Tutorial Matrix Converter

Sparse Matrix Converter Conventional Matrix Converter

J.W. Kolar F. Schafmeister M.L. Heldwein

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Coordinates of the Speakers

J.W. Kolar F. Schafmeister M.L. Heldwein

ETH Zurich Power Electronic Systems Laboratory ETH Zentrum, ETL H22 Pysikstrasse 3 CH-8092 Zurich, Switzerland Tel.: +41-1-632-2834 Fax.: +41-1-632-1212 Email: kolar@lem.ee.ethz.ch

D-ITET Power Electronic Systems Laboratory

Tutorial Schedule

Introduction J.W. Kolar 9:00 - 10:00 Modulation Schemes I J.W. Kolar / F. Schafmeister 10:00 - 11:00 **Coffee Break** Modulation Schemes II F. Schafmeister 11:30 - 13:00 Lunch Break **Design Issues** F. Schafmeister 14:00 - 15:30 Coffee Break **Comparison to BBC** M.L. Heldwein 16:00 - 17:00 Future Developments M.L. Heldwein / J.W. Kolar 17:00 - 17:30

5(178)

MC Topologies & **Modulation Schemes I** Johann W. Kolar

 Conventional Matrix Converter Circuit Topology Basic Principle of Operation

Sparse Matrix Converter Topologies
 Derivation of the Circuit Topology
 Basic Principle of Operation

Conventional AC-AC Matrix Converter (CMC)

Circuit Topology

$$\hat{U}_{2,\text{max}} = \frac{\sqrt{3}}{2} \cdot \hat{U}_1 = 0.866 \cdot \hat{U}_2$$

7(178)

Conventional Matrix Converter

Mathematical Description of the Basic Operating Behavior

Voltage Conversion

$$\begin{pmatrix} u_A \\ u_B \\ u_C \end{pmatrix} = \begin{pmatrix} sAa & sAb & sAc \\ sBa & sBb & sBc \\ sCa & sCb & sCc \end{pmatrix} \cdot \begin{pmatrix} u_a \\ u_b \\ u_c \end{pmatrix}$$
$$\underbrace{u_{ABC}} = \underbrace{\underline{S}} \cdot \underbrace{\underline{u}}_{abc}$$

Current Conversion

$$\begin{pmatrix} i_a \\ i_b \\ i_c \end{pmatrix} = \begin{pmatrix} sAa & sBa & sCa \\ sAb & sBb & sCb \\ sAc & sBc & sCc \end{pmatrix} \cdot \begin{pmatrix} i_A \\ i_B \\ i_c \end{pmatrix}$$
$$\underbrace{i_{abc}} = \underbrace{\underline{S}^T} \cdot \underbrace{\underline{i}_{ABC}}$$

CMC Practical Realization

Common Collector Connection of the Bidirectional Switches

Separation of Components forming a Bidirectional Switch

18 Power Transistors18 Gate Drives6 Gate Drive Power Supplies

9 Collector Potentials

CMC Power Module (eupec)

EconoPACK 3

- 35 A IGBT3 Chips
- 7.5 kW (100% Overloading Capability)
- 6 Connection Islands
- **6** IGBT Islands
- Conventional Module Technique
- Collector Connections in **Module Center**
- 3 Equal DCBs

Conventional → **Indirect Matrix Converter**

Voltage Conversion Splitted into Rectifier and Inverter Operation

$$\begin{pmatrix} u_A \\ u_B \\ u_C \end{pmatrix} = \begin{pmatrix} spA & snA \\ spB & snB \\ spC & snC \end{pmatrix} \cdot \begin{pmatrix} sap & sbp & scp \\ san & sbn & scn \end{pmatrix} \cdot \begin{pmatrix} u_a \\ u_b \\ u_c \end{pmatrix}$$
$$\underbrace{u_{ABC}} = \underbrace{S_{WR}} \cdot \underbrace{S_{GR}} \cdot \underbrace{u_{abc}}$$

$$BC = \underline{S}_{WR} \cdot \underline{S}_{GR} \cdot \underline{u}_{abc}$$
$$\underline{u}_{ZK} = \begin{pmatrix} u_p \\ u_n \end{pmatrix} = \underline{S}_{GR} \cdot \underline{u}_{abc}$$

- Introduction of a Fictitious Rectifier and Inverter Stage
- Fictitious DC Link Voltage / DC Link Current
- Modulation as for DC Link Converters

Indirect Matrix Converter Could be Seen as Physical Realization of a Mathematical Concept

Basic Matrix Converter Topologies

Conventional

Indirect

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Functional Equivalence of IMC and CMC

Operation of the IMC is Restricted to $u_{pn} > 0$, Remaining Switching States Identical to CMC

No.	Α	В	С	S _{Aa}	S _{Ab}	S _{Ac}	S_{Ba}	S_{Bb}	S_{Bc}	S _{Ca}	S _{Cb}	S _{Cc}	<i>u</i> _{AB}	u_{BC}	<i>u_{CA}</i>	i_a	i_b	i_c
1	а	а	а	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0
2	b	b	b	0	1	0	0	1	0	0	1	0	0	0	0	0	0	0
3	С	с	с	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0
4	а	с	с	1	0	0	0	0	1	0	0	1	$-u_{ca}$	0	u_{ca}	i _A	0	$-\dot{l}_A$
5	b	С	С	0	1	0	0	0	1	0	0	1	u_{bc}	0	$-u_{bc}$	0	i_A	$-\dot{i}_A$
6	b	а	а	0	1	0	1	0	0	1	0	0	-и _{аb}	0	u_{ab}	$-\dot{i}_A$	i_A	0
7	С	а	а	0	0	1	1	0	0	1	0	0	u_{ca}	0	- <i>u</i> _{ca}	$-\dot{i}_A$	0	i_A
8	С	b	b	0	0	1	0	1	0	0	1	0	$-u_{bc}$	0	u_{bc}	0	$-\dot{i}_A$	i_A
9	а	b	b	1	0	0	0	1	0	0	1	0	u_{ab}	0	-и _{аb}	i _A	$-i_A$	0
10	с	а	с	0	0	1	1	0	0	0	0	1	u_{ca}	$-u_{ca}$	0	i_B	0	$-i_B$
11	С	b	С	0	0	1	0	1	0	0	0	1	$-u_{bc}$	u_{bc}	0	0	i_B	$-i_B$
12	а	b	а	1	0	0	0	1	0	1	0	0	u_{ab}	- <i>u</i> _{ab}	0	$-\dot{i}_B$	i_B	0
13	а	С	а	1	0	0	0	0	1	1	0	0	-и _{са}	u_{ca}	0	$-\dot{i}_B$	0	i_B
14	b	С	b	0	1	0	0	0	1	0	1	0	u_{bc}	$-u_{bc}$	0	0	$-\dot{i}_B$	i_B
15	b	а	b	0	1	0	1	0	0	0	1	0	-u _{ab}	u_{ab}	0	i_B	$-i_B$	0
16	с	С	а	0	0	1	0	0	1	1	0	0	0	u_{ca}	$-u_{ca}$	i_C	0	$-i_C$
17	С	С	b	0	0	1	0	0	1	0	1	0	0	$-u_{bc}$	u_{bc}	0	i_C	$-i_C$
18	а	а	b	1	0	0	1	0	0	0	1	0	0	u_{ab}	-u _{ab}	$-i_C$	i_C	0
19	а	а	С	1	0	0	1	0	0	0	0	1	0	-и _{са}	u_{ca}	$-i_C$	0	i_C
20	b	b	С	0	1	0	0	1	0	0	0	1	0	u_{bc}	$-u_{bc}$	0	$-i_C$	i_C
21	b	b	а	0	1	0	0	1	0	1	0	0	0	- <i>u</i> _{ab}	u_{ab}	i_C	$-i_C$	0
22	а	b	с	1	0	0	0	1	0	0	0	1	u_{ab}	u_{bc}	u_{ca}	i _A	i_B	i_C
23	а	с	b	1	0	0	0	0	1	0	1	0	$-u_{ca}$	$-u_{bc}$	-u _{ab}	i _A	i_C	i_B
24	b	а	с	0	1	0	1	0	0	0	0	1	-u _{ab}	$-u_{ca}$	$-u_{bc}$	i_B	i _A	i_C
25	b	с	a	0	1	0	0	0	1	1	0	0	u_{bc}	u_{ca}	u_{ab}	i_C	i_A	i_B
26	С	а	b	0	0	1	1	0	0	0	1	0	u_{ca}	u_{ab}	u_{bc}	i_B	i_C	\dot{i}_A
27	С	b	а	0	0	1	0	0	1	1	0	0	$-u_{bc}$	$-u_{ab}$	-и _{са}	i_C	i_B	$\overline{i_A}$

No.	A	В	С	S _{pa}	S_{pb}	S_{pc}	San	S_{bn}	S_{cn}	S_A	S_B	s_C	<i>u_{AB}</i>	u_{BC}	u _{CA}	и	i_a	i_b	i_c
1	р	р	р	Х	Х	Х	Х	Х	Х	1	1	1	0	0	0	-	0	0	0
10	n	n	n	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0	-	0	0	0
19	Х	Х	Х	1	0	0	1	0	0	Х	Х	Х	0	0	0	0	0	0	0
25	Х	Х	Х	0	1	0	0	1	0	Х	Х	Х	0	0	0	0	0	0	0
31	Х	Х	Х	0	0	1	0	0	1	Х	Х	Х	0	0	0	0	0	0	0
37	а	с	с	1	0	0	0	0	1	1	0	0	-u _{ca}	0	u_{ca}	-u _{ca}	<i>i</i> _A	0	$-\dot{i}_A$
38	а	с	с	0	0	1	1	0	0	0	1	1	-и _{са}	0	- <i>и</i> _{са}	u_{ca}	i_A	0	$-\dot{l}_A$
39	b	с	С	0	1	0	0	0	1	1	0	0	u_{bc}	0	$-u_{bc}$	u_{bc}	0	i_A	$-i_A$
40	b	с	с	0	0	1	0	1	0	0	1	1	u_{bc}	0	$-u_{bc}$	$-u_{bc}$	0	i_A	$-i_A$
41	b	а	а	0	1	0	1	0	0	1	0	0	-u _{ab}	0	u_{ab}	-u _{ab}	$-i_A$	i_A	0
42	b	а	а	1	0	0	0	1	0	0	1	1	-u _{ab}	0	u_{ab}	<i>u</i> _{ab}	$-i_A$	i_A	0
43	с	а	а	0	0	1	1	0	0	1	0	0	u_{ca}	0	-и _{са}	u_{ca}	$-i_A$	0	i_A
44	с	а	а	1	0	0	0	0	1	0	1	1	u_{ca}	0	$-u_{ca}$	$-u_{ca}$	$-i_A$	0	i_A
45	С	b	b	0	0	1	0	1	0	1	0	0	$-u_{bc}$	0	u_{bc}	$-u_{bc}$	0	$-i_A$	i_A
46	С	b	b	0	1	0	0	0	1	0	1	1	$-u_{bc}$	0	u_{bc}	u_{bc}	0	$-\dot{i}_A$	i_A
47	а	b	b	1	0	0	0	1	0	1	0	0	u_{ab}	0	$-u_{ab}$	u_{ab}	i_A	$-\dot{i}_A$	0
48	a	b	b	0	1	0	1	0	0	0	1	1	u_{ab}	0	- <i>U</i> ab	-u _{ab}	i_A	$-\dot{i}_A$	0
49	С	а	с	1	0	0	0	0	1	0	1	0	u_{ca}	$-u_{ca}$	0	$-u_{ca}$	i_B	0	$-i_B$
50	С	а	с	0	0	1	1	0	0	1	0	1	u_{ca}	$-u_{ca}$	0	u_{ca}	i_B	0	$-i_B$
51	С	b	с	0	1	0	0	0	1	0	1	0	$-u_{bc}$	u_{bc}	0	u_{bc}	0	i_B	$-i_B$
52	С	b	С	0	0	1	0	1	0	1	0	1	$-u_{bc}$	u_{bc}	0	$-u_{bc}$	0	i_B	$-i_B$
53	a	b	а	0	1	0	1	0	0	0	1	0	u_{ab}	$-u_{ab}$	0	$-u_{ab}$	$-i_B$	i_B	0
54	а	b	а	1	0	0	0	1	0	1	0	1	u_{ab}	$-u_{ab}$	0	u_{ab}	$-i_B$	i _B	0
55	а	С	а	0	0	1	1	0	0	0	1	0	$-u_{ca}$	u_{ca}	0	u_{ca}	$-i_B$	0	i_B
56	a	С	а	1	0	0	0	0	1	1	0	1	-и _{са}	u_{ca}	0	$-u_{ca}$	$-i_B$	0	i_B
57	b	С	b	0	0	1	0	1	0	0	1	0	u_{bc}	$-u_{bc}$	0	$-u_{bc}$	0	$-i_B$	i_B
58	b	С	b	0	0	1	0	1	0	1	0	1	u_{bc}	$-u_{bc}$	0	u_{bc}	0	$-i_B$	i_B
59	b	а	b	1	0	0	0	1	0	0	1	0	$-u_{ab}$	u_{ab}	0	u_{ab}	i_B	$-i_B$	0
60	b	а	b	0	1	0	1	0	0	1	0	1	$-u_{ab}$	u_{ab}	0	$-u_{ab}$	i_B	$-i_B$	0
61	С	С	а	1	0	0	0	0	1	0	0	1	0	u_{ca}	-и _{са}	$-u_{ca}$	<i>i</i> _C	0	$-i_C$
62	С	С	a	0	0	1	1	0	0	1	1	0	0	u_{ca}	$-u_{ca}$	u_{ca}	<i>i</i> _C	0	$-i_C$
63	С	С	b	0	1	0	0	0	1	0	0	1	0	$-u_{bc}$	u_{bc}	u_{bc}	0	i_C	$-i_C$
64	С	С	b	0	0	1	0	1	0	1	1	0	0	$-u_{bc}$	u_{bc}	$-u_{bc}$	0	<i>i</i> _C	- <i>i</i> _C
65	а	а	b	0	1	0	1	0	0	0	0	1	0	u_{ab}	$-u_{ab}$	$-u_{ab}$	$-i_C$	i_C	0
66	а	а	b	1	0	0	0	1	0	1	1	0	0	u_{ab}	-и _{аb}	u_{ab}	$-i_C$	i_C	0
67	а	а	С	0	0	1	1	0	0	0	0	1	0	$-u_{ca}$	u_{ca}	u_{ca}	$-i_C$	0	i_C
68	a	a	С	1	0	0	0	0	1	1	1	0	0	$-u_{ca}$	u_{ca}	- <i>и</i> _{са}	$-i_C$	0	<i>i_C</i>
69	b	b	С	0	0	1	0	1	0	0	0	1	0	u_{bc}	$-u_{bc}$	$-u_{bc}$	0	- <i>i</i> _C	i_C
70	b	b	С	0	1	0	0	0	1	1	1	0	0	u_{bc}	$-\mathcal{U}_{bc}$	u_{bc}	0	- <i>i</i> _C	i _C
71	b	b	a	1	0	0	0	1	0	0	0	1	0	- <i>U</i> _{ab}	u_{ab}	<i>U</i> _{ab}	i_C	-i _C	0
72	b	b	а	0	1	0	1	0	0	1	1	0	0	$-u_{ab}$	u_{ab}	$-u_{ab}$	i_C	-ic	0

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich — FUROPEAN

POWFR

As the operation is restricted to $u_{pn} > 0$ a blocking of S_{na} within the turn-on interval of S_{ap} is not required and both transistors could be combined in a single transistor $S_{a_{p}}$.

Sparse Matrix Converter Topologies

15(178)

Power Electronic Systems Laboratory

> USMC Relation to Three-Phase Buck+Boost PWM Rectifier

 \sim ~ -0 DLi I_0 $S \rfloor$ $C_0 =$ D_F $\int S_i$ U_{0} u Si=RT $i_{U\!,i}$) $l_{C_{F},i}$ $\pm N'$ C_F + $u_{C_{F,i}}$ $i_{N,i}$ L_F $u_{N,i}$ ~ N

Modular

Direct Three-Phase

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Three-Phase Buck+Boost Experimental Analysis

6kW 208...480V_{AC} / 50Hz 400V_{DC}

Load Step

 $\begin{array}{l} \textbf{2.76kW} \rightarrow \\ \textbf{5.52kW} \end{array}$

Commutation Strategies

Multi-Step Commutation

Zero DC Link Current Commutation

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Sparse Matrix Converter Topologies cont.

Very Sparse Matrix Converter (VSMC)

Four-Quadrant Switch IXYS FIO 50-12BD

Inverting Link Matrix Converter

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Classification of AC-AC Converter Topologies

Converter Type	Transistors	Diodes	Isolated Driver Potentials
CMC	18	18	б
IMC	18	18	8
SMC	15	18	7
VSMC	12	30	10
USMC	9	18	7

Realization Effort

Multi-Level SMC

Three-Level-Output Sparse Matrix Converter

Multi-Level CMC

Family of Multi-Level CMC Topologies

Double-Bridge Matrix Converter

Non-Sinusoidal Input Current

Three-Phase AC-AC Matrix Converter

Advantages / Disadvantages in Comparison to Conventional Voltage DC Link System

- + No Electrolytic Capacitor
- + No Braking Resistor
- + Lower Volume of Passive Components
- + Lower Switching Losses
- Lower Output Voltage Range
- More Complex Modulation

AND

DRIVES

System Behavior

Space Vector Modulation

Clamping of a Phase Input to *p* or *n*

$\varphi_{l} = \omega_{l} t$	u_p	\mathcal{U}_n	и
0 <i>π</i> /6	<i>U</i> _a	U_b, U_c	<i>И_{аb}, И_{ас}</i>
π/6 π/2	<i>u</i> _a , <i>u</i> _b	\mathcal{U}_{c}	u_{ac}, u_{bc}
π/2 5π/6	<i>u</i> _b	<i>И</i> _{<i>a</i>} , <i>И</i> _{<i>c</i>}	u_{ba} , u_{bc}
5π/67π/6	<i>И</i> _b , <i>U</i> _c	<i>U</i> _a	u_{ba} , u_{ca}
7π/63π/2	u_c	<i>U</i> _a , <i>U</i> _b	u_{ca}, u_{cb}
3π/211π/6	u_a, u_c	Ub	<i>U_{ab}, U_{cb}</i>
11π/60	Ua	U_b, U_c	u_{ab}, u_{ac}

26(178)

Input Voltages

$$u_a = \hat{U}_1 \cos(\omega_1 t)$$

$$u_b = \hat{U}_1 \cos(\omega_1 t - 2\pi/3)$$

$$u_c = \hat{U}_1 \cos(\omega_1 t + 2\pi/3)$$

Space Vector Modulation

Clamping of each Output Phase over a $\pi/3$ -wide Interval for Minimizing Switching Losses

$\varphi_2 = \omega_2 t$	\mathcal{U}_A	u_B	<i>u_c</i>
0 π/6	u_p	<i>и</i> _р , <i>и</i> _п	u_p, u_n
π/6 π/2	u_p, u_n	<i>и</i> _p , <i>и</i> _n	\mathcal{U}_n
π/2 5π/6	u_p, u_n	u_p	u_p, u_n
5π/67π/6	\mathcal{U}_n	u_p, u_n	u_p, u_n
7π/63π/2	u_n, u_p	u_p, u_n	u_p
3π/211π/6	<i>U</i> _n , <i>U</i> _p	\mathcal{U}_n	u_p, u_n
11 <i>π</i> /6 0	u_p	и _n , и _p	u_p, u_n

EUROPEAN

POWER ELECTRONICS

AND

DRIVES

Space Vector Modulation

Intervals considered

$$\varphi_1 = 0...\pi/6$$
 $\varphi_2 = 0...\pi/6$

Free-wheeling limited to Inverter Stage

 $d_{ab} + d_{ac} = 1$

Local Average Value of Input Currents

 $\bar{i}_a = (d_{ab} + d_{ac}) \,\bar{i}, \qquad \bar{i}_b = d_{ab} \,\bar{i}, \qquad \bar{i}_c = d_{ac} \bar{i}$

Ohmic Fundamental Mains Behavior

$$\begin{aligned} \cos \Phi_1 &= 1 \\ \bar{i}_a &\sim u_a; \qquad \bar{i}_b &\sim u_b; \qquad \bar{i}_c &\sim u_c \end{aligned}$$

Relative Turn-on Times

$$d_{ac} = -\frac{\overline{i}_c}{\overline{i}_a} = -\frac{u_c}{u_a}; \qquad \qquad d_{ab} = -\frac{\overline{i}_b}{\overline{i}_a} = -$$

 u_b

 \mathcal{U}_{a}

Time Intervals

$$\tau_{ac} = d_{ac}T_P/2 \qquad \tau_{ab} = d_{ab}T_P/2$$

Identical Phase/Duty Cycle of Active Inverter Switching States (100), (110) in τ_{ac} and τ_{ab}

$$\begin{split} \delta_{(100),ac} &= \frac{\tau_{(100),ac}}{\tau_{ac}} = \delta_{(100),ab} = \frac{\tau_{(100),ab}}{\tau_{ab}} = \delta_{(100)} & \underline{u}_{(100)} = \frac{2}{3}u \\ \delta_{(110),ac} &= \frac{\tau_{(110),ac}}{\tau_{ac}} = \delta_{(110),ab} = \frac{\tau_{(110),ab}}{\tau_{ab}} = \delta_{(110)} & \underline{u}_{(110)} = \frac{2}{3}ue^{j\frac{\pi}{3}} \end{split}$$

Generated Output Voltage Space Vector

$$\begin{split} \underline{u}_{2}^{*} &= \frac{\frac{2}{3}}{\frac{T_{P}}{2}} (u_{ac} \tau_{(100),ac} + u_{ab} \tau_{(100),ab} + u_{ac} e^{j\frac{\pi}{3}} \tau_{(110),ac} + u_{ab} e^{j\frac{\pi}{3}} \tau_{(110),ab}) \\ \underline{u}_{2}^{*} &= \frac{\frac{2}{3}}{\frac{T_{P}}{2}} (u_{ac} \tau_{ac} \delta_{(100)} + u_{ab} \tau_{bc} \delta_{(100)} + u_{ac} \tau_{ac} \delta_{(110)} e^{j\frac{\pi}{3}} + u_{ab} \tau_{bc} \delta_{(110)} e^{j\frac{\pi}{3}} \\ &= \frac{2}{3} (u_{ac} \frac{\tau_{ac}}{\frac{1}{2} T_{P}} + u_{ab} \frac{\tau_{ab}}{\frac{1}{2} T_{P}}) \delta_{(100)} + \frac{2}{3} (u_{ac} \frac{\tau_{ac}}{\frac{1}{2} T_{P}} + u_{ab} \frac{\tau_{ab}}{\frac{1}{2} T_{P}}) e^{j\frac{\pi}{3}} \delta_{(110)} \\ &= \frac{2}{3} (u_{ac} d_{ac} + u_{ab} d_{ab}) \delta_{(100)} + \frac{2}{3} (u_{ac} d_{ac} + u_{ab} d_{ab}) e^{j\frac{\pi}{3}} \delta_{(110)}. \end{split}$$

Local Average Value of the DC Link Voltage

$$\overline{u} = u_{ab}d_{ab} + u_{ac}d_{ac}$$
Output Voltage Space Vector
$$\underline{u}_{2}^{*} = \frac{2}{3}\overline{u}\delta_{(100)} + \frac{2}{3}\overline{u}e^{j\frac{\pi}{3}}\delta_{(110)}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

EIH

Therefore, the Calculating of the Relative On-Times of the Active Switching States of the Output Stage can be directly Based on \bar{u}

$$\delta_{(100)} = \frac{\sqrt{3}}{2} \frac{|\underline{u}_{2}^{*}|}{\frac{1}{2}\overline{u}} \cos(\varphi_{2}^{*} + \frac{\pi}{6}) \qquad \tau_{(100),ac} = -\frac{1}{\sqrt{3}} T_{P} \frac{U_{2}^{*}}{\hat{U}_{1}^{2}} u_{c} \cos(\varphi_{2}^{*} + \frac{\pi}{6}) \\ \delta_{(110)} = \frac{\sqrt{3}}{2} \frac{|\underline{u}_{2}^{*}|}{\frac{1}{2}\overline{u}} \sin \varphi_{2}^{*} \qquad \tau_{(100),ab} = -\frac{1}{\sqrt{3}} T_{P} \frac{\hat{U}_{2}^{*}}{\hat{U}_{1}^{2}} u_{b} \cos(\varphi_{2}^{*} + \frac{\pi}{6}) \\ \tau_{(110),ac} = -\frac{1}{\sqrt{3}} T_{P} \frac{\hat{U}_{2}^{*}}{\hat{U}_{1}^{2}} u_{c} \sin \varphi_{2}^{*} \\ \text{Absolute On-Times} \qquad \tau_{(110),ab} = -\frac{1}{\sqrt{3}} T_{P} \frac{\hat{U}_{2}^{*}}{\hat{U}_{1}^{2}} u_{b} \sin \varphi_{2}^{*}$$

Local Average Value of the DC Link Voltage

$$\overline{u} = \frac{3}{2}\hat{U}_1 \frac{1}{\cos(\omega_1 t)} \qquad \overline{u}_{\min} = 3/2\hat{U}_1$$

Output Voltage System

Voltage Transfer Ratio

$$M = \frac{\hat{U}_2^*}{\hat{U}_1} \le \frac{\sqrt{3}}{2}$$

$$u_{A}^{*} = \hat{U}_{2}^{*} \cos(\omega_{2}t + \varphi_{0})$$

$$u_{B}^{*} = \hat{U}_{2}^{*} \cos(\omega_{2}t - \frac{2\pi}{3} + \varphi_{0})$$

$$u_{C}^{*} = \hat{U}_{2}^{*} \cos(\omega_{2}t + \frac{2\pi}{3} + \varphi_{0})$$

ETH

Output Voltage Formation

Inverter Output Voltage Space Vectors

Average Output Voltage

Power Electronic Systems Laboratory

Variation of \bar{u} makes Necessary a Variation of the Inverter Modulation Index

$$m_{2} = \frac{|\underline{u}_{2}^{*}|}{\frac{1}{2}\overline{u}} = \frac{4}{3}\frac{\hat{U}_{2}^{*}}{\hat{U}_{1}}\cos(\omega_{1}t)$$

Input Current Formation

Load Phase Currents $i_A = \hat{I}_2 \cos(\omega_2 t + \Phi_2)$ $i_B = \hat{I}_2 \cos(\omega_2 t - \frac{2\pi}{3} + \Phi_2)$ $i_C = \hat{I}_2 \cos(\omega_2 t + \frac{2\pi}{3} + \Phi_2)$

Verify Equal Local Average Value $\bar{\imath}$ of the DC Link Current in τ_{ac} and τ_{ab}

$$\bar{i}_{ac} = \frac{1}{\tau_{ac}} (i_A \delta_{(100),ac} \tau_{ac} - i_C \delta_{(110),ac} \tau_{ac}) = i_A \delta_{(100)} - i_C \delta_{(110)}$$
$$\bar{i}_{ab} = \frac{1}{\tau_{ab}} (i_A \delta_{(100),ab} \tau_{ab} - i_C \delta_{(110),ab} \tau_{ab}) = i_A \delta_{(100)} - i_C \delta_{(110)}$$

$$\bar{i} = \bar{i}_{ac} = \bar{i}_{ab} = \frac{3}{4}m_2\hat{I}_2\cos\Phi_2 = \hat{I}_2\frac{\hat{U}_2^*}{\hat{U}_1}\cos\Phi_2\cos(\omega_1 t)$$

Variation of Input Stage Modulation Index due to Varying $\bar{\imath}$

$$m_1 = \frac{|\bar{\underline{i}}_1|}{\bar{\underline{i}}} = \frac{1}{\cos \omega_1 t}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Resulting Input Current Space Vector

$$\underline{\tilde{i}}_{1} = \overline{i} m_{1} = \hat{I}_{2} \frac{\hat{U}_{2}^{*}}{\hat{U}_{1}} \cos \Phi_{2} \cos(\omega_{1}t) \frac{1}{\cos \omega_{1}t} = \hat{I}_{1}$$

Resulting Input Phase Currents

$$\begin{split} \bar{i}_a &= \hat{I}_1 \cos(\omega_1 t) \\ \bar{i}_b &= \hat{I}_1 \cos(\omega_1 t - \frac{2\pi}{3}) \\ \bar{i}_c &= \hat{I}_1 \cos(\omega_1 t + \frac{2\pi}{3}) \end{split}$$

Space Vector Modulation Summary

Rectifier Stage Phase of Resulting Input Current is Adjustable

Inverter Stage Output Voltage Vector u_2^* is Adjustable

Applied Pulse Pattern is Specific for Each Combination of Active Sectors (6 x 6 = 36 Cases) !

34(178)

Input/Output Voltage and Current Transfer

Voltage and Current Transfer Ratio $M = \frac{3}{4}m_1m_2$

$$\begin{aligned} \cos \Phi_1 &= 1 & \hat{U}_2^* &= M \, \hat{U}_1 & M \in (0, \sqrt{3}/2) & \hat{U}_2^* &= M \, \hat{U}_1 \cos \Phi_1 \\ \hat{I}_1 &= M \, \hat{I}_2 \cos \Phi_2 & \hat{I}_1 &= M \, \hat{I}_2 \cos \Phi_2 \end{aligned}$$

35(178)

Simulation Results

Experimental Analysis

7.5kW 400V_{AC} / 50Hz 2.5kW/dm³

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Realization of the Input Stage

Relative Conduction Losses of Input and Output Stage (M₂=1)

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Conclusions

- Matrix Converter Functionality can be Achieved Employing Only 12 IGBTs
- High Reliability Due to Zero DC Link Current Commutation
- Lower Switching Losses than Voltage DC Link Rectifier/Inverter Combination
- Relatively Low Output Voltage Range
- ETHZ Sparse Matrix Converter Technology Evaluation Package !

Coffee Break...

Modulation Schemes II Frank Schafmeister

- Conventional Multi-Step Commutation
- Zero DC Link Current Commutation (for SMC / IMC)
- Optimized Output Stg. Clamping
- High Output Voltage (HV)
- Low Output Voltage (LV)
- Switching Loss Shifting (for SMC / IMC)
- Reactive Power Coupling

Voltage Transfer Matrix \underline{S}_{CMC}

$$\begin{pmatrix} u_{A} \\ u_{B} \\ u_{C} \end{pmatrix} = \begin{pmatrix} spA & snA \\ spB & snB \\ spC & snC \end{pmatrix} \cdot \begin{pmatrix} sap & sbp & scp \\ san & sbn & scn \end{pmatrix} \cdot \begin{pmatrix} u_{a} \\ u_{b} \\ u_{c} \end{pmatrix}$$
$$\underline{u}_{ABC} = \underline{S}_{Inv} \cdot \underline{S}_{Rect} \cdot \underline{u}_{abc}$$
$$\underline{u}_{ABC} = \underline{S}_{CMC} \cdot \underline{u}_{abc}$$

Current Transfer Matrix \underline{S}_{CMC}^{T}

$$\underline{i}_{abc} = \underline{S}_{CMC}^{T}$$

 \underline{i}_{ABC}

•

Equivalent Sw. States: IMC *≠* CMC

$S_{SMC,Rect}$	(ac)			(ab)		
S _{SMC,Inv}	(110)	(100)	(000)	(000)	(100)	(110)
\underline{S}_{CMC}^{T}	$\begin{array}{c} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}$	$ \begin{array}{c} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{array} $	$\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{array}$	$\begin{array}{c} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{c} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}$	$ \begin{array}{c} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} $
$\begin{array}{l} \delta_{110} + \delta_{100} + \\ + \delta_{000} = 1 \end{array}$	δ110	δ100	δ000	δ000	δ100	δ110
$d_{ac}+d_{ab}=1$		$d_{\rm ac}$			$d_{\rm ab}$	

Outline of Presentation

Matrix Modulation Schemes

- Conventional Multi-Step Commutation
- Zero DC Link Current Commutation (for SMC / IMC)
- Optimized Output Stg. Clamping
- High Output Voltage (HV)
- Low Output Voltage (LV)
- Switching Loss Shifting (for SMC / IMC)
- Reactive Power Coupling

Commutation

of Matrix Converter

Commutation Strategy for CMC / IMC: Multi-Step Comm.

Constraints: No Interruption of *i* No Short Circuit of Mains Phases

(exempl. $\underline{i > 0}$, $u_{ab} < 0$, $aA \rightarrow bA$)

Commutation

of Matrix Converter

Commutation Strategy for CMC / IMC: Multi-Step Comm.

Constraints: No Interruption of *i* No Short Circuit of Mains Phases

1st Step: off

(exempl. $\underline{i > 0}$, $u_{ab} < 0$, $aA \rightarrow bA$)

Commutation

of Matrix Converter

Commutation Strategy for CMC / IMC: Multi-Step Comm.

Constraints: No Interruption of *i* No Short Circuit of Mains Phases

(exempl. $\underline{i > 0}$, $u_{ab} < 0$, $aA \rightarrow bA$)

Power Electronic Systems C

Commutation

of Matrix Converter

Commutation Strategy for CMC / IMC: Multi-Step Comm.

Constraints: No Interruption of *i* No Short Circuit of Mains Phases

Commutation

of Matrix Converter

Commutation Strategy for CMC / IMC: Multi-Step Comm.

Constraints: No Interruption of *i* No Short Circuit of Mains Phases

Power Electronic Systems Laboratory

Commutation

of Matrix Converter

Commutation Strategy for CMC / IMC: Multi-Step Comm.

Constraints: No Interruption of *i*

Power Electronic Systems Laboratory

No Short Circuit of Mains Phases

Outline of Presentation

Matrix Modulation Schemes

- Conventional Multi-Step Commutation
- Zero DC Link Current Commutation (for SMC / IMC)
- Optimized Output Stg. Clamping
- High Output Voltage (HV)
- Low Output Voltage (LV)
- Switching Loss Shifting (for SMC / IMC)
- Reactive Power Coupling

 $t_{\mu} = 0$

 $\frac{i}{2}T_P$

Pulse

Mains

Period

 a_{\circ}

 b_{O}

 $\mathcal{C}_{\mathcal{O}}$

EUROPEAN

ELECTRONICS

POWER

DRIVES

AND

Commutation

of Matrix Converter

Commutation

of Matrix Converter

Commutation

of Matrix Converter

i = 0

Commutation

of Matrix Converter

i = *o*

Commutation

of Matrix Converter

$$i = -i_c$$

Commutation

of Matrix Converter

Commutation Strategy for Sparse MC: Zero DC Link Current Comm. (HV)

$$i = i_A$$

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Commutation

of Matrix Converter

Commutation Strategy for Sparse MC: Zero DC Link Current Comm. (HV)

Simple & Robust

because

Independent of (Measured) Current/Voltage Sign

Minimum Output Stg.
 Free-Wheeling Interval has to be ensured

Modified Modulation Schemes

Why modifying the Conventional (HV) Modulation Scheme?

Reduce Converter Losses & Widen System Operating Range (3 Schemes)

(Reduce Losses Reduce Switching Losses)

• Extend the Basic Functionality of the MC-System (2 Schemes)

Reduce Input Current Harmonics (not treated here)

Note: Every Modulation Scheme has Advantages & Disadvantages Reasonable Usage depends on Operating Condition

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

62(178)

A Whole Input- & Output Period Combination is Represented ($\varphi_1 = 0...2\pi$, $\varphi_2 = 0...2\pi$)

2. Reduce Local Maximum \Im Equalize sector specific Levels

Outline of Presentation

Matrix Modulation Schemes

- Conventional Multi-Step Commutation
- Zero DC Link Current Commutation (for SMC / IMC)

Optimized Output Stg. Clamping

(1st Measure)

(2nd Measure)

(3rd Measure)

- High Output Voltage (HV)
- Low Output Voltage (LV)
- Switching Loss Shifting (for SMC / IMC)
- Reactive Power Coupling

EUROPEAN POWER ELECTRONICS AND DRIVES 65(178)

Swiss Federal Institute of Technology Zurich

2nd Measure: Reduce DC Link Voltage

by Modifying Rectifier Stage Modulation

- **Basic Idea:** Formation of DC Link Voltage (\mathbf{u}) from the Two Small Positive Line-Line Input Voltages
- Effect: Inverter Stage Modulation does Not Change, but Voltage being Switched by Inverter's Semiconductors (*u*) **Reduces Significantly**
- Sw. Losses are Reduced Significantly
- Max. Output Voltage is Reduced Low Voltage (LV) Modulation

Requirements: Rect. Stage Modulat.

- Positive DC Link Voltage (u)
- Sinusoidal Input Current $(\overline{i_{a,b,c}}$ resp. $\overline{i_{l}})$

Outline of Presentation

Matrix Modulation Schemes

- Conventional Multi-Step Commutation
- Zero DC Link Current Commutation (for SMC / IMC)
- Optimized Output Stg. Clamping

(1st Measure)

(2nd Measure)

(3rd Measure)

- High Output Voltage (HV)
 Low Output Voltage (LV)
- Switching Loss Shifting (for SMC / IMC)
- Reactive Power Coupling

EUROPEAN POWER AND DRIVES 69(178)

Power Electronic Systems Analytic Equations:

Turn-On-Times & DC Link Volt.

Considering:

$$\bar{i}_a = d_{ab}\bar{i}$$
$$\bar{i}_b = (d_{bc} - d_{ab})\bar{i}$$
$$\bar{i}_c = -d_{bc}\bar{i}$$

and:

 $d_{ab} + d_{bc} = 1$

$$\begin{split} & \bar{i}_a \sim u_a \\ & \bar{i}_b \sim u_b \qquad (\phi_l = 0) \\ & \bar{i}_c \sim u_c \end{split}$$

Turn-on-Times:

$$\tau_{(100),ab} = \frac{T_p}{\sqrt{3}} \frac{\hat{U}_2}{\hat{U}_1^2} u_a \cos(\varphi_2 + \frac{\pi}{6})$$

$$\tau_{(110),ab} = \frac{T_p}{\sqrt{3}} \frac{\hat{U}_2}{\hat{U}_1^2} u_a \sin(\varphi_2)$$

$$\tau_{(110),bc} = \frac{T_p}{\sqrt{3}} \frac{\hat{U}_2}{\hat{U}_1^2} (-u_c) \sin(\varphi_2)$$

$$\tau_{(100),bc} = \frac{T_p}{\sqrt{3}} \frac{\hat{U}_2}{\hat{U}_1^2} (-u_c) \cos(\varphi_2 + \frac{\pi}{6})$$

DC Link Voltage (Local Average):

$$\overline{u} = \frac{\sqrt{3}}{2} \hat{U}_1 \frac{1}{\cos(\omega_1 t - \frac{\pi}{6})}$$

Conventional vs. Low Voltage Modulation: Characteristic Quantities during a Pulse Period

- One Input Phase (a) is Clamped to one DC Link Bus Bar (p)
- Other Input Phases (b,c) are Switched to the remaining DC Link Bus Bar (n)

- No Input Phase is Clamped to any DC Link Bus Bar
- One Input Phase (b) is Switched between pos.(p) and neg.(n) Bus Bar
- Current Blocks of Both Polarities appear in One Input Phase (b)

Simulation, HV vs. LV: Characteristic Quantities

Output Voltage Formation

Input Current Formation

> Parameters: $f_1 = 50Hz$ $f_2 = 100Hz$ $f_P = 20kHz$ L = 1mH $C = 9\mu F$

Simulation Results, HV vs. LV: Sw. Losses, Common Mode Volt.

Switching Losses

Switching Losses are reduced to ≈ 58%

Common Mode Voltage is reduced to $\approx 75\%$

Simulation Results, HV vs. LV:

Input Voltage Ripple

Output Current Ripple

Current Stress HV 16 $\phi_2 = 0$ $i_{Sa, I} +$ LV 14 IS,AVG ■ i_{SpA, I} $i_{Sa, II}$ + 12 [A] i_{SpA, II} 10 i_{Sa, I} 8 $\stackrel{\bigstar}{=} i_{Sa, II}$ 6 4 2 0 0.2 0.4 0.6 0.8 0 M_{12}

Input Voltage Ripple Doubles

- Output Current Ripple slightly Reduced
- For a given Û₂ (M₁₂) the Component Current Stress Increases (Conduction Losses)

Outline of Presentation

Matrix Modulation Schemes

- Conventional Multi-Step Commutation
- Zero DC Link Current Commutation (for SMC / IMC)
- Optimized Output Stg. Clamping
- (1st Measure)

- High Output Voltage (HV)
- Low Output Voltage (LV)

Reactive Power Coupling

Switching Loss Shifting (for SMC / IMC)

- (2nd Measure)
- (3rd Measure)

EUROPEAN POWER AND DRIVES 77(178)

3rd Measure:

iА

 $\frac{1}{2}T_P^{\mid}$

Shift Sw. Losses to Rectifier Stage & Split

i > 0:

Sw. Losses of Most Stressed Inverter IGBT (S_{Cn}) are Split to Two Rectifier IGBTs (S_{bnb}, S_{cnc})

- ➡ For Low Output Frequency (Speed): Scn is Not the Bottle-Neck IGBT anymore
- Higher Output Current (Torque) achievable

80(178)

81(178)

Outline of Presentation

Matrix Modulation Schemes

- Conventional Multi-Step Commutation
- Zero DC Link Current Commutation (for SMC / IMC)
- Optimized Output Stg. Clamping (1st Measure)
- High Output Voltage (HV)
- Low Output Voltage (LV)

- (2nd Measure)
- Switching Loss Shifting (for SMC / IMC) (3rd Measure)

Reactive Power Coupling

EUROPEAN POWER ELECTRONICS AND DRIVES 85(178)

Extending the Conventional MC-Functionality Input & Output Reactive Power Coupling

Possible Applications of this Novel Modulation

- Compensating Capacitive Mains Currents ($\phi_1 = -\pi$) drawn by the Input Filter Even while Driving Induction Motor with Zero Load Torque ($\phi_2 = \pi$)
- Facilitating for Arbitrary ϕ_2 a certain Amount of Reactive Input Power at Maximum Output Voltage (M_{12} =1)

Precondition (No Load Case) for Operating MC-System in Boost Mode

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Outp.Volt & Inp.Current Formation $\overline{p} = 0$

Merge Current Blocks to Regain Voltage Modulation Range

Reactive Power Coupling I (RPCI) Pulse Merging & Additional Turn-On-Times

Considering geometrical relations:

$$\frac{\sin(\pi/3 - \varphi_1)}{d_{ac}^* \cdot i_{2,max}} = \frac{\cos(\varphi_1 + \pi/6)}{d_{ac}^* \cdot (-i_B)} = \frac{\sin(\pi/3)}{\hat{I}_{1q}^*}$$
$$\frac{\sin(\pi/3 + \varphi_1)}{d_{ba}^* \cdot i_{2,max}} = \frac{\cos(\varphi_1 - \pi/6)}{d_{ab}^* \cdot i_B} = \frac{\sin(\pi/3)}{\hat{I}_{1q}^*}$$

and:

$$i_B = \hat{I}_2 \cdot \cos(\varphi_2 - 2\pi/3 - \pi/2) = -\hat{I}_2 \cdot \cos(\varphi_2 - \pi/6)$$

Additional Turn-on-Times:

$$d_{ab}^{*} = \frac{2}{\sqrt{3}} \frac{\hat{I}_{1q}^{*}}{\hat{I}_{2}} \cdot \frac{\cos(\varphi_{1} - \pi/6)}{\cos(\varphi_{2} - \pi/6)}$$
$$d_{ac}^{*} = \frac{2}{\sqrt{3}} \frac{\hat{I}_{1q}^{*}}{\hat{I}_{2}} \cdot \frac{\cos(\varphi_{1} + \pi/6)}{\cos(\varphi_{2} - \pi/6)}$$

Reactive Power Coupling I (RPCI) Simulation & Experimental Result

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Reactive Power Coupling II (RPCII) Pulse Merging & Additional Turn-On-Times

Outp.Volt & Inp.Current Formation

Only One of the Additional Two Current Blocks can be Merged Additional Turn-on-Times:

•
$$\varphi_1 < 0$$
:
 $d_{ac}^* = \frac{2}{\sqrt{3}} \frac{\hat{I}_{1q}^*}{\hat{I}_2} \cdot \frac{\sin(|\varphi_1|)}{\cos(\varphi_2 - \pi/6)}$
 $d_{cb}^* = \frac{2}{\sqrt{3}} \frac{\hat{I}_{1q}^*}{\hat{I}_2} \cdot \frac{\cos(|\varphi_1| + \pi/6)}{\cos(\varphi_2 - \pi/6)}$

RPC I vs. RPC II Operating Limits & Evaluation

- **RPC I:** + For Large M_{12} ($M_{12} > 0.8$)
 - + Allows Even at Full Output Voltage ($M_{12} = 1$) a Transfer Ratio of $\hat{I}_{1q,max} / \hat{I}_2 = 1/8$
 - + More Easy to Implement

Intersection of both Limits: M₁₂ = 0.8

- **RPC II:** + For Small M_{12} ($M_{12} < 0.8$)
 - + Facilitates Large reactive Current Transfer Ratios (up to $\hat{I}_{1q,max} / \hat{I}_2 = 3/4 @ M_{12} = 0$)

Hybrid Modulation Scheme for MC

Optimum Combination, $(\phi_2 = \pi/2)$

94(178)

Conventional:	Modified:	Modulation Differs for:
High Output Voltage Modulation	Low Output Voltage Modulation + Reduced Switching Losses - Max. Output Voltage is Reduced	Input Stage (Formation of DC-link Voltag
Switching Losses in Output Stage Only	Switching Loss Shifting to Input Stage+ Shifting & Splitting Switching Losses- Works for Output Phase Displacement φ₂ < π/6 & High Output Currents Only	Input- & Output Stage (Commutation Interaction)
None Reactive Power Coupling	Input & Output Reactive Power Coupling RPC I RPC I RPC I RPC II + Purely Reactive Output Power can be Coupled to Purely Reactive Input Power	Input- & Output Stage (Formation of Reactive Input Current / Output Voltage)

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

POWER ELECTRONIC

98(178)

Lunch Break...

- Calculation of the Stresses on the Components
- EMI Input Filter Design
- Digital Realization of the System Control
- Power circuit protection
- Active Input Filter Damping
- Unbalanced Mains
- **Experimental Analysis / Operating Characteristics**

Calculation of the Stresses on the Components

- Aim of presented Calculation Method
 - Providing Dimensioning Equations for Automated Use in Spreadsheet / Applet
- Switching Losses P_{Sw}
 - смс
 - (V)SMC

Conduction Losses P_c

- CMC in Paper
- (V)SMC in Paper

(F. Schafmeister, J. Kolar, "Analytical Calculation of the Conduction and Switching Losses of the Conventional Matrix Converter and the (Very) Sparse Matrix Converter", APEC 2005.)

Switching Losses Basic Approach

From Measured Data to an Analytic Model of the single Switching Losses:

IGBT- Switching Loss Parameter							
T_{j}		<i>K</i> ₁	K ₂	K ₃	K4	K 5	
25°C	Soff	129	-947 10 ⁻³	471 10 ⁻³	-84.1 10 ⁻³	$2.52 \ 10^{-3}$	
	Son	41.6	1.75	308 10 ⁻³	$60.7 \ 10^{-3}$	-923 10 ⁻⁶	
	Doff	66.6	-2.54	332 10 ⁻³	95.4 10 ⁻³	$2.90 \ 10^{-3}$	
	Soff	179	-1.31	$650 \ 10^{-3}$	-116 10 ⁻³	$3.48 \ 10^{-3}$	
120°C	Son	70.0	2.94	518 10 ⁻³	$102 \ 10^{-3}$	-1.55 10 ⁻³	
	Doff	97.9	-3.73	488 10 ⁻³	140 10 ⁻³	$4.27 \ 10^{-3}$	
Units		$nWs(VA)^{-1}$	$nWs(VA^2)^{-1}$	$nWs(V^2)^{-1}$	$nWs(V^2A)^{-1}$	$nWs(V^2A^2)^{-1}$	

Only Physically Sensible Terms are Considered for a Least-Square Approximation of the Measured Data

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Power Electronic Systems Laboratory

Power Electronic Systems
LaboratorySwitching Losses - CMC

Calculation Principle

Summing Up Switching Actions of One Pulse Period (Exemplary for S_{aA})

 $u_{aA} > 0 | u_{aA} < 0$

 D_{aA}

 T_{Aa}

 T_{aA}

 D_{Aa}

b Junction Temp. Rise: <u>Average over Thermal Time Constant</u> τ_{th}

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

107(178)

Switching Losses – CMC Results

Result Global Losses

$$\begin{split} P_{Sw} & T/D = \frac{f_P \hat{U}_1}{96\pi^2} \Big(22 \Big(2K_3 + K_5 \hat{I}_2^2 \Big) \pi^2 \hat{U}_1 + 12 \hat{I}_2 \Big(12K_1 + \sqrt{3}(8K_1 + 3K_4 \hat{U}_1) \Big) + \\ & + 3\pi \Big(4 \hat{I}_2 (\hat{I}_2 K_2 + 10K_4 \hat{U}_1) + \sqrt{3}(2K_3 \hat{U}_1 + \hat{I}_2^2 (8K_2 + K_5 \hat{U}_1)) \Big) - \\ & - 12 \hat{I}_2 \Big(12K_1 + K_4 (3\sqrt{3} + 4\pi) \hat{U}_1 \Big) \cos \Phi_2 - \\ & - 3 \hat{I}_2^2 \Big(12\sqrt{3}K_2 + \hat{U}_1 K_5 (9 + 4\sqrt{3}\pi) \Big) \cos(2\Phi_2) \Big) \end{split}$$

Transistors:	$K_i \rightarrow K_{i,Ton} + K_{i,Toff}$
Diodes:	$K_i \rightarrow K_{i,Doff}$
Entire Converter:	$K_i \rightarrow 18(K_{i,Ton} + K_{i,Toff} + K_{i,Doff})$

Result *Maximum in φ***2**

$$\hat{\vec{p}}_{S_{w,T/D}} = \frac{f_P}{16\pi} \left(12 \left(3 + 2\sqrt{3} \right) \left(K_1 i_{S_w} + K_2 i_{S_w}^2 \right) \hat{U}_1 + 3 \left(3\sqrt{3} + 10\pi \right) \left(K_3 + K_4 i_{S_w} + K_5 i_{S_w}^2 \right) \hat{U}_1^2 \right)$$

with:

$$i_{Sw} = \hat{I}_2 \cos(\Phi_2 - \pi/6)$$
 for $\Phi_2 \in [0...\pi/6]$
 $i_{Sw} = \hat{I}_2$ for $\Phi_2 \in [\pi/6...\pi/2]$

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ronics s 109(178)

EUROPEAN

POWFR

Switching Losses – (V)SMC Results

Result Global Losses

$$P_{S_{W,T/D}} = \frac{f_P \hat{U}_1}{32\pi^2} \Big(48\hat{I}_2 \Big(6K_1 + K_2 \hat{I}_2 \pi \Big) + 4\hat{U}_1 (3\sqrt{3} + 4\pi) \Big(6K_4 \hat{I}_2 + 2\pi K_3 + \pi K_5 \hat{I}_2^2 \Big) \Big) - 12\hat{I}_2 \Big(12K_1 + K_4 (3\sqrt{3} + 4\pi) \hat{U}_1 \Big) \cos \Phi_2 - 3\hat{I}_2^2 \Big(12\sqrt{3}K_2 + \hat{U}_1 K_5 (9 + 4\sqrt{3}\pi) \Big) \cos(2\Phi_2) \Big)$$

Transistors: $K_i \rightarrow K_{i,Ton} + K_{i,Toff}$ Diodes: $K_i \rightarrow K_{i,Doff}$ Entire Converter: $K_i \rightarrow 6(K_{i,Ton} + K_{i,Toff} + K_{i,Doff})$

Result *Maximum in* φ **2**

$$\hat{\bar{p}}_{Sw,T/D} = f_P \left(\left(K_1 i_{Sw} + K_2 i_{Sw}^2 \right) \frac{9}{\pi} \hat{U}_1 + \left(K_3 + K_4 i_{Sw} + K_5 i_{Sw}^2 \right) \left(\frac{9\sqrt{3}}{4\pi} + 3 \right) \hat{U}_1^2 \right)$$

with:

$$i_{Sw} = \hat{I}_2 \cos(\Phi_2 - \pi/6) \qquad \text{for} \quad \Phi_2 \in [0...\pi/6]$$
$$i_{Sw} = \hat{I}_2 \qquad \qquad \text{for} \quad \Phi_2 \in [\pi/6...\pi/2]$$

Global Losses Entire Converter Comparison CMC – VSMC

Total Global Losses $P_{tot} = P_{Sw} + P_C$ in Dependency of M and Φ_2

POWER ELECTRONICS

DRIVES

AND

SMC - CMC Performance Comparison Losses in Dependency of Modulation Index

Comparison: HV vs. LV Modulation for SMC

Sw. Loss Reduction λ achieved with LV: CMC vs. SMC,

Requirements and critical points

Requirements

- Fulfillment of international EMC regulations what translates into minimum filter attenuation at given frequencies
- Minimization of input current displacement factor
- Limitation of the energy stored in the filter components, in order to minimize the physical size
- Sufficient or optimum passive damping, in order to avoid oscillations and also for no-load operation with minimum losses in the damping resistors
- Avoidance of filter resonance frequencies at multiples of the switching frequency
- Minimization of the filter output impedance, reducing system stability problems and control design restrictions

Critical Aspects

- The input current spectrum for a Matrix converter is not obviously calculated
- Uncertainty in the mains impedance
- Modeling of the EMC test receiver
- High-frequency behavior is influenced by parasitics of the filter elements and therefore difficult to predict
- In today's power electronic systems the filter must be as cheap and as small as possible, presenting a low-count in components, must also acquaint for the smallest physical dimensions possible
- System control stability is affected by the inclusion of the filter

Filter Design Procedure

Modeled Spectral Measurement Chain (01)

Modeled Spectral Measurement Chain (02)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

DRIVES

Three-phase filter (topology and function) and final result

VSMC input current

measurement without filter

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

input filtered current

15 10 Current [A] -5 -10 -15 12 0 2 4 6 8 10 14 16 18 20 Time [ms]

experimental result (DM conducted emission)

Three-phase Common / Differential Mode Separator

Function

 Allow the measurement of the different emission modes (DM and CM) in order to properly evaluate the performance of designed filters or in order to acquire the emissions information for a filter design.

three-phase CM/DM separator basic schematic

 $u_{DM,a}$

Dimensions: 12.0 x 9.5 x 5.7 cm (4.75x3.75x2.25 in.)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

120(178)

EUROPEAN

POWER ELECTRONIC

DRIVES

AND

Three-phase Common / Differential Mode Separator

CM separator output

Test setup for the CE measurements

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

Digital Processing Board (RMX)

- 16-bit, fixed point DSP Core, up to 160 MIPS
- Built in Watchdog and Power On Reset Circuit
- 40K Words On chip RAM, Configured as 32K Words 24-bit Program RAM and 8K Words 16-bit Data RAM
- 288 KByte non-volatile Flash Memory, programmable via FlashLink™
- External Memory Interface
- 8-Channel, 20 MSPS, 14-bit Analog to Digital Converter
- Digitally configurable Trip Levels for each Ana-log Input Channel
- Three external Error Signal Inputs
- Three Phase 16-bit Center Based PWM Generation Unit with 12.5ns resolution
- Dual 16-bit Auxiliary PWM-Outputs
- SPI Communications Port with Master or Slave Operation
- Synchronous Serial Communications Port (SPORT)
- UART with auto-flow-control
- Three 32-bit Timers
- Ten General Purpose Flag I/O Pins
- 32-bit Encoder Interface Unit
- Optional Controller Area Network (CAN) Interface
- External Hardware Monitor and RS232 Interface
- JTAG Emulation Port
- Multiple Boot Modes
- 1.0V and 2.0V Voltage References
- 5 V Single Supply
- Extendable with individual Modules

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich –

Matrix Converter Module board (MCM)

Function

• The translation from the turn-on times and switching vectors into PWM signals is the main function of this board.

Main features

- Two CPLDs running at 100 MHz
- Extension Module for the RMX DSP Controller Module
- Generation of PWM Signals for a Matrix Converter
- Buffered PWM Output
- Multiple PWM Generation Modes
- 5 V Single Supply

124(178)

DRIVES

Level Shift Interface board (LSI)

Function

• Provide and interface between the electrical quantities in the power circuits and the ADC converters in the DSP board.

Main features

- Measurement of high voltages through simple resistors/operational amplifier dividers
- · Voltages are not insulated (differential measurements)
- High frequency filtering is provided for the signals that present high frequency components
- The current transducers outputs have their signal levels adapted to the DSP levels

Active Input Filter Damping

Basic Situation

EIM

Space Vector Representation of Oscillating Filter Voltage

Active Input Filter Damping

1st Approach:

Active Damping by Ohmic HF Behavior at Power Circuit Input

Sim. for passively totally Undamped Filter @ $\hat{I}_2 = 3A$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Control Implementation

127(178)

Active Input Filter Damping

2nd Approach: Active Damping by Inductive (Capacitive) Behavior at Power Circuit Input

Principle

Compared to 1st Approach: Reduced Effectiveness, but

Input Current- & Output Voltage Waveform Quality is fully Preserved

Unbalanced Mains

As long as $\hat{U}_2^* < \hat{U}_{2, max}$: Even with Convential Modulation: Unbalanced Mains do Not Affect the Output Voltage System

The varying $\hat{U}_{I}(t)$ is Measured anyway & Compensated by Adaption of Modulation Index:

$$M_{12}(t) := \frac{2}{\sqrt{3}} \frac{\hat{U}_2^*}{\hat{U}_1(t)} \in [0...1]$$

Unbalanced Mains

Conventional Modulation

Eidgenössische Technische Höchschule Zürich Swiss Federal Institute of Technology Zurich

Input Current Waveform & Spectrum

But: Conv. Modulation generates a 3rd Order Harmonic in the Input Current

EUROPEAN

130(178)

POWER

DRIVES

Unbalanced Mains

Improved Modulation

Set the desired Active Power Constant

Adapted Input Values for Conv.
Modulation

$$\varphi_{i1}^{*} \coloneqq \varphi_{1} - \phi_{i1,pos} = \arctan(\frac{p^{*}u_{1\beta} - q^{*}u_{1\alpha}}{p^{*}u_{1\alpha} + q^{*}u_{1\beta}})$$
$$M_{12}^{*} = \frac{2}{\sqrt{3}} \cdot \frac{\hat{U}_{2}^{*}}{\hat{U}_{1}^{*}} \cdot \frac{1}{\cos(\phi_{i1,pos})}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Improved Input Current Waveform & Spectrum

Experimental Analysis / Operating Characteristics

IGBT-VSMC prototype

Input (3~AC)

Input RMS line voltages (U1) Maximum input RMS current Mains frequency Current displacement angle

Output (3~AC) Output RMS line voltages (U2) Maximum output power Output frequency Current displacement angle

3 x o - 340 V $S_{2} = 6.8 \text{ kVA}$ $f_{2} = 0 - 500 \,\text{Hz}$ $\phi_2 = 0^\circ - 90^\circ$

3 x 400 V +15/- 20%

 $I_{1.max} = 13 \text{ A}$

 $f_1 = 50 \, \text{Hz}$

 $\phi_1 = 0^{\circ}$

 $f_n = 20/40 \text{ kHz}$

Very Sparse Matrix Converter

Si IGBTs + fast recovery Si diodes

Power part: 240 x 200 x 85 mm Control part: 90 x 80 x 40 mm

Power part: 3100 g Control part: 200 g

Experimental Analysis / Operating Characteristics

IGBT-VSMC measurements – active power transfer

Operating conditions

• V_{in} (RMS) = 230 V

- $f_2 = 100 \text{ Hz}$
- *M* = 0.5
- $f_1 \approx 0^{\circ}$
- $x_{2}^{7} = 90^{\circ}$
- Modulation: Conventional (HV)

Experimental Analysis / Operating Characteristics

IGBT-VSMC measurements – active power transfer

Operating conditions

• V_{in} (RMS) = 230 V

- $f_2 = 100 \text{ Hz}$
- *M* = 0.3
- $f_1 \approx 0^{\circ}$
- $x_{2}^{7} = 90^{\circ}$
- Modulation: Low Output Voltage (LV)

Experimental Analysis / Operating Characteristics

IGBT-VSMC measurements – reactive power coupling

Operating conditions

- V_{in} (RMS) = 120 V
- • $f_2 = 100 \text{ Hz}$
- *M* = 0.2
- *MI* = 0.38
- $x_{1}^{n} = -90^{\circ}$
- $f_2 = 90^{\circ}$
- Modulation: RPC I

Coffee Break...

Comparison to Four-Quadrant Voltage DC Link Converter Systems

Marcelo L. Heldwein and Frank Schafmeister

- Comparison of the Realization Effort Assumptions, design and losses
- Losses and Efficiency dependent on Operating Point Theoretical limits
- Power density

Physical layout, photographs, dimensions and power density

EMI Filtering Effort

Design procedure, components, structure and volume

Specifications

Input (3~AC) Output (3~AC) Switching frequency Dynamic Modulation Margin 400 V, +10%, -15%, 50 Hz $S_2 = 6.8 \text{ kVA } @ T_{amb} = 45^{\circ}\text{C}$ SMC: Input $f_p = 20 \text{ kHz} / \text{Output } f_p = 40 \text{ kHz}$ BBC: Input $f_p = 40 \text{ kHz} / \text{Output } f_p = 40 \text{ kHz}$ $\Delta M_{min} = 5\%$ PM Synchronous Motor (PMSM)

Load

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich BBC (Back-To-Back Converter)

138(178)

BBC:

- constant DC Bus Voltage at Higher Level (boostable even higher)
- lower Output Currents due to Higher Output Voltage Level

Approach for an unbiased comparison

Ideally designed motors for each of the topologies

VSMC

$$U_{2,N} = \frac{\sqrt{3}}{2} (1 - \Delta M_{\min}) \cdot U_{1,\min} = 280V$$
$$I_{2,N} = \frac{P_{2N}}{\sqrt{3} \cdot U_{2,N}} = 14A$$

BBC

$$U_{dc} = (1 + \Delta M_{\min}) \cdot \sqrt{2} \cdot U_{1,\max} \approx 655V$$

$$U_{2,N} = (1 - \Delta M_{\min}) \cdot \frac{1}{\sqrt{2}} U_{dc} = U_{1,\max} = 440V$$

$$I_{2,N} = 8.9A$$

Additionally to these assumptions the BBC DC-link capacitor is minimized

 U_1 : Input RMS voltage

 U_{dc} : DC-link voltage

 I_1 : Input RMS current

 P_2 : Output power

 I_2 : Output RMS current

 U_2 : Output RMS voltage

 $C_{DC-link.min} \cong 31 \mu F$

Comparison of the Realization Effort

Choice of the DC-link capacitor for the BBC

$$C_{DC-link,\min} = \frac{L_{in} \cdot P_2^2 \left[\left(E_{dc} - U_{dc} \right)^2 - \left(E_{dc} + U_{dc} \right)^2 \right]}{E_{dc}^2 \cdot U_{dc}^2 \left(\left(\min(u_{dc}) + E_{dc} \right)^2 - \left(U_{dc} + E_{dc} \right)^2 \right)}$$

 E_{dc} : Peak input voltage U_{dc} : DC-link voltage L_{in} : Boost inductor U_1 : Input RMS voltage $i_{1,ripple}$: Input current ripple, peak-to-peak

Ref.: A. Carlsson, "The back-to-back converter", Masters Thesis; Lund Institute of Technology; Lund, Sweden; (1998)

The capacitor is chosen so that the voltage does not fall below a defined minimum value during the transient from full regeneration to full motoring mode

Choice of the boost inductor for the BBC

$$L_{in,\min} = \frac{U_1 / \sqrt{3}}{2 \cdot \sqrt{6} \cdot f_P \cdot i_{1,ripple}}$$

$$L_{in,\min} \cong 1mH$$

The inductor is chosen so that the current ripple at the switching frequency is lower than 20% of the peak input current

Thermal simulation and main components

Description		BBC		Very Sparse Matrix
Semicond. Input	3	IXYS FII 50-12E	6	IXYS FIO 50-12BD
Semicond. Output	3	IXYS FIO 50-12E	3	IXYS FII 50-12E
Boost Inductor	3	1mH (toroidal)		Not used
DC-Link Cap.	4	8µF, foil, 400V _{AC}		Not used
		IXYS FIO 50-12E		IXYS FIO 50-12BD
$R_{th,diodes} = 1.3 °C_{th,diodes}$ $R_{th,lCBTc} = 0.6 °C_{th}$	/W /W			

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

BBC requires larger heat sink

Losses and thermal limits comparison (@ rated load and nominal input voltage)

Losses distribution

VSMC: No Sw. Losses in Input Stage BBC: Sw. Losses are Dominant in both Stages

Junction temperatures

Limiting Device VSMC: *Output IGBT* Limiting Device BBC: *Rectifier Diode*

143(178)

Losses and Efficiency dependent on Operating Point

Efficiency

Max. Output Current for $f_2=0$

VSMC vs. BBC – Relative Loss Difference in Dependency on Load Condition & f_p

Under Rated Load Condition the critical f_p is about 14kHz

VSMC is advantageous in Efficiency within Whole Speed-Torque-Plane beyond 14kHz

$$\Delta P_{Loss} = (P_{Loss,VSMC} - P_{Loss,BBC}) / P_{2N}$$

EMI Filtering Effort

Design procedure

EMI Filtering Effort

Comparison

	Back-to-back	VSMC	_
Total DM capacitance (for all three-phases)	15.54 mF	36 mF	_
Total DM inductance (10 kHz)	1.20 mH	1.29 mH	-
Total CM capacitance	28.2 nF	28.2 nF	-
Total CM inductance (10 kHz)	36 mH	36 mH	-
Total filter components volume	325 cm ³	360 cm ³	_

Filter volume for the VSMC is 10% larger

Filter structure for the BBC

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

EUROPEAN

POWER ELECTRONICS

DRIVES

AND

Power density

148(178)

DRIVES

Power density

Unbiased Comparison VSMC – BBC 6.8kVA, 34oV – 44oV, Specially designed PMSM for BBC and VSMC

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

149(178)

Matrix Converter – Future Developments Marcelo L. Heldwein and Johann W. Kolar

SMC power module SMC and BBC modules

- Status of power switches
 IGBTs, Reverse Blocking IGBTs and SiC switches
 Design examples with RB-IGBTs and SiC JFETs
- Status of industrial products Yaskawa's CMC
- Potential Future Application Areas
- Alternative topologies

SMC Power Module

Design of Power Module using Si IGBTs and SiC Diodes

Fabrication is the next step

EconoPACK[™] 3

Dimensions: 122 x 62 x 20 mm

The module integrates also: - Part of the input filter capacitors

- Phase current resistive sensors

- Temperature sensors (NTC)

BBC Power Module

Design of Back-to-Back Power Module

Fabrication is the next step

EconoPACK ™ 3

Dimensions: 122 x 62 x 20 mm

- Phase current resistive sensors
- Temperature sensors (NTC)

IGBT technology

EUROPEAN POWER

153(178)

IGBT technology

Reverse Blocking – RB-IGBT technology

Advantage

• Bi-directional switch with only one semiconductor in the current path

Status

- Only one manufacturer for commercially available devices
- Research (Fuji, Mitsubishi, Rockwell, IXYS) is ongoing in order to increase the voltage blocking capability and decrease switching losses

Power Electronic Systems Laboratory

Status of Power Semiconductor Technologies

Reverse Blocking – RB-IGBT technology

Bi-directional switch and Three bi-directional switches modules

- Layout advantages for a MC
- Compact design
- 50 A / 600 V devices
- Under development

Tj=125°C

18

1200V RB-IGBT

Versus

Reverse Blocking – RB-IGBT technology

Complete CMC module

- Layout advantages for a CMC
- Higher efficiency due to lower conduction losses
- Compact design
- 100 A / 1.2 kV devices
- Under development

3rd Gen.

IGBT+Diode

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

global.mitsubishielectric.com

SiC technology

EUROPEAN POWER ELECTRONICS AND DRIVES 158(178)

SiC technology

Semiconductor Electronics Division - NIST (SiC-MOSFET)

http://www.eeel.nist.gov/

3 x 400 V +/- 20%

 $I_{1 max} = 5 A$

f₁ = 50 Hz

 $\mathbf{X}_{1} = \mathbf{O}^{\circ}$

Design example – SMC based on SiC technology

Input (3~AC)

Input RMS line voltages (U1) Maximum input RMS current Mains frequency Current displacement angle

Output (3~AC)

Output RMS line voltages (U2) Maximum output power Output frequency Current displacement angle

Switching frequency:

Power stage topology:

Power switches technology:

Dimensions:

Weight:

1460 g

Design example - SiC technology

SiC JFET gate driver requirements

- negative voltage (-20V up to -40V)
- pinch-off voltage is close to the breakdown voltage
- thresholds are not well defined
- new devices are under development
- design with monolithic drivers

SiC JFET switching energy

switching conditions: 4 A / 400 V / 125° C

SiC JFET reverse recovery

Design example - SiC technology

Cascode turn-on

STOPPED

Switching conditions 5A / 600V / 125°C

ETTH Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Cascode turn-off

Cascode switching energy ($W_S = 600 \text{ V}$)

Design example – RB-IGBT technology

Input (3~AC)

Input RMS line voltages (U1) Maximum input RMS current Mains frequency Current displacement angle

Output (3~AC)

Output RMS line voltages (U2) Maximum output power Output frequency Current displacement angle

Switching frequency:

Power stage topology:

Power switches technology:

Dimensions:

Estimated weight:

3 x 400 V +/- 20% $I_{1 max} = 13 A$ f₁ = 50 Hz $X_1 = 0^\circ$

3 x 0 - 320 V

 $S_{2} = 6.8 \text{ kVA}$ $f_2 = 0 - 200 \text{ Hz}$

 $f_n = 10 \text{ kHz}$

 $x^{7}_{2} = 0^{\circ} - 90^{\circ}$

Input: Si RB-IGBT

Power section: 3200 g

Indirect Matrix Converter

Design example – RB-IGBT technology

Modulation

Switch Control Delay Times – Interlock Delay Times

164(178)

EIGENÖSSISCHE TECHNISCHE HOCHSCHULE Zürich Swiss Federal Institute of Technology Zurich

Design example – RB-IGBT technology

Switching loss measurements IXYS RB-IGBT

EUROPEAN

165(178)

POWER ELECTRONICS

DRIVES

AND

 $p = 0.0004175 \ i \ u - 0.0000207 \ i^2 \ u + 2.2065964 \ u^2 + 8.4917028 \ i \ u^2 - 3.0776863 \ i^2 \ u^2$

Design example – RB-IGBT technology

Switching losses in the input stage

Losses distribution

Thermal design through thermal simulations

Industrial products

Matrix Converter – Yaskawa

Equipment: YASKAWA's Variable speed AC motor control -> first commercially available matrix converter drive

Target markets: lifts, cranes and presses

Structure: Conventional Matrix Converter

Specifications:

2006: 400 V / 5.5 – 22 kW Future: 400 V / 5.5 – 75 kW 200 V / 5.5 – 45 kW

http://www.yaskawa.co.jp/en/technology/gihou/64-2/t11.htm Source: Yaskawa Technical Review: Vol.64 No.2

Industrial products

Matrix Converter – Yaskawa

Source: IEEE Transactions on Power Electronics, Vol. 17, No. 5, September 2002

Potential Future Application Areas

Conversion of Variable Frequency 3~AC Power into Fixed Amplitude/Frequency 3~AC Mains

- 3-Leg or 4-Leg Matrix Converter for US Army Ground Power Supply
- 50Hz- 400Hz Output Frequency

Wind Power Conversion

- High Input and Output Current Quality
- High Efficiency over Wide Speed Range
- Low Volume

Multi-Level Conversion

POWER ELECTRONICS AND DRIVES 172(178)

EUROPEAN

173(178)

Alternative Topologies

Back-to-Back Converter without DC Link Capacitor

- Line Frequency Switched Input Stage
- Rectangular-Shaped Input Current

Univ. of Erlangen-Nuremberg, Germany

EUROPEAN

POWER ELECTRONICS

DRIVES

AND

Mains Voltage/Current and DC Link Voltage

Direct-Linked-Type Frequency Changer

No Bidirectional Switches Required

Fuji Electric, Japan

Avoids Clamp Circuit

Power Electronic Systems Laboratory

Fig. 11. Regenerative route of snubber energy.

WR

ZR

υ

- Bidirectional Connection of Input and Output
- Input Voltage/Current
- Output Voltage/ Current

Thank you very much for your Attention !

