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Abstract-In this paper, analytical calculations of the switching 
frequency harmonics of PWM-controlled 3-phase voltage-source 
DC/AC power converters are presented. Detailed knowledge of 
the modulation-dependent spectra of such systems is highly 
valuable for the EMI filter design and the estimation of the 
high-frequency losses in the filter components and the load. The 
paper presents a formula for the calculation of the switching 
frequency harmonics which is simple and highly versatile. It can 
be applied to converters with arbitrary numbers of voltage levels 
N and in combination with a broad variety of modulation signals. 
All calculations are verified by means of simulations and show a 
high accuracy over a wide range of input parameters. Finally, an 
EMI filter design example demonstrates the practical application 
and benefits of the derived formula. The MATLAB code used for 
the calculations is provided at the end of the paper. 

I. INTRO DUCTION 

Switched-mode pulse-width-modulated (PWM) 3-phase 
power converters with a voltage-type DC-link are the backbone 
of a wide range of today's power electronics applications, 
such as AC motor drive systems, grid-connected converters in 
renewable energy systems and uninterruptible power supplies 
(UPS). Besides generating the fundamental voltages which 
drive the desired fundamental currents, such systems also 
generate undesired high-frequency (HF) voltage harmonics 
as an inherent result of the PWM switched-mode operation. 
These HF harmonics often have a crucial impact on the system 
design: on the one hand, the harmonic spectrum determines the 
required EMI filter attenuation in grid-connected applications 
and for motor drive inverters. On the other hand, the resulting 
HF currents, i.e. the ripple currents cause additional losses in 
the filter components and the load (e.g. electrical machines). 
Consequently, a detailed knowledge of the converter's har­
monic spectrum is a basic requirement for the appropriate 
design of the full converter system. It is furthermore particu­
larly important if accurate efficiency estimations for low-load 
operation are required where the HF losses usually become 
increasingly dominant compared to the losses associated with 
the fundamental current. 

A simple approach to compute the switching frequency 
harmonics of a PWM-controlled converter is by means of 
applying the fast Fourier transform (FFT) to the respective 
simulated or measured waveforms. However, the accuracy of 
the FFT is limited by the number of available sampling points 
which potentially results in a high computational effort [1]. 
As a consequence, the use of versatile yet simple analytical 

methods can offer advantages if a systematic insight regard­
ing the spectra of different converter topologies, modulation 
signals and modulation depths must be gained. 

A wide variety of methods exist to analytically describe the 
harmonics of PWM signals. While decomposition techniques 
[2], implicit descriptions [3] and Kapteyn [4] or Lagrange [5] 
series have been reported, by far the most widely used method 
in literature is the double-Fourier-series (DFS) analysis based 
on 3D geometric wall-model representations of the PWM 
signal. The method was originally presented in [6] and [7] 
and later adopted for different 3-phase current- and voltage­
source PWM converters employing various PWM schemes. 
[1], [8]-[12]. An extensive overview of the formulas obtained 
from this method can be found in [13]. 

The above mentioned methods have the common benefit of 
yielding exact analytical closed-form results. The main draw­
back, however, lies in the requirement of deriving new formu­
las for each combination of topology and type of modulation 
signal. These derivations and the results are involved and the 
mathematical effort increases quickly with increasing number 
of voltage levels and more demanding modulation signals. 
Generalized formulas exist either for N-Ievel converters with 
restriction to a pure sinusoidal modulation signal [10], [13], 
or for converters with 2-level characteristics only but arbitrary 
modulation signals [1]. These results are even more intricate 
and cannot readily be applied. Eventually, all methods generate 
formulas including infinite double sums of Bessel functions 
which considerably impedes the numerical evaluation. 

An alternative but not widely used approach for the analyti­
cal calculation of switching frequency harmonics is presented 
in [14]. This method is based on a subsequent local and 
global integration and is thus called local-global-integral (LGI) 
method for the remainder of this work. The LGI method 
overcomes most of the above stated drawbacks. In particular, 
the resulting formula can take into account a broad variety 
of modulation signals and consists of a simple integral which 
is numerically easy to evaluate. However, the LGI method 
assumes an infinitely high number z of switching intervals 
within a period of the output voltage fundamental and is 
thus, in contrast to most other methods, not exact in the case 
of real converter systems with finite switching frequencies. 
Nevertheless, sufficient accuracy can still be obtained in most 
practical cases, i.e. for converters with z ;:: 30. 

The LGI method has so far only been applied to a 2-level 
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Fig. 1: 3-phase 3-level voltage-source DC/AC power converter with sinusoidal PWM. (a) Typical practical implementation. (b) Idealized model used for the 
harmon�

S
�a�alysls In this work. (c) Asymmetric regular-samphng PWM wIth synchronized phase disposition (PD) carrier waves. sampled sinusoidal reference 

sIgnals up,ref' P = {a,b,c} and resulting Idealized output voltage pattern uao and fundamental harmonic UaO(l)' Due to the underlying assumptions in this 
work, the converter output voltages feature a quarter-wave symmetry, Le. upo(t)=upo( -t) =-upo (t+Tlj2). 

conv�rt�r i� [14]. Moreover, a detailed analysis of the accuracy 
and IUllltatlOns of the result is missing yet. In this paper, it is 
shown that the LGI method can also be applied to a 3-level 
converter with only moderate mathematical effort and yielding 
a similarly simple formula with high accuracy (Sec. D). In a 
second step, the LGI method is used to derive an advanced but 
still simple and versatile universal formula which describes the 
voltage and current harmonics of a general N-level converter 
with almost arbitrary modulation signal. Finally, an example 
of application is given which demonstrates how the formula 
can be used to design an EMI filter (Sec. IV). The Appendix 
contains the MATLAB implementation of the general N-Ievel 
converter formula derived in this work. 

II. LGI METHO D  FOR 3-LEVEL CONVERTERS 

In this section, the LGI method presented in [14] is adopted 
for a 3-level 3-phase voltage-source converter as shown in 
Fig. lea). Sec. D-A gives a short overview of possible PWM 
schemes for this topology. After discussing the underlying 
assumptions in Sec. D-B, the derivation of the formula to 
calculate the switching frequency voltage harmonics is pre­
sented in Sec. D-C and Sec. D-D. Sec. D-E compares the 
obtained LGI-based result to the existing DFS-based result 
and Sec. D-F presents a verification of the derived formula 
and investigates its accuracy and the useful parameter ranges. 

For the remainder of this work, TJ = 1/ h denotes the 
fundamental period and Tsw= I/fsw the switching period. Where 
a distinction between the two different periods is necessary, 
the position within TI is described by the (macroscopic) global 
time t while the (microscopic) local time til is used to refer to 
the position within a switching interval [_Tsw/2, Tsw/2], placed 
sYIlllnetrically around t. Normalized voltages are denoted by 
overlines, U = u/(UDc/2). p stands for one of the three phases 
{a,b,c} with corresponding phase shifts ¢ = {O, -2""/3, 2""/3}. 
uprer denotes an arbitrary modulation signal while u* is , w� 
a specific modulation signal, e.g. u S f denoting a pure sinu­
soidal signal. The term "reference sigr�al" is equivalently used 
for "modulation signal". 

A. PWM Schemes for 3-Level Converters 

In this section, PWM schemes employing different carrier 
signals and sampling techniques are discussed, while the 
discussion of different modulation signals follows in Sec. D-D. 

The most basic idea of PWM employed in DCI AC power 
converters is to generate trains of rectangular switched voltage 
pulses upo whose fundamental UpO(I) (t) is equal to a given 
sinusoidal modulation signal, i.e. the reference signal u S (cf. 
F· 1) 

p,ref 
Ig. , 

UpO(I)(t) == u;,rer(t) == Uref cos [27r fIt + ¢] . (1) 
This can be achieved by determining the switching instants 
through intersection of the reference signal with a HF carrier 
signal as depicted in Fig. 2. Commonly used carriers are peri­
odic sawtooth or triangular signals. However, only triangular 
carriers are considered here since sawtooth carriers generally 
lead to a higher harmonic distortion of the generated output 
upo [13]. For a 3-level topology, 2 carriers are required which 
can be implemented with either phase disposition (PD) or 
phase opposition disposition (POD) as shown in Fig. 2(a). 
This work focuses on PD carriers rather than POD carriers 
due to the better harmonic performance that can be achieved 
in three-phase systems [10], [13]. Finally, using a digitally 
sampled reference curve U:'ref (asymmetric regular sampling 
PWM) �ather than a continuous signal U;,ref (natural sampling 
PWM) IS better suited for the digital controllers employed in 
most modern converters. Regular sampling PWM generates 
slightly different voltage pulses (and thus different harmonic 
amplitudes) when compared to natural sampling PWM as 
depicted in Fig. 2(b). The switching rules, however, are 
independent from the type of sampling or the reference signal 
waveform, 

Up,ref( t) ;:: carrierhigh (t) 
carrierlow (t) ::; Up,ref( t) < carrierhigh ( t) 

Up,ref( t) < carrierlow ( t) 
(2) 

Whether natural or asymmetric regular sampling is used 
becomes irrelevant at very high switching frequency ratios 
z due to the vanishing differences between the generated 
voltage pulses and switching instants. As high values of z are 
assumed for all analytical calculations throughout this work, 
the sampling type is not indicated anymore for the remainder 
of this paper. For all simulations used to evaluate the calculated 
results, a PWM scheme with PD carriers and regular sampling 
is employed (Fig. l(c) . 

A typical spectrum of the output voltages upo, employing 
the selected PWM scheme with triangular PD carriers, can 
be seen in Fig. 3. The spectrum contains harmonic groups at 
integer multiples m of the carrier frequency f�w. Within these 
groups, the individual harmonics are integer multiples k of the 
fundamental frequency fI distant from each other. Based on 
t�is observation, the harmonic order q of a particular harmonic 
UpO(q) can uniquely be expressed by 

q = m z+k, mEf'T, kEZ l lkl::;lz/2J, (3) 
where l * J denotes the floor function. 
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General remark: although this work is based on the consid­
eration of triangle-carrier-based PWM, the presented analysis 
is also valid for space-vector-based modulation concepts. This 
is due to the existence of equivalent reference signals in a 
triangle-carrier-based PWM scheme which can be used to 
represent any space-vector modulation scheme [15]. 

B. Assumptions 

In order to successfully apply the LGI method, the following 
assumptions must be made: 

(i) The converter output PWM phase voltages upo (t) are 
ideal rectangular, even and periodical with T1, 

n E No . (4) 

(ii) The ratio z between switching frequency fsw and fun­
damental frequency h is assumed to be very high, i.e. 
theoretically tending towards infinity, 

f�w z =----+oo. h (5) 

(iii) The frequency ratio z is odd and a multiple value of 3, 

z = 6n + 3, n E No . (6) 

Assumption (i) implies the consideration of a converter with 
idealized switches and a constant DC-link voltage source 
UDC as depicted in Fig. l(b). Assumption (ii) is required 
for the mathematical derivations. In practice, however, for the 
considered asymmetric regular sampling z � 30 is sufficient to 
achieve accurate results (see Sec. D-F, [14]). The presented 
formula in this work can in theory be applied for arbitrary 
values of z � 30. However, an odd frequency ratio is assumed 
in (iii) as this guarantees odd harmonics only and avoids a DC 
offset of the output phase voltages (cf. Fig. 3). Even harmonics 
and DC offsets are generally undesired in practice, which is 
also reflected by the more stringent limits for such harmonics 
in grid harmonics standards such as [16]-[18]. The restriction 
to multiples of 3 in (iii) allows for synchronized, symmetric 
PWM of the three phases {a,b,c} with the same PD carrier 
signals for all references (cf. Fig. l(c) . Assumption (iii) in 
conjunction with (i) furthermore implies output signals with 
quarter-wave symmetry (cf. Fig. l(c)) and associated spectra 
that contain odd order cosine terms only, 

upo(t) = l:UpO(q) cos [ q(27rht + ¢)] ,  q=2n+l, nENo· (7) 

Note that due to the symmetric PWM the amplitudes UpO(q) 
are identical in all three phases. Furthermore, there are no 
phase shifts other than ±7r between the harmonics of the 
individual phases which is taken into account by negative 
harmonic amplitudes UpO( q) . Finally, the consideration of only 
even output signals upo does not represent a restriction in 
practice as it can always be achieved by appropriately defining 
the coordinates. 

C. Analytical Derivations 

In a first step of the LGI method, a local Fourier analysis 
within a single switching period is performed. This result can 
later be used for a global analysis of the full fundamental 
period. For reasons of symmetry (assumption (iii», it is 
sufficient to perform the analysis for phase p = a only. 
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Global time 
(a) 

Fig. 2: PWM schemes for 3-level converters. (a) HF triangular carriers with 
phase disposition (PO) and phase opposition disposition (POD), sinusoidal 
reference signal U�ref' (b) Detail of (a) (marked gray) showing the generation 
of the switching tIme instants by intersection of the reference signal with the 
HF PD carriers. The digitaUy sampled reference us

,ar
t· used for asymmetric 

p,re 

regular sampling PWM results in slightly different voltage pulses than the 
continuous reference uS

,
n f used for natural sampling PWM. p,re 

Fig. 3: Typical spectrum of the output voltages upo for high frequency ratios 
z and a PWM scheme with triangular PO carriers. The spectrum contains 
baseband low-frequency (LF) harmonics and harmonic groups centered around 
integer multiples m of the carrier frequency, i.e. the switching frequency fsw. 
For high values of z. the baseband harmonics represent the harmonic content 
of the used reference signal (here pure sinusoidal reference U�,ref and thus one 
harmonic at the fundamental frequency h). Within the harmonic groups at 
integer multiples m of fsw. sideband harmonics occur at integer multiples k 
of the fundamental frequency h distant from the respective center frequency 
mfsw = mzh· Thus. for z = T,. the harmonic order q = mz + k can be 
defined with reference to h. As a result of the considered triangular PD 
carriers only sidebands with k even around odd m and with k odd around 
even m occur. Consequently. if z is odd, only odd order harmonics occur. 

-I --

Fig. 4: Normalized output voltage pattern uao (t�) within a single switching 
period Tsw depending on the sign of the reference signal Ua,ref( t). Due to the 
assumed infinite switching frequency ratio z, the considered time interval is 
very short and thus the reference signal does not change. Ua,ref( t) = const. for 
t� E [-Tsw/2, Tsw/2] . As a consequence. the switching instants are symmetric 
around t� = 0 and uaO(t�) = uao( -t�). 

1) Local Analysis: The voltage pattern within a single 
switching period can be seen in Fig. 4. Due to assumption 
(ii), z ---+ 00, the reference value Ua,ref is constant within the 
infinitely short switching period. As a result, the output voltage 
uao is sYlmnetric around t� = 0 with the switching times 
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Global time t 
Fig. 5: Normalized output voltage uao (t) and its 9th and 5th harmonic 
UaO(9) (t) and UaO(5) (t), respectively, for z=9. While the carrier harmonics 
at integer multiples of z (q=mz) stay in phase with respect to the consecutive 
switching periods, the sideband harmonics with q = mz+k, k * 0, experience 
a phase shift 0:( t), The low frequency ratio z=9<30 has been chosen for the 
purpose of a clearer illustration. 

Fig. 6: Summation (13) of the z local Fourier integrals (12) at the positions 
t=nTsw, n = {I, .. , z}, over the fundamental period Tl =zTsw, For z --+ 00, 
Tsw --+ dt, and nTsw --+ t, As consequence, the sum (13) can be expressed as 
the integral (16), 

Ua,ref( t) ;:: 0 
Ua,ref( t) < 0 

(8) 

The local Fourier analysis within a single switching period 
over the local time tJ.! can now be carried out using 

A Uoc 1 Tr -
UaO(q)[t] = - uao(t, tJ.!) cos [q 27fhtJ.! -o:(t) ] dtJ.! ' Tsw - T�w 

(9) 
Although the periods Tq = T mz+k with k t- 0 of the sideband 
harmonics do not equal integer multiples of the switching 
period Tsw, the difference becomes negligibly small for z ...,. 00 
and finite k, 

z»k m qh = (m z+k)h f':j m zh = - , Tsw (10) 

and hence (9) can be used without restrictions for both the 
carrier harmonics (k = 0) and the sideband harmonics (k t- 0), 
Note that finite values of k are guaranteed by definition 
(3) of q, where Ikl is minimized with respect to m z  which 
consequently also minimizes the approximation error in (10), 

Over the course of the fundamental period, the sideband 
harmonics experience a phase shift 0: ( t) with respect to the 
individual switching periods, 

(11) 

This phase shift is illustrated in Fig. 5 for the case of a carrier 
harmonic at a multiple of the switching frequency (k =O) where 
the phase shift is always zero and for a sideband harmonic 
(k t-O) with non-zero phase shift. 

Using (8), (10) and (11), the integral (9) can be solved, 
A Uoc UaO(q)[t] = - cos [k27fht] sin [m7fUa,ref(t)] m7f {I Ua,ref(t) ;:: 0 (12) , (_l)m Ua,ref(t) < 0 ' 
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2) Global Analysis: In order to obtain the global harmonics 
Uao(q) of the entire fundamental period Tl = zTsw, i.e. the 
actual output voltage spectrum, the local results (12) of the 
z individual switching intervals must be summed up and 
weighted accordingly (cf. Fig. 6), 

A 1 z 
A 

UaO(q) = ---;::;::;- L UaO(q) [nTsw] . Tsw . (13) 
Z.L sw n=l 

For an infinite switching frequency ratio z ...,. 00, 

Tl z--+oo 
- = Tsw ---+ dt , z 

Tl z--+oo n- = nTsw ---+ t , z 

(14) 

(15) 

the local time interval T.�w is converted into a global time 
differential dt and the discrete points of time nTsw merge into 
the continuous global time t. As a consequence, the sum in 
(13) can be expressed as a global integral, 

A Z--+OO 1 loTl A 

UaO(q) = - UaO(q) [t]dt . Tl 0 
(16) 

The above integral (16) again illustrates how the contributions 
of the individual switching periods for a specific harmonic 
are averaged over the fundamental period. This local-global 
integral method (LGI) assuming infinite switching frequency 
ratios z can also be found in [19], [20] for the calculation of 
the semiconductor currents of PWM converters. Substitution 
of Uao(q)[t] in (16) with (12) yields, 

A 2[1-(-1)m+k]uoc 
UaO(q) = T m7f 1 

2J.. 
. r 4 cos [k27fht] sin [m7fUaref(t)] dt , (17) Jo ' 

where the quarter-wave symmetry of uao was exploited. 
3) Final Result: Eq. (17) can be further simplified as it 

does not depend on T1 . In order to see this, the substitution 

is used to obtain the final result 
A [1-(_1)m+k] Uoc 
UaO(q) = 2 m7f 

. r � cos [k,8] sin [m7fua ref(,8)] d,8 , Jo ' 

(18) 

q = m z  + k, mEN, k E z:; Ilkl :s; l Z/ 2 J , (19) 

where Ua,ref(,8) is the reference signal Ua,ref( t) with its period 
normalized to 27f. Inspection of (19) results in the following 
observations: 

• The effective amplitude of a particular harmonic with or­
der q is the result of (infinite) overlapping sidebands. E.g. 
for z = 33, both (m,k) = (1,2) and (m,k) = (2,-31) 
contribute to the harmonic at q = 35. 

• For continuous and bounded reference signals Ua,ref( t), 
the integral in (19) yields decreasing values for increasing 
ratios Ikljm. Moreover, the values become less accurate 
due to approximation (10). 

• By means of the unique definition (3) of q which mini­
mizes Ikl with respect to m z, only the most significant and 
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most accurate sideband contribution (m, z ) is considered 
in (19). 

• Note again that only the amplitudes of the harmonics are 
approximated in (19) whereas the resulting phase shifts 
(0 or ±7l') are exact. 

Further mathematical conversions of (19), i.e. the analytical 
evaluation of the integral is only possible with a given refer­
ence and would lead to more complex expressions containing 
Bessel functions as known from [8]-[10]. Instead, direct 
numerical integration is preferred as shown in the next section. 

D. Evaluation for Different Reference Signals 

Eq. (19) is the result in its most general form which can 
easily be evaluated numerically for almost any given reference 
Ua.ref. Assumptions (i) and (iii) imply the class of permissible 
reference signals Up,ref that generate output voltage waveforms 
upo with the assumed properties. Any even reference signal 
consisting of only odd order cosine terms is possible, 

Up,ref((3) = L: Uref(q) cos [ q((3 + 1»]' q=2n+l, nEl'\:Io. (20) 

All permissible reference signals feature quarter-wave symme­
try. Besides the standard pure sinusoidal reference, 

�,ref((3) = M cos [(3 + 1>] , (21) 

with M = UUPO(/") being the modulation depth, other common DC 2 
and widely applied references belong to this class. Examples 
are the sinusoidal PWM with third harmonic injection, 

1 upS3ref((3) = M(cos [(3 + 1>] - -cos [3(3]) , (22) , 6 

or the symmetric PWM, 

v;SY ((3) = 
{ 1'M cos [(3 -� + 1>] 0::; (3 < � (23) p,ref 3 M [(3 --1,] "2 cos + <p � ::; (3 < � 

which allow for an increased linear range of the modulation 
depth (Mmax = 2/V3 instead of Mmax = 1 for pure sinusoidal 
PWM). The 60° flat-top PWM, 

-Ff { 1 
Up,ref((3) = 

-1 + V3M cos [(3 -� + 1>] 
0::;(3<� 
�::;(3<� 

(24) 

can be employed to additionally decrease the switching losses 
at the expense of a richer harmonic spectrum. Further infor­
mation on the above types of reference signals can be found 
in [15]. 

Eq. (19) can now be evaluated when substituting Ua,ref by 
a concrete reference signal, e.g. the pure sinusoidal reference. 
E.g. for q = 1· z + 4, M = 0.8 we obtain (cf. Fig. 3), 

A 2UDc 1 � . UaO(1.z+2) = -2- cos [2(3] sm [1· 7l' ·0.8· cos [(3]] d(3 7l' 0 
UDC 

� -0.093- . (25) 
2 
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E. Comparison to the Double-Fourier-Series Method 

Applying the widely used double-Fourier-series (DFS) 
method instead of the LGI method used in this work, the fol­
lowing formula for the calculation of the switching frequency 
harmonics U�(�) of a 3-level converter employing PD carriers 
and natural sampling can be obtained [13], 

A DFS � UDC 
UaO(q)= L- -(I-cos[(m + k)7l']) 

mz+k=q m7l' 
mEN,kEZ [ Jk[m7l'M]sin[k�] 

. 4 00 (2n-l)cos[k�] 
+

; n�l hn-l [m7l'M] (2n-l+k)(2n-l-k) 
2n-h'lkl 1 

(26) 

Note that an appropriate formula for asymmetric regular 
sampling could not be found in the literature. By inspection 
of (26) several observations can be made: 

• Formula (26) is clearly more complex than the LGI­
method-based formula (19). Furthermore, in contrast to 
(19), (26) is only valid for a pure sinusoidal reference 
signal and different formulas would thus be required in 
case of other references. 

• The result (26) is exact in theory. However, the numerical 
evaluation is involved due to the present Bessel functions 
and infinite sums. Especially the latter can only be 
approximated in practice. Therefore, on the one hand, the 
DFS method does not yield exact results in practice and 
on the other hand, a careful error analysis is required as 
for the LGI method (cf. Sec. II-F). 

• A fundamental difference between the DFS-based and the 
LGI-based result lies in the first summation in (26). This 
summation takes into account the overlapping sideband 
contributions of all possible combinations (m, z ) , m E 
1':1, k E Z with mz + k = q. In contrast, the LGI-based 
formula (19) neglects this sUlmnation as this results in 
only small errors if large z are assumed. 

In [13], a simplified and more flexible result of the DFS 
method is presented for 2-level converters. It contains, similar 
to the LGI-based result presented in this paper, an unevaluated 
integral instead of Bessel functions and can be used for several 
reference signals. However, no such result is presented for 
3-level and N-Ievel converters and the complexity of the 
corresponding derivation and possible result remains unclear. 

F. Verification and Error Analysis 

Fig. 7 compares the significant, i.e. dominant harmonics 
occurring at the switching frequency multiples m = {I, 5, 15}, 
calculated by means of (19) and by means of a simulation­
based FFT for the flat-top PWM (24) and z = 243. The figure 
proofs the validity of the formula and that a high accuracy can 
be obtained. 

A systematic and detailed analysis of the achievable accu­
racy of the presented formula was performed. However, due 
to reasons of brevity, only the results of this analysis can be 
presented here. 

In a first step, a lower limit z = Zmin was searched for 
which assumption (ii), z--+oo, is sufficiently met yielding high 
accuracy of the calculated harmonics. As for 2-level systems 
[14], it was found that 
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Z 2: Zmin = 30 , (27) 
is sufficient yielding amplitude errors below 10 %. 

By inspection of Fig. 7, it can be observed that the errors 
tend to increase with increasing harmonic order. A detailed 
analysis reveals that the total energy of the calculated har­
monics decreases when compared to the FFT-based harmonics 
as the occurring overlapping at high frequencies is not taken 
into account (cf. Sec. II-E). Therefore, in a second step, it 
was investigated up to what harmonic orders the result still 
provides sufficient accuracy. It was found that the maximum 
permissible value of m increases for higher values of z. If the 
energy deviation between each calculated harmonic group to 
the corresponding FFT-based results is limited to < 20 %, the 
upper limit for m, 

mmax(z) = { :;: (28) 

can be found. 
Based on the above analysis it can thus be concluded 

that the obtained formula can be applied to most modern 
50/60 Hz grid-connected converters which normally readily 
fulfill Z 2: Zmin Usw 2: 1. 5/1. 8 kHz). Moreover, the defined 
upper bound in this section mostly represents no serious 
practical constraint for the application of the result of this 
paper, as in many applications only the dominant low-order 
harmonics are of interest. 

III. GENER ALI Z ATION FOR N-LEVEL CONVERTERS 

The derivations for the 3-level converter shown in Sec. II 
can be generalized with little effort to obtain a universal 
formula for N-Ievel topologies as depicted in Fig. 8(a). 
Since the approach and ideas of the derivation are similar to 
those already shown, for reasons of brevity only the result is 
presented here, 

A 2[1-(-1)m+kJuDC r� 
UaO(q) = 

(N - 1)m7r2 Jo cos [k,B] 

. sin [ �7r ( 1 +N -2N* [N, Ua,ref(,B) ] +(N -1 )Ua,ref(,B) ) ] d ,B . 

(29) 
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(b) 
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Fig. 8: Calculation of the output voltage spectrum of N -level topologies. (a) 
General three-phase N -level voltage source converter. (b) Comparison of the 
calculated spectra of a 6-level converter using the proposed universal formula 
(29) and FFT-based values from a simulation. 

The function 

N* [N,u] = 1 + l (1 + U )�N - 1) J
, (30) 

identifies the relevant carrier signal N* amongst the (N-
1) available PD carriers (cf. Fig. 2(a)) as a function of the 

local value of the reference voltage Ua,ref(,B) .  Formula (29) 
represents a highly versatile result which can be evaluated for 
both arbitrary number of voltage levels as well as all reference 
signals defined in (20). The formula is verified by the example 
shown in Fig. 8(b). 

IV. EXAMPLE OF ApPLIC ATION 

In this section, it is demonstrated how to use the derived 
formulas in a practical EMI filter design example. Fig. 9 shows 
a typical 10 kW solar inverter used in residential applications 
connected to the public mains. All specifications are listed in 
Tab. I. The input DCIDC boost converter ensures a stable 
DC-link voltage of UDC = 650 V which implies a constant 
modulation depth of M = 1. 0 if a constant grid line-voltage 
of Ug=(230. V2) V is assumed. 

Depending on the geographic location, different standards 
concerning EMI must be fulfilled. For residential solar appli­
cations in European countries, IEC 61000-6-3 [21] is a typical 
standard which ultimately requires compliance with the Class 
B quasi-peak (QP) EMI limits as stated in CISPR 14 [22]. 
As a consequence, the output filter of the inverter must be 
accordingly dimensioned. For simplicity reasons, only the DM 

en 
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Fig. 7: Verification of (19) for the flat-top PWM (24) by means of a comparison to a simulation-based FFT analysis. It can be observed that at higher multiples 
m of the switching frequency the growing number of significant sideband harmonics have a lower amplitude but are more widely distributed around the 
respective center order harmonic at q = mz. A high accuracy is achieved in general while large individual errors 2aO(q) > 30 % predominantly occur at only 
non-significant harmonics (marked black). It can be observed. that for increasing harmonic orders the individual errors tend to increase. This is a result of 
the harmonic groups which start to overlap on the edges at high values of m. As indicated in (28). the process of overlapping occurs already at lower values 
of m if z is low. as the harmonic groups are located closer to each other than for high values of m. 
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Fig. 9: Typical solar inverter connected to the grounded public mains. The 
OM EMI filter together with the CM filter (not shown) must be designed so 
as to fulfill EMI limits such as CISPR 14, Class B. The specifications of this 
converter are listed in Tab. I. 

Tab. I: Specifications of the example solar inverter depicted in Fig. 9. 

-; Rated power Pr IOkW 
.. DC-link voltage Uoc 650 V  .. = Grid line-voltage Ug (230·V2)V .. 
� Grid frequency fg = fl 50 Hz 

= Modulation signal Up,refU!) U��ref(,6) .S: 
'; Modulation depth M 1.0 
"S Switching frequency fsw 12.15 kHz � 0 Frequency ratio z 243 :::s .. EMI standard IEC 61000-6-3 (CISPR 14, Class B) � Boost inductance Lboost 300 !ili <2 
� DM inductance LOM 30 !ili 

Q DM capacitance COM 651lf 

filter is designed here, while in reality additional CM filter 
components must be employed to attenuate the CM emissions. 

According to CISPR 16 [23], the QP EMI noise level 
of a signal must be determined by means of the following 
procedure: 
1.) Filtering of the signal with a bandpass filter (RBW filter) 

with 9 kHz (= 2 ·90· h) window width and a filter center 
frequency of 150 kHz. 

2.) Application of the obtained filtered signal URBW to the 
predefined QP detector circuit as depicted in Fig. IO(a) 
which provides the steady-state QP emission level uQP at 
the output. 

3.) Sweep of the RWB filter center frequency from 150 kHz 
to 30 MHz and continuous repetition of steps 1.) and 2.) 
to obtain the frequency-dependent QP emissions uQp(f). 

If a calculation of the EMI emissions is preferred over using 
an actual hardware prototype and appropriate measurement 
equipment, either a simulation or, more flexibly, the formulas 
derived in this paper can be used. For the given application 

(a):Ej= ' :: " ':'�l� I I 
-'" 3000 ° ° �_ o, " URBIV == UQP 
0) 3001 4.45.10-0 1m - 5:i + + 

3089 0.56 - � �30�[)04�0��===+j= = QP detector 
.:;;30"'-91'+--'0"" . 65"--_+--''---_ Cl rcUI t 

::=:: 160 � 
Eg 120 

(b) � § 80 
'w 
.§ 
ril 
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in Fig. 9, formula (19) was used to create a table of the 
harmonics of the output voltages upn as shown in Fig. IO(a). 
The described filtering process of step l.) was then performed 
by synthesizing the filtered time-domain signal URBW using 
the calculated DM harmonics within the sweeping RBW filter 
window. Step 2.) was performed by means of an equivalent 
mathematical representation of the QP detector circuit [24]. 
Note that the (mostly imperative) distinction between DM and 
CM noise can easily be done in the frequency-domain of this 
approach and normally requires extra effort in a simulation. 

Fig. lOeb) shows the calculated harmonic DM spectrum of 
the voltages upn at the ports {a,b,c} before the filter. Further­
more, the determined QP emission level uQP is depicted. The 
Class B limits do not decrease beyond 1 MHz, which is why 
the critical frequency for the filter design can be identified in 
Fig. lOeb) at fCrit=158 kHz. The inspection of the plot reveals 
a required DM attenuation ADM of 75 dB at this frequency. 
Since the shown Class B limits apply to the total DM and CM 
emissions, a common practice is to increase the required DM 
attenuation by 6 dB to obtain a margin for the subsequent CM 
filter design [24]. The resulting filtered spectrum is measured 
at the interface {Ll,L2,L3} between converter and mains 
by means of a line impedance stabilization network (LISN, 
[23]). This measurement circuit has an approximate inner 
resistance of RLISN = 50 n for frequencies above 150 kHz. 
The total attenuation of the DM filter and LISN can thus be 
approximated with 

1 
= 1 ip(f) I .RLlSNi>! 

RLISN (31) 
ADM(f) upn(f) LboostCDMLDM(27rf)3 ' 

if linear filter components are assumed. Using (31) and the 
component values in Tab. I, the desired attenuation 

ADM (fcrit = 158kHz) i>! 1.14. 104 i>! 81.14dB , (32) 

results. Fig. IO(c) shows the calculated attenuated DM spec­
trum as well as the respective emission levels uQP. It can be 
seen that the Class B limits are clearly met with a margin of 
approximately 11 dB. The discrepancy to the targeted 6 dB is 
due to the approximation in the filter transfer function (31). 
The validity and quality of the approach based on the derived 
formula in this work is proven by the high accuracy when 
compared to the simulated emission levels. The error is around 
2 dB at the upper limit mmax = 48 '" 583 kHz as defined in 
Sec. D-F and reaches only 3 dB at 1 MHz ('" mi>!82). 
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Fig. 10: Analysis and design steps of the DM EMI filter of the application shown in Fig. 9. (a) Calculation of the quasi-peak (QP) emission levels at the 
converter output ports {a,b,c}. The calculated OM harmonics (q * 3n) within the bandpass RBW filter with window width of 9 kHz are used to synthesize 
the filtered signal URBW in time domain, which can then be applied to the QP detector circuit with defined charge and discharge constants. The resulting 
steady-state voltage across the capacitor is the measured QP emission level uQP. This procedure is repeated while sweeping the center frequency of the RBW 
filter from 150 kHz ("" q=3000) to 30 MHz. (b) Calculated spectrum of (a), determined OM emission levels uQP and permissible QP emission levels according 
to CISPR 14. Class B [22]. A minimum damping of 75 dB must be achieved at the critical frequency felil = 158 kHz. (c) Calculated emissions including the 
filter at the ports {Ll.L2.L3} and comparison to the emission values obtained with the FFT-based spectrum from a simulation. The error remains lower than 
2 dB up to the upper limit mmax =48 "" 583 kHz as defined in Sec. II-F and reaches 3 dB at 1 MHz ("" m,,82). 
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V. CONCLUSION 

In this paper, an analytical formula for the approximate 
calculation of the switching frequency harmonics of idealized 
PWM-controlled 3-phase 3-level voltage-source DC/AC power 
converters was presented. The formula is based on the assump­
tion of an infinitely high ratio z between switching and output 
fundamental frequency. This assumption is, however, fulfilled 
to a sufficient degree by most modern converter systems, 
allowing for accurate calculations of the spectra. An in-depth 
error analysis has shown that z;:: 30 is sufficient, while good 
accuracy can be obtained up to high harmonic orders. The 
simple formula which can be evaluated for almost arbitrary 
modulation signals is thus an attractive alternative to exact 
methods, whose demanding derivations yield complex formu­
las which can mostly be evaluated for a single modulation 
signal only. 

The presented method was further used to derive a universal 
yet still simple formula for general N -level converters and 
again arbitrary modulation signals. Furthermore, it is shown 
how the effect of non-linear, current-dependent inductors in 
the output impedance can be incorporated for systems with 
decoupled phases or, equivalently, single-phase systems. 

A design example of an EMI filter demonstrated the use­
fulness and accuracy of the derived formulas. The MATLAB 
code presented in the Appendix can be used to calculate most 
of the presented results. 

Future work could include a more comprehensive error anal­
ysis. Particularly the impact of varying the number of voltage 
levels N on the accuracy in general, Zmin and mmax could be 
investigated. Finally, more advanced formulas could be derived 
with the LGI method which incorporate other non-ideal effects 
besides non-linear inductors. Examples are switching delays, 
finite switching speeds of the semiconductors and a varying 
DC-link voltage, which all lead to a distortion of the assumed 
ideal rectangular voltage pulse trains. 

ApPENDIX 
MATLAB CO DE FOR THE OUTPUT VOLTAGE SPECTRUM 

OF AN N-LEVEL CONVERTER 

The derived formulas in this work are most suitably im­
plemented in MATLAB using the Symbolic Math Toolbox. 
This enables a clear and flexible code while benefiting from 
MATLAB's efficient and accurate numeric methods. Here, the 
MATLAB code for the generalized N-level formula (29) is 
presented. 

First the desired modulation function must be defined, such 
as the flat-top reference, 

uref = @(M,beta) ... 
(1.) . * (beta >= ° & beta <= pi/6) + ... 
(-I.+sqrt(3.) .*M.*cos(beta-pi./6)) .* ... 

(beta > pi/6 & beta <= pi/2)+ .. . 
(1. -sqrt (3.) . *M. *cos (-beta+5. *pi. /6)) . * .. . 

(beta > pi/2 & beta <= 5*pi/6)+ ... 

(-1).* (beta >= 5*pi/6 & beta <= pi); 

Other modulation signals can be coded analogously. In a next 
step, the integrand of the N-level formula (29) and (30) are 
defined, 

N ast = @ (N,M,beta) ... 
l+floor( (uref(M,beta)+I) ./(2/(N-l))); 

int_NLevel = @(UDC,N,m,k,M,beta) ... 
2. * (1-(-1) � (m+k)) . *UDC/ ((N-1) . *m. *pi �2) . * ... 
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cos (k. *beta) . *sin (1/2. *m. *pi. * ... 
(I+N-2.*N_ast(N,M,beta)+(-I+N) .*uref(M,beta) i); 

An arbitrary harmonic can now be calculated using MAT­
LAB's integral ( )  method, 

UDC=1000; N=3; m=l; k=O; M=I.; 

U_mz_k = integral(@(beta) ... 
int_NLevel(UDC,N,m,k,M,beta) ,O,pi/2) 
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