
Optimal Design of a Two-Winding Inductor Bouncer Circuit

D. Bortis, J. Biela and J. W. Kolar

Power Electronic Systems Laboratory, ETH Zurich

Email: bortis@lem.ee.ethz.ch

Abstract— In many pulsed power applications the flatness of the
output pulse is an important characteristic to enable proper system
operation, whereas a pulse flatness within less than a few percent has
to be achieved. In power modulators based on capacitor discharge
this voltage droop is mainly defined by the input capacitance. In
order to overcome this problem, in power modulators systems,
compensation circuits are added, whereby in spite of a smaller
storage capacitor a flat pulse top is achieved. Depending on the pulse
duration, different approaches for voltage droop compensation exist.
For short pulse durations, in the range of several µs, only passive
solutions or bouncer circuits are applicable.

In this paper the design and optimization of a two-winding
inductor bouncer circuit is presented in order to achieve an output
voltage droop of less than 1 %. Due to the realized galvanic isolation
a new degree of freedom is obtained, which allows an adaption
of the bouncer circuit’s voltage and current rating to standard
semiconductor switches. With an optimal design of the two-winding
inductor bouncer circuit for the existing system, the volume of the
input capacitor is reduced by a factor of 10.5 and the stored energy
is decreased by a factor of 24 compared to system without bouncer
circuit.

I. INTRODUCTION

In many pulsed power applications the flatness of the output

pulse is an important characteristic to enable proper system

operation. Often a pulse flatness within less than a few % has to

be achieved. In power modulators based on capacitor discharge,

as for example shown in Fig. 1, this results in a relatively large

capacitor bank. There, the voltage droop is mainly defined by the

input capacitance Cin, the pulse duration, and the output power.

In the considered application with the specifications given in

Table I, where the voltage droop ∆ is limited to less than 1 %,

the stored energy ECin in the input capacitor Cin would exceed

the pulse energy Ep by more than 50 times in order to guarantee

the specifications.
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Therefore, on the one hand the capacitor bank will get bulky

and expensive, and on the other hand a lot of energy is stored in

the system, which could be a problem concerning safety aspects

during a system fault. Furthermore, in case of a transformer

based power modulator (cf. Fig. 1), the magnetizing inductance

and the other parasitic components, like the winding resistances,

the pulse generator’s internal resistance, or the transformer

leakage inductance, lead to an additional voltage droop [1].

In order to overcome the problem of a large storage capacitor,

compensation circuits are used, which enable a flat pulse top in

spite of a small storage capacitor. Depending on the pulse dura-

tion, different approaches for droop compensation exist. For long

pulse modulators based on multi-stage modulators, like marx-

generators, the voltage droop can be incrementally corrected by

successively turning on additional stages during the pulse [2],

[3]. Another possibility is to add a switched-mode power supply

to the modulator, which compensates the voltage droop [4]. Due

to the high resulting switching frequency for pulse durations in

the range of a few µs, switched-mode compensation circuits

are not suitable due to the high switching losses. Therefore,
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Fig. 1: a) Schematic of the transformer based 20MW 5 µs solid-

state power modulator, b) pulse generator unit with four parallel

connected IGBT modules and c) step up pulse transformer.

TABLE I: Specification of the power modulator.

DC link voltage VCin0 1000 V

Output voltage Vout 170 kV

Pulse duration Tp 5 µs

Output power Pout 20 MW

Repetition frequency frep 200 Hz

Output voltage droop ∆ < 1%

Turns ratio N1:N2 1 : 170

usually passive solutions or bouncer circuits are applied. The

LR-network is the simplest way to compensate the voltage droop,

but the additional losses can become significant [1], [5], so that

this circuit is not very attractive.

Alternatively, with a resonant LC bouncer circuit, a pulse

flatness within ±0.5 % over several µs to ms can be achieved

[2], [6], [7]. The bouncer produces an almost linearly decreas-

ing voltage and compensates the approximately linear voltage

droop of the storage capacitor. However, usually the bouncer

is connected in series to the main pulse generation unit and

through the resonant bouncer flows a current higher than the

nominal pulse current. Additionally, for transformer based power

modulators, where a low primary voltage is used (cf. Table I,

VCin = 1 kV), the voltage across the bouncer switch is not

adequate for existing semiconductors. Even if the bouncer circuit

is placed on the secondary of a transformer, the voltage droop,

which has to be compensated, would not be suitable for modern

power semiconductors as it is in the range of several kV.

Therefore, a two-winding inductor bouncer circuit is presented

in this paper, which allows an adaption of the bouncer circuit’s

voltage and current rating to standard semiconductor switches,

like IGBT-modules for traction.

First, in section II the functionality of the conventional

bouncer circuit is explained in detail, which is the basis for the

new two-winding inductor bouncer circuit. In the new bouncer

circuit, the galvanic isolation results in a new degree of freedom,

which enables an optimal design of the bouncer circuit with

respect to voltage and current ratings of the semiconductors.

In section III a mathematical description of the two-winding

inductor bouncer circuit is derived and based on these equa-

tions the two-winding inductor bouncer circuit is designed and

optimized for the given modulator specifications in section IV.

In the optimization, the bouncer circuit is designed regarding

a minimum overall volume of the power modulator system.

However, with the presented procedure also an optimization



concerning other criteria, like losses or stored energy, is possible.

Based on the optimization procedure, a bouncer circuit is

designed and in section V simulation results are presented,

validating the design, which results in a more than 10 times

smaller volume and 24 times less stored energy. There, also the

influence and dependency of parameter tolerances as well as of

additional system parasitics are considered.

II. OPERATION OF BOUNCER CIRCUIT

The conventional LC bouncer circuit as shown in Fig. 2a)

consists of capacitor Cc, which has to be charged to the voltage

VCc0 before a pulse is generated, inductor Lc, and switch Sb.

The bouncer circuit is directly connected in series to the load Rl

or to the primary winding of the pulse transformer. Therefore,

during the pulse duration Tp, when both switches Sm and Sb are

turned on and voltage drops across any parasitics or the switches

are neglected, the output voltage equals the difference of the

input voltage vCin(t) and the voltage at the bouncer capacitor

vCc(t). Consequently, the input voltage droop ∆VCin has to be

same as the voltage droop of the bouncer capacitor Cc (cf. Fig.

2b)), so that the difference and therewith also the output voltage

Vout is constant.

The voltage droop at the bouncer capacitor Cc is generated by

the current iLc(t) and the to the primary referred load current

Iin. In order to obtain an equal voltage droop at Cin and Cc, a

current

iLc(t) = iin(t) + iCc(t), (2)

which is equal to the sum of the load current iin(t) and the

bouncer current iCc(t), has to be built up in the inductor Lc

before the main pulse is generated.

The current iLc(t) is built up by closing switch Sb during

the magnetizing interval Tm before the main pulse, i.e. Sm is

open. With Sb closed a LC-oscillation with sinusoidal currents

and voltages is started (cf. Fig. 3 and 4a)).

As soon as the current in the inductor Lc exceeds a defined

value or the bouncer capacitor Cc is discharged to a voltage

VCc1, the main pulse is generated by closing switch Sm at

t1. According to Kirchhoff’s current law, during the pulse

interval Tp, an almost constant pulse current Iin starts to flow

through the bouncer inductor Lc, whereas the current iCc(t)
immediately decreases by the same amplitude Iin (cf. Fig. 4b)).

Consequently, also the rate of discharge of the bouncer capacitor

Cc is decreased (cf. Fig 3). With a correctly designed bouncer

circuit an equal voltage droop at Cin and Cc is achieved during

the pulse interval Tp, which results in a constant output voltage

Vout. Depending on the design and timing of the bouncer circuit,

the capacitor voltage vCc(t) can also reach values below 0 V at
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Fig. 2: Series connection of the transformer based power modulator

with the conventional bouncer circuit.
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Fig. 3: Waveforms of the bouncer voltage Vcc, the capacitor current

iCc and the inductor current iLc during one pulse period.

the end of the pulse interval Tp, when Sm is turned off (cf.

Fig 3). This, for example, enables a compensation of twice the

voltage droop for a given capacitor voltage VCc0 assuming, that

vC(t) varies from +VCc0 to −VCc0.

After the pulse, when Sm is opened, the capacitor current

iCc(t) increases again by Iin and equals iLc (cf. Fig 3 and (2)).

Capacitor Cc is further discharged during the demagnetizing

interval Td until the bouncer current reaches 0A (cf. Fig. 4c)).

In the recovery interval Tr after the demagnetization, the

negative capacitor voltage vC(t) leads to a negative current iLc

in Lc and recharges the bouncer capacitor Cc (cf. Fig 3 and Fig.

4d)). Moreover, during Tr , soft switching can be achieved by

opening switch Sb, while the current iCc flows in the diode Db

and it is also possible to use a pulse thyristor to obtain a large

current capability and low conduction losses.

If the described LC bouncer circuit is connected to the primary

of the considered power modulator, where an input voltage droop

of ∆VCin = 100 V (= 10 %) is assumed, the capacitor voltage

Cc would be around 200 − 300 V and the peak current in the

bouncer circuit would reach values about 30 − 50 kA. On

the other hand, if the circuit is inserted on the secondary, the

capacitor voltage Cc would be around 17−30 kV with a current

of 300 − 400 A.
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Fig. 4: Voltages and current pathes during a) the magnetizing interval

Tm, b) the pulse interval Tp, c), the demagnetizing interval Td and

d) the recovery interval Tr .
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Fig. 5: Schematic of the existing power modulator with the proposed

two-winding inductor bouncer circuit.



In both cases, due to the high current or the high voltage,

no existing semiconductor switches can be employed without

connecting several switches in parallel or in series.

To overcome this problem a second winding is added to the

inductor Lc. This extension leads to the two-winding inductor

bouncer circuit, which allows an adaption of the bouncer circuit’s

voltage and current rating to standard semiconductor switches

(cf. Fig. 5).

The two-winding inductor acts like a transformer of a fly-

back converter with a step-up ratio of Nb1:Nb2, whereas the

magnetizing inductance equals inductance Lc (cf. Fig. 5). As

with the conventional bouncer circuit, the additional transformer

is connected in series to the existing system and has to be

magnetized before the output pulse is generated.

In order to optimize the design of the bouncer circuit, so that

a minimum volume or maximum efficiency results, an analytic

model of the circuit and an optimization procedure is required.

The analytic equations of the bouncer circuit are derived in the

next section.

III. MATHEMATICAL DESCRIPTION

The operating principle of the two-winding inductor bouncer

circuit is basically the same as that of the conventional bouncer

circuit without galvanic isolation. Therefore, the mathematical

equations are derived with the simple circuit schematic shown

in Fig. 6 in order to simplify the considerations. In this figure

all circuit values are referred to the secondary of the pulse

transformer.

The insertion of the two-winding inductor only results in

a transformation of the calculated bouncer circuit parameters

depending on the turns ratio Nb1:Nb2 (cf. Fig. 2).

In order to achieve a constant output voltage Vout, the droop

of the bouncer capacitor voltage V ′

Cc has to be equal to the input

voltage droop ∆V ′

in. In this case the output voltage is equal to

the difference of the two initial voltages V ′

in0 and V ′

Cc0, which

results in a constant load current I ′

in.

I ′

in =
V ′

Cin0 − V ′

Cc0

Rl
= constant (3)

Neglecting the parasitics, like magnetizing inductance or wind-

ing/interconnection resistances, the constant load current I ′

in

leads to a linear input voltage droop ∆V ′

in

∆V ′

Cin =
I ′

inTp

C′
c

(4)

in contrast to an exponential voltage droop ∆V ′

in,exp

∆V ′

Cin,exp = V ′

Cin0 · (1 − e−Tp/(C′

inRl)) (5)

without bouncer circuit.

Consequently, also the bouncer capacitor voltage V ′

Cc has to

droop linearly with the same amplitude ∆V ′

Cc in order to achieve
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Fig. 6: Schematic of the power modulator and the bouncer circuit

without galvanic isolation. All values are referred to the secondary.

a constant output voltage Vout. However, since the bouncer

basically is a resonant circuit, the current i′Cc(t)

i′Cc(t) = I ′

Cc0 · sin(ωt) − I ′

in, with ω =
1√

L′
cC′

c

(6)

in the bouncer capacitor C′

c has a sinusoidal run as shown in

Fig. 3. Additionally, the sine curve is shifted by the load current

I ′

in (cf. Fig. 3) during the pulse.

However, assuming a relatively long period T = 2π/ω of the

resonance circuit compared to the pulse duration Tp, an almost

constant current i′cc(t) with only a small deviation

∆I ′

Cc = i′Cc(T/4) − i′Cc(T/4 ± Tp/2)

= k1 · (I ′

Cc0 − I ′

in) with k1 = 0...1 (7)

can be obtained around the peak current ICc0 at t = T/4 (cf.

Fig. 3), where k1 is a proportionality factor between the current

deviation ∆I ′

Cc and the bouncer capacitor’s peak current at t =
T/4. With (7) follows, that a small deviation ∆I ′

Cc is obtained,

if a small k1 is selected. Consequently, by selecting a specific

k1 also the current amplitudes at T/4

iCc(T/4)′ = I ′

Cc0 − I ′

in (8)

and at T/4 − Tp/2

iCc(T/4 − Tp/2)′ = I ′

Cc0 − I ′

in − ∆I ′

Cc (9)

are defined. Thus, the needed resonance frequency

ω =
2

Tp
arccos

(

iCc(T/4 ± Tp/2)

iCc(T/4)

)

=
2

Tp
arccos

(

I ′

Cc0 − k1 · (I ′

Cc0 − I ′

in)

I ′

Cc0

)

(10)

of the bouncer circuit can directly be deduced based on the two

current amplitudes at T/4 and at T/4 − Tp/2 or based on k1.

To simplify the calculation of ω for small k1, the cosine can

be approximated by a second-order Taylor series

cos(ωt) ≈ 1 −
(

ωt

2

)2

. (11)

Accordingly, by placing the pulse interval Tp symmetrically

around the peak current at t = T/4, which means from T/4 −
Tp/2 to T/4 + Tp/2, the most uniform capacitor current i′Cc is

achieved. For a small deviation ∆I ′

Cc this results in an almost

linear voltage droop ∆V ′

Cc during Tp, whereas the bouncer’s

capacitor voltage V ′

Cc is symmetrically changing from Vcc1 to

−Vcc1 (cf. Fig. 3).

Due to the constraint of the same voltage droop at C′

in and

C′

c, the bouncer’s capacitor voltage V ′

cc(t1) = V ′

cc1 is directly

defined by the input voltage droop ∆V ′

Cin.

2 · ∆V ′

Cc1 = ∆V ′

Cin (12)

Additionally, the bouncer’s voltage droop of 2 ·V ′

cc1 during Tp

can be expressed by the current i′Cc(t), which is approximately

(I ′

Cc0 − I ′

in) · sin(ωt), respectively by its average value Ī ′

Cc,Tp

during the pulse duration Tp.

2 · ∆V ′

Cin =
1

C′
c

∫ T/4+Tp/2

T/4−Tp/2

i′Cc(t) dt =
Ī ′

Cc,Tp · Tp

C′
c

(13)

with

I
′

Cc,Tp = (I ′

Cc0 − I ′

in)

√

k1(2 − k1)

arccos (1 − k1)



During Tm, a current iCc(T/4 − Tp/2)′ = I ′

Cc0 − ∆I ′

Cc

has to be build up in the bouncer inductor L′

c before the

pulse is generated, whereas the stored energy in the inductor at

iCc(T/4 − Tp/2)′ is completely delivered from C′

c. Therefore,

the required initial capacitor voltage V ′

Cc0 can be deduced from

the energy balance:

1

2
C′

c(V
2

Cc0 − V 2
Cc1) =

1

2
L′

c(I
′

Cc0 − ∆I ′

Cc)
2. (14)

With (3) to (14), the circuit parameters of the conventional

bouncer circuit can be calculated in dependance of the maximum

allowed output voltage droop ∆max. Thereafter, the real circuit

values of the two-winding inductor bouncer result by selecting

a proper turns ratio Nb1:Nb2

Nb1 : Nb2 = V ′

Cc0 : VCc0, (15)

which enables the application of commercial semiconductors

with a voltage and current rating of VCc0 and ICc0.

IV. DESIGN AND OPTIMIZATION

Based on the design equations, an optimization procedure is

presented in the following. With this procedure the bouncer

circuit could be optimized for different quality criteria, as for

example volume, losses, or the stored energy in the system.

Here, the focus is put on the volume, where on the one hand

the volume of the bouncer circuit can be optimized for an existing

system with a given input voltage droop ∆Vin, or on the other

hand the whole system volume can be optimized regarding the

overall volume, i.e. input capacitor’s volume and volume of

the bouncer. Considering the value of the input capacitor, the

optimization results also in a reduction of the input capacitance

Cin and the stored energy in the system, while the first approach

only optimizes the volume of the bouncer circuit for a given input

capacitor Cin.

In the following the two-winding inductor bouncer circuit is

designed and optimized regarding the overall volume

V oltot = V olCin + V olbouncer

= V olCin + V olCc + V olLc + V olswitch (16)

of the existing system (cf. Fig. 1 and Table I).

In addition to ∆max also constraints, like maximum switched

voltage and/or current of Sb are considered in the optimization.

The initial capacitor voltage of the two-winding bouncer circuit

is set to VCc0 = 1kV, which is equal to the modulator’s input

voltage VCin0. Consequently, for Cc capacitors of the same

type as for Cin can be used, as long as the current iCc does

not exceed the current rating of the capacitors. Additionally, the

power supply of the bouncer circuit has the same voltage, which

allows a reduction of the power supply’s complexity. Finally,

for Sb the same IGBT module (FZ3600R17KE3 from EUPEC)

as for the existing power modulator is applied. In the following

design the peak current of Sb is limited to ICc0 = 5 kA and the

volume of the IGBT module is fixed to V olswitch = 0.9 liter.

In order to calculate V oltot a proportionality

V olCin + V olCc = g1 ·
1

2
(CinV 2

Cin0 + CcV
2

Cc0)

= g1 ·
1

2
(Cin + Cc)V

2
Cin0 (17)

of the stored energy in the capacitor Cin respectively Cc and

the capacitor’s volume is assumed. For the employed capacitors

(HDMKP series from Vishay) this assumption was empirically

verified, whereas the proportionality factor is g1 = 9.5 liter/kJ.
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Fig. 7: a) Output voltage droop ∆ and b) peak current ICc0

depending on VCc0 for different values of k1 with ∆VCin/VCin =

8%.

Due to the dependency of the two-winding inductor’s volume

V olLc on the number of turns, the air gap length, the turns

ratio and the isolation distances, the volume of the inductor is

calculated for each operating point (LC , ICc0) individually for

the optimization.

Using the equations of section III, the missing circuit parame-

ters for the conventional bouncer (Cc, Lc, ICc0, ∆ICc VCc1, ω
and Nb1:Nb2) can be calculated depending on k1, ∆VCin/VCin

and VCc0. By variation of these three parameters, the optimal

circuit values resulting in a minimum overall system volume and

an output voltage droop of less than ∆ = 1 % can be calculated.

In Fig. 7 the resulting output voltage droop ∆ and the peak

current ICc0 depending on the initial capacitor voltage VCc0 are

shown for different values of k1 with ∆VCin/VCin = 8%. As

expected, in order to achieve a lower output voltage droop ∆,

a smaller value of k1 has to be selected, which results in a

smaller deviation ∆ICc and leads to a more uniform current in

the bouncer capacitor Cc during the pulse duration Tp (cf. Fig.

3 and (7)). Unfortunately, a smaller value of k1 also results in an

higher initial capacitor voltage VCc0 and in a larger peak current

ICc0 (cf. Fig. 7b)). Additionally, according to (10), a smaller

value of k1 leads to a lower resonance frequency ω and therefore

also to larger capacitor and inductor values.

In the optimization procedure of the bouncer circuit, the

boundary conditions given by the maximum switching current

ICc0,max, the maximum switch operating voltage VCc0,max and

the maximum output voltage droop ∆max have to be fulfilled,

whereas the switch operating voltage can be kept below the

maximum switching voltage by selecting a proper turns ratio

Nb1:Nb2. Therefore, in the optimization procedure only the

constraints for the maximum switching current ICc0,max and

the maximum output voltage droop ∆max have to be met.

In Fig. 8 the output voltage droop ∆, the peak current ICc0

and the overall volume V oltot are shown as a function of the

initial capacitor voltage VCc0 for different values of input voltage

droop ∆VCin/VCin with k1 = 0.6 are shown. Additionally, for
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Fig. 8: a) Output voltage droop ∆, b) peak current ICc0 and c)

overall volume V oltot depending on VCc0 and ∆VCin/VCin for

k1 = 0.6.

∆VCin/VCin = 11 % the allowed design range is highlighted,

which is limited by the mentioned boundary conditions ICc0,max

and ∆max.

As in Fig. 8c) can be seen, an increasing input voltage droop

∆VCin/VCin leads to an decreasing overall volume V oltot,

since the volume of the input capacitor Cin is decreasing, due

to the increasing input voltage droop, while the volume of the

bouncer circuit, due to the limited peak current ICc0 and the

slightly increasing inductor value Lc, is only slowly increasing.

Therefore, considering the dependencies in Fig. 7 and 8,

for the optimization of the bouncer circuit, the input voltage

droop ∆VCin/VCin has to be increased as long as the boundary

conditions I0,max and ∆max can be fulfilled. For the considered

power modulator this leads to an maximum input voltage droop

of ∆VCin/VCin = 14.3 % with a minimum overall volume of

V oltot = 6.57 liter.

TABLE II: Optimal circuit parameters of the two-winding inductor
bouncer circuit for a minimal system volume.

Bouncer input voltage VCc0 1 kV

Turns ratio Nb1 : Nb2 1 : 22

Peak current ICc0 5 kA

Bouncer capacitor Cc 13.8 µF

Bouncer inductor LC 567 nH

Input capacitor Cin 625 µF
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Fig. 9: Comparison of the total volume V oltot for a power modulator

with and without bouncer circuit.

The resulting circuit parameter for the bouncer and the input

capacitor Cin are listed in table II.

In Fig. 9 the comparison of the overall volume with and

without bouncer circuit is shown. Without bouncer circuit and

by neglecting system parasitics, like magnetizing inductance or

series resistances, a minimum input capacitance of Cin = 15mF
is required to limit the output voltage droop to 1%, which results

in an capacitor volume of 70 liter.

With the bouncer circuit a volume reduction by a factor of

10.5 to 6.57 liter is possible. Additionally, the stored energy in

the input capacitor Cin and the bouncer capacitor Cc is reduced

by a factor of 24 to 319.4 J, which is only 3.2 times of the pulse

energy compared to 50 times of the pulse energy for the system

without bouncer circuit.

In comparison with the conventional bouncer circuit, a com-

mercial IGBT module can be used for the two-winding inductor

bouncer circuit. In the conventional bouncer the switch Sb would

have to handle a peak current of ICc0 = 230A and a capacitor

voltage of VCc0 = 22 kV.

Due to the insertion of the two-winding inductor the total

leakage inductance of the power modulator is increased, which

could result in a degradation of the pulse performance. However,

for the optimal two-winding inductor the secondary leakage

inductance is only Lσ,b2 = 5.4 µH. This corresponds to a

leakage inductance of Lσ = 0.19 nH at the primary of the power

modulator, which is negligible compared to the leakage of ap-

proximately 10 nH of the modulator. Consequently, the insertion

of the conventional bouncer on the primary or secondary would

result in an even stronger degradation of the pulse performance.

V. VERIFICATION BY SIMULATION

In the optimization procedure of the bouncer circuit for each

operating point, the output voltage droop ∆, shown in Fig.

7a) and 8a), always has been calculated based on the precise

output voltage waveform vout(t), which is derived by laplace

transformation. Due to this accurate description, the calculated
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Fig. 10: Simulated output voltages vout(t) of the power modulator

with and without optimized bouncer circuit.



waveform is equal to the simulated output voltage vout(t) (cf.

Fig. 10). As expected, the output voltage droop ∆ can be kept

below 1 %. Additionally, for the same input capacitor value Cin,

the output voltage of the power modulator without bouncer is

shown in Fig. 10.

In Fig. 11 the simulated voltage and current waveforms

vCc(t), iCc(t) and iLc(t) of the optimized bouncer circuit

are shown. Due to the approximation of the cosine by its

second-order taylor series and the use of the average current

value ICc,Tp, the simulated peak current ILc0 in the inductor

exceeds the specified value ICc0,max during the pulse interval

by approximately 10 %. As a consequence of this, the pulse

interval Tp is not symmetrically around T/4, which can be

corrected by a small time shift of the pulse interval Tp. Due

to the approximations, this also can lead to a smaller output

voltage droop ∆ in some cases as shown in Fig. 12.

Furthermore, in the simulation the influence and dependency

of parameter tolerances as well as additional system parasitics,

like magnetizing inductance and series resistances, were deter-

mined. There, for the circuit values Cc and Lc a variation of

±10 % was assumed. In Fig. 12 the output voltage waveforms

of the calculated bouncer circuit and of the cases, in which a

variation of Cc and Lc by ±10 % is assumed, are shown.
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Fig. 11: Simulated voltage and current waveforms vCc(t), iCc(t)

and iLc(t) of the optimized bouncer circuit.
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Fig. 13: Influence of transformer parasitics on output voltage droop.

The maximum output voltage droop of 1.58 % results if both

values of Cc and Lc are increased by 10 %. By a proper time

shift of Tp and slightly changing the initial bouncer capacitor

voltage VCc0, the output voltage droop ∆ can be reduced. For the

mentioned worst case, the output voltage droop can be reduced

below 1 % if the VCc0 is increased to 1068V and the pulse

interval is shifted in time by 240 ns. However, the constraint for

the capacitor voltage of 1 kV is now exceeded.

Additionally, Fig. 12 shows that the minimum output voltage

droop is achieved for 90% of Cc and 110% of Lc and not for

the calculated bouncer circuit. This is also a consequence of the

used approximations.

The influence of the transformer parasitics on the output

voltage droop is shown in Fig. 13. The simulation includes the

leakage inductance, the magnetizing inductance, the distributed

capacitance, and the winding resistances. According to the

simulation results, the combination of all parasitics causes the

shown pulse degradation; the pulse degradation can not be

attributed to a certain parasitic component. Besides the resulting

overshoot at the beginning of the pulse, also the voltage droop

∆ is increased. However, by adjusting the timing of the pulse

interval Tp, the additional voltage droop can be compensated.

VI. CONCLUSION

In this paper the design and optimization of a two-winding

inductor bouncer circuit is presented in order to achieve an output

voltage droop of less than 1 %. Due to the realized galvanic

isolation a new degree of freedom is obtained, which allows an

adaption of the bouncer circuit’s voltage and current rating to

existing semiconductor switches, like IGBT-modules.

With an optimal design of the two-winding inductor bouncer

circuit for the existing system the input capacitance is reduced

from Cin = 15 mF to 13.8 µF, which results in a volume

reduction by a factor of 10.5 to 6.57 liter. Additionally, the

stored energy is decreased by a factor of 24 to 319.4 J, which is

only 3.2 times the amount of the pulse energy compared to 50

times of the pulse energy for the system without bouncer circuit.

Furthermore, it is shown, that the parasitics caused by the two-

winding inductor bouncer circuit results in no degradation of the

pulse performance.
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