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For various electrical interconnect and EMC problems, the partial element equivalent circuit (PEEC) method has proven to be a valid
and fast solution method of the electrical field integral equation in the time as well as the frequency domain. Therefore, PEEC has become
a multipurpose full-wave method, especially suited for the solution of combined circuit and EM problems, as found, for instance, on
printed circuit board layouts, power electronics devices or EMC filters. Recent research introduced various extensions to the basic PEEC
approach, for example a non-orthogonal cell geometry formulation. This paper presents a fast, flexible and accurate computational
method for determining the matrix entries of partial inductances and the coefficients of potential for general non-orthogonal PEEC cell
geometries. The presented computation method utilizes analytical filament formulas to reduce the integration order and therefore to
reduce computation time. The validity, accuracy, and speed of the proposed method is compared with a standard integration routine on
example cell geometries where the numeric results of the new method show improved accuracy, coming along with reduced computation
time.

Index Terms—Filament mutual inductance, integration, non-orthogonal partial element equivalent circuit (PEEC), partial element
computation.

I. INTRODUCTION

T HE increasing performance of electronic circuits occurs
by increasing the complexity and the operating frequen-

cies. This fact is true for on-chip VLSI design, as well as for
macroscopic circuits as in power electronics. Due to the re-
sulting fast voltage and current transients, the modeling of elec-
tric interconnects and the analysis of their electromagnetic be-
havior is gaining in importance.

For the solution of mixed EM problems, the partial element
equivalent circuit (PEEC) method [1] has become a very pop-
ular approach. The method is based on a circuit interpretation
of the electric field integral equation (EFIE). Unlike the method
of moments, PEEC is a full-spectrum method valid from dc to a
maximum frequency determined by the meshing. Further exten-
sions, especially the introduction of time retardation [2], dielec-
tric cells [3] and the formulation with nonorthogonal cell ge-
ometries [4] have made PEEC a multipurpose electromagnetic
solver.

A PEEC simulation is mainly performed in the following
steps.

• geometry discretization of the layout and placement of ex-
ternal components such as current and voltages sources or
load impedances;

• fill-in of partial inductance matrices and partial coeffi-
cients of potential matrices ;

• setup of the matrix equation system, typically in modified
nodal analysis (MNA) formulation;

• time domain or frequency domain solution of the system
matrix equation in a SPICE-like solver.
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The bottlenecks of simulation effort are both, matrix fill-in
and the subsequent solution of the equation systems, which
limit the maximum problem size to unknown
variables, namely the node voltages and currents. The partial
element computation is the limiting factor in particular for
non-orthogonal cell geometries, since fast analytical formulas
are not directly applicable. Hence, a cumbersome multidimen-
sional integration must be performed numerically for every
entry in the and matrices. Furthermore, the obtained
accuracy of partial elements has direct influence on the stability
of time-domain models [5] and a fast computation with high
precision is desirable.

This paper is introducing a new integration method using ana-
lytic solutions for the Neumann integral along straight and arbi-
trarily aligned current filaments [6] to accelerate the calculation
of non-orthogonal partial elements. This technique can be ap-
plied to the mutual couplings between the PEEC cells as well
as the self-terms represented by the diagonal elements of the
and matrices.

II. NON-ORTHOGONAL PEEC FORMULATION

The classical PEEC method is derived from the equation for
the total electric field at a point written as

(1)

where is an incident electric field, is a current density,
is the magnetic vector potential, and is the scalar elec-

tric potential. By using the definitions of the scalar and vector
potentials, the current- and charge densities are discretized by
defining pulse basis functions for the conductors and dielectric
materials. Pulse functions are also used for the weighting func-
tions resulting in a Galerkin type solution. By defining a suit-
able inner product, a weighted volume integral over the cells,
the field (1) can be interpreted as Kirchhoff’s voltage law over
a PEEC cell consisting of partial self inductances between the
nodes and partial mutual inductances representing the magnetic
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Fig. 1. (a) Two non-orthogonal conductor cells and (b) their corresponding
equivalent circuit.

field coupling in the equivalent circuit. The partial inductances,
shown as in Fig. 1, are defined as

(2)

Fig. 1 also shows the node capacitances which are related to the
diagonal coefficients of potential while ratios consisting of

are leading to the current sources in the PEEC circuit.
The coefficients of potentials are computed as

(3)

Introducing a local non-orthogonal coordinate system
, the general self and mutual partial induc-

tances can be extended to a non-orthogonal formulation as
detailed in [4]. Then, the inductances are computed as

(4)

and likewise, the coefficients of potential are given by

(5)

The double volume and double surface integrations in (4) and
(5) are performed in cell coordinates of the corresponding hex-
ahedral or quadrilateral PEEC cells and the free space Green’s
function is used

(6)

where, throughout this paper, the time retardation is neglected.

III. NON-ORTHOGONAL PARTIAL ELEMENT CALCULATION

USING ANALYTIC FILAMENT FORMULAS

The numeric evaluation of (4) and (5) requires a huge com-
putational effort due to the dimensional manifold and the fact

Fig. 2. Two inductive hexahedral PEEC volume cells with current direction �

and � . The coordinate axes indicate a local non-orthogonal coordinate system,
as introduced in [4]. Furthermore, two current filaments, pointing respectively
in � and � direction, are displayed.

that the - and -matrices are dense and full, respectively.
In particular, the self terms on the matrix diagonals require spe-
cial attention due to the singularity in Green’s function (6).

Insertion of a four-fold -pulse function into the non-orthog-
onal definition (4) gives a relation between the mutual in-
ductance of infinitesimal thin current filaments and the non-or-
thogonal volume mutual inductance

(7)

The geometric proportions are exemplified in Fig. 2. Taking into
account the integration property of Dirac’s pulse function1

reduces the double volume integration (4) into a double surface
integral. Therefore, one obtains a simplified expression for the
partial mutual inductance between two non-orthogonal volume
cells

(8)

Hence, in (4) can be expressed using only the integral of the
analytic solution for mutual inductances between arbi-
trary aligned current filaments, which are well-known [7] (see
Appendix). The filament formula is a complex expression in-
cluding several hyperbolic and trigonometric functions. Never-
theless, a numeric evaluation of (8) speeds up the integration.
Besides the integration order reduction, the speedup is caused
by a smoothing of the Green’s function singularity (8), which
is shown in Fig. 3. In particular, this smoothing property facili-
tates a fast calculation of the diagonal matrix entries, for which
the volumes and in (4) coincide.

Similar to the shown procedure and with small modifications
to the filament formulas, the partial coefficients of potential cal-
culation (5) can be reduced to a double line integral which is
possible due to the mathematical similarity between (4) and
(5). The main differences in the matrix calculation are the
missing dot product and a constant surface charge density in
(5), in contrast to a variable volume current density in (4). The

1 ��� � � ������� � ��� �.
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Fig. 3. Mutual inductance between two parallel current filaments of length � �
1 cm. Approaching a zero distance �, the inductance � is diverging to infinity.
However, the divergence � ��������� is relatively weak in comparison to the
��� Green’s function, which allows a more efficient numeric integration of the
partial elements.

Fig. 4. Example cell geometry: two inductive PEEC cells. Two different current
directions (dashed and dotted lines) and the cell corner point coordinates are
given (in millimeters) so that numeric results are replicable.

remainder of this paper will focus on inductance calculations,
keeping in mind that the same technique of accelerated matrix
fill-in can be applied for the coefficients of potential, as well.

The proposed accelerated partial element calculation was im-
plemented in C++, using an adaptive integration routine based
on a recursive Simpson algorithm with error estimation [8]. This
gives the opportunity to select any desired integration accuracy.
Furthermore, the adaptive algorithm selects autonomously the
number of interpolation points, which lowers the number of fil-
ament evaluations for inductive cells that are far apart, and re-
fines the integration for adjacent cells or the self-terms.

IV. NON-ORTHOGONAL APPLICATION EXAMPLE

Fig. 4 shows an example of two inductive PEEC cells, for
which the calculation is investigated in the following. Cell 1
was chosen to be orthogonal. Therefore, an accurate reference
value of can be obtained from an analytic exact solution [9].
Cell 2 is a non-orthogonal hexahedral, hence for and ,
a numeric integration is mandatory. The proximity of cell 1 and
2 is a worst case for the mutual inductance calculation. Here,
the recursive Simpson algorithm will increase the number of
filament evaluations near the contact surface. The aspect ratio
length/thickness of the shown cells is quite large. How-

ever, such thin and non-orthogonal structures are typical for

TABLE I
COMPARISON OF INTEGRATION METHODS

Inductance values �� of the non-orthogonal cell geometry from Fig. 2, ob-
tained from different integration routines and with varying numeric integration
resolutions. Additionally, the number of integration steps � and the corre-
sponding computation time 	 is given for every inductance value.

many conductor geometries, e.g., [10] and [11]. To obtain an-
other test case of mutual inductances, additionally to the main
current direction in Fig. 4 (dashed line), a second direction was
introduced (dotted line, corresponding ).

The numeric inductance results are outlined in Table I for dif-
ferent integration resolutions. Here, the conventional Gauss–Le-
gendre (GL) integration is directly applied to (4) and gives
the number of GL evaluation points. In the case of the proposed
filament algorithm using (8), is the total number of filament
evaluations. Furthermore, the total computation time on a 3 GHz
CPU is given, respectively.

Due to the singularity in the Green’s function (6), GL in-
tegration consequently underestimates inductances. Even with
fine resolution and hence with big numeric effort, the results do
not have a satisfactory accuracy. In contrast, the new proposed
method shows a good convergence behavior, which results in a
more reasonable computation time.

Obviously, the most time intensive computations are still per-
formed for the matrix diagonal self-terms. Off-diagonal element
computations need less computation time, which is further di-
minished with the increasing geometric cell distance. For real-
istic problem sizes with, e.g., non-orthogonal cells,
the new method allows a and fill-in within 1 h for -ac-
curacy in Table I, or about 10 min for -accuracy, whereas GL
integration would require orders of magnitudes more computa-
tion time.

V. CONCLUSION AND OUTLOOK

This paper proposed a new numeric method for the evalu-
ation of general non-orthogonal partial element matrix entries
for PEEC simulations. With the usage of analytic mutual in-
ductance formulas between arbitrary aligned current filaments,
accuracy and speed of the partial element calculation is im-
proved by orders of magnitudes in comparison to a conventional
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Fig. 5. Shown are two arbitrarily aligned current filaments � and � and the re-
quired distances and angles for the mutual inductance calculation, see equations
(9) and (10). Two Planes � and � are passed through the filaments in such a
way as to intersect at right angles. Here, � is the intersection line between the
planes, having the filament� in parallel. The geometrical filament arrangement
is completely determined by 6 independent parameters, e.g. � , �, and �.

Gauss–Legendre integration routine. This work focuses on the
inductance calculations, whereas the same technique is appli-
cable for the coefficients of potential.

An extension of the proposed method for high frequency ap-
plications could be to take into account time retardation. In prin-
ciple, a derivation of analytic filament formulas in [6] can be
performed for a complex valued Green’s function (6), resulting
in complex and entries. This could be used to further im-
prove time domain stability in comparison to the common used
center-to-center retardation approximation [2].

APPENDIX

Analytical solutions for the mutual inductance between
two straight current filaments, placed in any desired position, are
given in [6], [7], and [13]. Due to the old age of the citations and
for the sake of completeness, the inductance formula is briefly
recapitulated. Equations (9) and (10) show the expressions used
for the partial element integration in this paper

(9)

with

(10)

The required length and angle parameters can be extracted from
Fig. 5. The inductance formula is analytically exact, however,
care must be taken of the numerical evaluation. For special geo-
metric arrangements, the hyperbolic functions as well as the
fractions in (9) and (10) diverge to infinity. For instance, this
is the case when the filaments intersect, touch or when they are
in parallel. Nevertheless, the analytical limit is always well de-
fined, and the use of a series expansion is required to obtain
accurate results when such a divergence is detected.
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