equal anymore. Due to such an asymmetry the magnetomotive 
force cx can also create a force in the y-direction. The same reasoning can be done for the flux 
created by cz. Since the permanent magnet ring has a big cross section, its reluctance is of 
comparable dimension as the airgap reluctances and therefore the permanent magnet reluctance is 
not a perfect separation of the axial and the radial magnetic flux paths. Therefore, part of the flux 
created by cz will flow as a coupling flux z-coupling though the radial airgaps. 
 
   Verification with 3D-FEM. As the nonlinear relations between the magnetic forces and the 
operating point parameters are used in the control for the bearing, the validity of the simplified 
analytical model has to be verified. This has been done by modeling the magnetic bearing in a 
3D-FEM simulation software [8]. In all the simulations both the radial and the axial airgaps are set 
to 500 μm. The results of the simulations showed that the magnetic flux is not entirely confined in 
the airgap area but also takes some stray paths. This fact has to be considered in the analytical 
model of the equivalent magnetic circuit. This was done by adding stray path reluctances where the 
dimensions could be deduced from the FEM simulations. 
For the comparison in Fig. 5 the relation of the axial force and the axial control flux was studied. In 

Fig. 4. Equivalent magnetic circuit for the magnet fluxes of the combined radial-axial bearing. 
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the simulation the stator material is defined as a real magnetic iron. Therefore, saturation effects 
occur for high magnitudes of current injection into the control coils. The outermost dots on each 
side in Fig. 5 were ignored for the fitted curve of the simulation results because saturation effects in 
the range of high control fluxes are not considered in the analytical model. As can be seen in the 
chart, the force calculated with the equivalent magnetic circuit coincides well with the results from 
the 3D-FEM simulation, which confirms the proposed model. In Fig. 6 the effect of a deflected 
rotor on the radial force is depicted. In one case the rotor is in its center position and no other 
current than ix is present. The second pair of curves shows the situation when the rotor is deflected 
in the positive x-direction by 200 μm. Again, an acceptable match of the simulation and calculation 
results can be observed. This proves the presented analytical model which therefore can be used for 
the controller design. 

Discussion of the Linearity 

In Fig. 7 the dependency of the radial force Fx on different parameters is shown for small airgaps of 
250 μm. For Fig. 7(a) the rotor is assumed to be in its center position. With the magnetomotive 
force cx varying and cy set to zero ampere-turns, three curves for the force Fx for three different 
magnetomotive forces cz are depicted. One can see that cz from the axial axis has an influence on 
the radial force but still the relation between the current ix and the force Fx is linear for all cases. 
The influence of cz gets obvious as we look at the coupling flux z-coupling in Fig. 4. This flux 
increases the main flux created by cx in the negative airgap x-, but decreases the main flux in the 
positive airgap x+. So the force-current relation in the x-axis is weakened for positive z-currents as 
shown in Fig. 7(a). The situation changes when an additional radial displacement x = 150 μm 
occurs. The relation between the force Fx and the magnetomotive force cx becomes highly 
non-linear. Such a non-linear characteristic and the coupling to the other axes’ parameters can pose 
severe problems for the control of the rotor position. 
In order to characterize the force-current relation let us rewrite the aforementioned relation (2) in 
another way. The carrying force is determined by the magnetic fluxes x+ and x- in the airgaps. 
These magnetic fluxes again, depend on the different magnetomotive forces and the value of the 
reluctances. Assuming the rotor in its center position means that the two reluctances in each axes 
are identical. Further we assume the control currents in the y- and z-axis to be zero. Since the two 
opposing reluctances in one axis are equal, the magnetic flux is split equally in the two airgaps and 
therefore the magnetic flux in the positive airgap is x(PM) + x(cx) whereas the magnetic flux in the 
negative airgap results in x(PM) - x(cx) as can be verified in Fig. 4. Consequently the total magnetic 
flux in either airgap is driven by the permanent magnet and the control coil in the x-axis and 
therefore the force in the x-axis can be written as: 

 2 2 2 2
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) 4 .x x x x PM x cx x PM x cx x PM x cx cxF k              (5) 

Again the linear relationship between the force Fx and the control current cx can be seen. This 
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Fig. 7. Calculation of the radial force-current relation for (a) x = 0 m and (b) x = 150 m for a nominal airgap of  = 250 m. 
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linear dependency is no longer valid if we have a displacement in the x-direction. Since the 
magnetic fluxes don’t split equally in the airgaps the relation Fx = f(cx) will also have a quadratic 
as well as a constant component. The rotor is assumed to be in its axial center point, which means 
that Rz+ = Rz- = Rz. If the rotor is also in its radial center position then the reluctances in the four 
airgaps have all the same value R. Deflecting now the rotor in x-direction will increase the airgap 
reluctance on one side and decrease it by the same amount on the other side such that Rx+ = R - R 
and Rx- = R + R. The invariant reluctances of the permanent magnet, the axial airgap, the stator, 
the shell and the rotor are concentrated into an equivalent reluctance Req. With these assumptions, 
the force-current relation for the radial force Fx can be written as:  
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which can be simplified to 

 2 .x cx cxF A B C       (7) 

In contrast to (5) the relation between force and current is now non-linear. Looking at formula (7) 
we define the linearity as 

 Linearity ,
cx
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 (8) 

in order to quantify the non-linearity of the force-current relation. Since the linearity of the 
force-current relation can affect the stability of the position controller it must be the goal to 
minimize such non-linearities. Formula (8) directly shows that the linearity will deteriorate with 
increasing control currents. This does not pose severe problems since at steady state operation the 
control currents should be moderate. The effect of two other parameters which can be changed is 
shown in Fig. 8. In the diagram on the left side the influence of the size of the permanent magnet 
can be seen. A bigger permanent magnet leads to a better linearity. In Fig. 8(b) it is clearly shown 
that an increased airgap size has a positive effect on the linearity of the force-current relation. Here 
the airgap  is the same for the radial and the axial bearing. 
However, the charts in Fig. 7 show that in all situations there is an ampere-turns value cx, for which 
the rotor can be pulled to and held in the center position. In such a stationary analysis the rotor can 
be stabilized by a correct choice of the control current. However, it is important to keep in mind that 
with a too narrow airgap the stabilization can be much more difficult to achieve since the controller 
has to guarantee a stable operation even under non-linear conditions. This is not trivial since a 
magnetic bearing on its own is already challenging in terms of stable control due to the inherent 
unstable characteristics of the control path. A proper selection of the PID controller gains is a basic 
requirement for a stable operation. If the control path changes such strongly as described in Fig. 7 
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Fig. 8. Effect on the linearity of the force-current relation of (a) the permanent magnet and (b) of the airgap size. 
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due to different operating points of the bearing, it will be a big challenge for a stable control within 
the whole range of operation.  

Effects on the control 

The main challenge in a magnetic bearing is 
always a stable and robust levitation of the 
rotor either in its centre position or in another 
predefined position. The control of the rotor 
position will be implemented as cascaded 
position controller. To study the effects of the 
non-linear relations in the magnetic bearing 
system the cascaded controller was 
implemented as a Matlab/Simulink model. The 
performance of the controller was first tested 
by defining the force according the well-
known relation (2) where ki and kr are taken 
from the simplest operating point where the 
rotor is in its centre position and no control currents are injected into the coils. The bearing 
parameters ki and kr are assumed to remain constant for any position the rotor can reach and for any 
current injected in the coils. For such a model it is possible to find a PID parameter set (KP, TI, TD) 
which can follow a sinuiodal setpoint function. It should now be investigated if the aforementioned 
non-linear characteristics of the bearing forces pose a problem for such a controller. To simplify the 
problem only the definition of the force for the x-axis is made variable. All the other bearing 
parameters are left unchanged. As it can be observed in Fig. 7(b) the force Fx no longer depends 
linearly on the control magnetomotive force cx if the rotor is deflected in x-direction. Knowing that 
the magnetomotive force cx is directly related to the control current ix via the number of turns, the 
relation of the force Fx and the control current can now described by a function according the 
following polynomial equation: 

 2( ) ( ) ( ) ,x x xF a x i b x i c x      (9) 

where the polynomial coefficients were derived from calculations with the equivalent circuit model 
of the bearing as depicted in Fig. 4. These coefficients were then integrated in the simulation model 
of the controller. In reality however, the polynomial coefficients are also dependent on the rotor 
deflection in the other directions and also depend on the control currents in the other coils. This fact 
has been omitted in order to simplify the problem. In Fig. 9 the rotor position should follow a 
sinusoidal setpoint function. If we implement the constant bearing parameters for all rotor positions, 
then there can be found a PID parameter set (KP, TI, TD) which makes the rotor follow the setpoint 
function. Now it should be checked if the controller works as well if the force Fx is dependent on 

the rotor position according to (9). As can be seen 
in Fig. 9 this is not the case for the same set of PID 
parameters. The x-position of the rotor cannot 
follow the sinusoidal setpoint function and the 
rotor can’t be pulled to the centre anymore with 
this set of PID parameters. 
Thus, it is essential to implement the correct 
definitions for the different forces with their 
dependencies on the current operating point of the 
magnetic bearing in order to optimize the position 
controller. It can then be analyzed what set of 
parameters can stabilize the rotor for different 
operating points. The set of possible parameters 

Fig. 9. Controlled x-position following a sinusoidal set-point.
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(KP, TD; whereas TI,=0) for two different operating points were analyzed and are depicted in 
Fig. 10. It can be seen that in this case the two stable areas overlap. Nevertheless it is important to 
identify the stable parameter sets for different operating points, such that the controller can be fed 
with either a parameter set which is stable over the whole operating range or a parameter set which 
is appropriate for the current operating point. 

Summary 

For high-speed machines the use of conventional ball bearings brings some drawbacks as high 
losses and limited lifetime. An active magnetic bearing is an alternative bearing topology, which is 
suitable for high-speed operation. Due to the compact size of the electrical machine at these 
high-speeds, it is important to minimize the volume of the magnetic bearing as well. In this paper, 
an active magnetic bearing that has the radial and axial forces combined into a single bearing unit 
was presented. 
One of the critical and challenging research topics for active magnetic bearings is the analysis of the 
magnetic forces, their dependencies and their couplings. For this purpose, a simple analytical model 
of the bearing was described. With this model the bearing forces were discussed and some 
important dependencies and couplings were pointed out. Furthermore different ways to minimize 
the non-linearity of the force-current relation have been presented. To validate the analytical model 
it has been compared to the results of 3D-FEM simulations of the chosen bearing system. The 
simulation results showed a good accordance with the analytical results, which confirms the 
proposed model. Both approaches clearly showed the nonlinear characterization of the bearing 
forces depending on the bearing’s current operating point. It can be concluded that the correct 
description of the bearing forces is crucial in order to design the position controller. It may be even 
necessary to adapt the controller gains during operation according the current operating point. 
Further research in that field will be focused on the analysis of small-signal and large-signal 
stability of the control for such a coupled system under consideration of decoupling networks. 
Furthermore, the cross-coupling between the bearing axes shall be minimized and geometrical 
parameters will be studied in order to achieve stable control behavior. 
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