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Abstract

This paper treats the analytically closed optimization of the mod-
ulation method of a DC voltage link PWM converter system. In
this modulation method the amplitude is defined, as extension of
a simple sinusoidal modulation, by addition of a third harmonic
with adjustable amplitiude. The quality functional is given by
the sum of the squares of the rms values of the resulting current
harmonics, or the harmonic power loss, respectively.

The application of space vector calculus, the assumption of
high pulse rate of the converter system and the definition of lo-
cal mean values (related to a pulse period) make a sufficiently
exact, direct and analytically closed formulation of the harmonic
power loss possible. This formulation is made in the time domain
in dependency on the freely adjustable parameter of the under-
lying phase modulation functions. A minimization can then be
performed via solving a simple extreme value problem without
having to use a digital computer. Besides minimum harmonic
power loss also the case of maximization of the voltage utilization
of the converter system is analyzed.

The calculation method presented verifies classical pulse pat-
tern optimizations (based on digital computer utilization) known
from literature which are restricted to converter systems of low
pulse rates. Due to the complete avoidance of numerical calcu-
lation steps the description of the system behavior can be given
in this case directly with the help of simple functional dependen-
cies. Thereby the theory of the stationary operational behavior
of PWM converter systems with high pulse rates is substantially
extended and, also, an immediate inclusion of the calculation re-
sults into the dimensioning of PWM converter systems is made
possible.

KEYWORDS: PWM Rectifier/Inverter System, Switching Strat-
egy Optimization, Space Vector Calculus, Harmonic Power Loss
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1 Introduction

The control signals of the bridge legs of a voltage DC link PWM
converter system (see Fig.1) are defined in the simplest case by
the intersection of purely sinusoidal phase modulation functions

mp(pu) = Mcospy
2r
ms(py) = Mcos (‘PU - ”3“)
2
mr(ev) = M cos (gau + —gi) (1)
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M= "2 = 2
Usxk  Uzk @)

» 2
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with a triangular signal with pulse frequency. According to Fig.2
therefore we have for the relative on-time of the bridge legs (which
can be replaced regarding their function by a double-pole switch
between positive and negative DC link voltage bus)

t 1 1 M
ag(t) = 2TP2 = 3 1 +mg(r)] = 3 + 5 COSWNT
2t 1 1 M 27
as(r) = —T‘f’- =3 [1+ms(r)] = 3 + = cos <wN7' - ?) (4)
2t 1 1 M 2T
P77 O —_ ki
ar(r) = To = 3 1+ mp(r)] = 5 + 5 cos (wNT + 3 )
with
Yy = WNT . (5)

By introduction of space vector calculus

%) (9

we have for weighting of the space vectors (which are associated
to the switching states of the PWM converter, see Fig.3)

2 1 ,
=3 Uzk [UU,R +aups +d uU,T] ¢= (—5 +7

M .
b = (ag—ag)= sin ((,aU + g—)
M
b, = (as—oagr)= 5 sin ((py - %) (7
bo+8=1—(as—ar)=1- sin @y (8)
67 = Q7 .
50 - (1 - aS) (9)

(the indices denote the converter switching state by the decimal
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Tz Fig.1: Structure of the power circuit of a
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three phase voltage DC link PWM converter

eax system. For usage as PWM inverter for AC

machine drives the inductances I and the
three phase system up can be interpreted as
simple equivalent circuit. of the AC machine
formed by leakage inductances and machine
counter emf. On the other hand, for mains
operation of the PWM converter (PWM rec-
tifier, static VAR compensator) the induc-
tances have to be connected in series; the
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equivalent of the converter switching status vector interpreted as
binary number). The further equations describing the voltage
generation are summarized in Appendix 1. According to Egs.(1)
and (3) there follows for the modulation range for sinusoidal mod-
ulation

(10)

Meo,1].

Fig.2: Derivation of the switching times of an con-
verter bridge leg via intersection of the relevant phase
modulation function with a triangular signal.
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conditions.

As is shown in Ref.[1], now the modulation limit can be in-
creased by a simple modification of the phase modulation func-
tions

mp(py) = M cospy — Mscos3py
2m
ms(py) = Micos (‘PU - —g-) My cos 3py
2
mp{py) = M;cos (‘PU + *31) — M; cos 3py (11)
20 20
M, = =2 = 0B 19
1= 3=, (12)
with M i
3
— = - 13
N 6 (13)
to the theoretically maximum value
M, elo i (14)
1 i \/3‘

(cf. Fig.3).

If the square of the sum of the rms values of the existing
current harmonics

1 .
I= AIK’,RST,T"IJ = _fI;I'. ‘/TN Ai?V,RST,rm:(T) dr — Min (15)

with

Aiy =iy —iy (16)
and
a7
is chosen as quality criterion for the optimization, there follows
(cf. Ref.]2]) as suboptimal solution (in the region of low pulse
frequencies treated) again the extension of the simple sinusoidal

iv(r) = -I:;v exp JwNT

Fig.3: Approximation of the reference value of the
converter output voltage via neighbouring converter
voltage space vectors (due to the 60°-symmetry of
the voltage space vectors following for the converter
switching states one can limit the considerations to
the interval of vy € (3, 2; ] shown here).




modulation as given in Eq.(11). However, then

M, 1
E\I:min - 4 (18)

is valid (cf. Fig.4).

For the optimization of the modulation approach of a PWM
converter system regarding maximization of the modulation limit
{or minimization of the harmonic loss, respectively) therefore the
modification of the simple sinusoidal modulation by adding a third
harmonic is of paramount importance. This is analyzed in this pa-
per in greater detail for PWM converter systems for higher pulse
rates. The calculation is performed in an analytically closed ap-
proach as opposed to the methods given in literature which are
based on digital computer application (e.g., Ref.[3]). The avoid-
ance of numerical calculation steps is made possible by application
of approximations which are valid for high pulse rates with suffi-
cient accuracy. The comparison of the results (which is omitted
here for the sake of brevity) to the digital computer approach
shows an excellent consistency already for relatively low pulse
rates. The importance of the calculation method presented here
lies especially in the determination of the functional relationships
between the characteristic system quantities and in the associated
very much deeper insight into the "inner” system behavior.

MygsT)

Fig.4: Shape of the phase modulation functions ac-
cording to Eq.(54) or [3], respectively.

2 Basic Considerations Regarding the
Optimizability of the Modulation Meth-
od by Modification of Sinusoidal Phase
Modulation Functions

As a closer investigation shows there follows via Eqs.(7),(8) or
Eq.(9), respectively, that the modification of the phase modula-
tion functions according to Eq.(11) influences only the distribu-
tion of the two not voltage forming free-wheeling states (&, &7)
between begin and end of each pulse half period. This distribu-
tion of the free-wheeling status in general gives in the region of
high pulse rates the only parameter of the modulation method
which can be chosen freely. This is due to the fact that weighting
of the voltage forming converter switching states is defined di-
rectly via the converter space vector to be generated (cf. Fig.3).
Accordingly, in the space vector representation the addition of

ms,(rsT)(PU) = —Ms cos 3py (19)

can be interpreted as a special form of a zero-quantity

1
my = g(mﬁ+ms+m1‘) (20)
with
mp = m}i + myg
msg = myg+mg
mr = mp+mp (21)
(22)

The optimization of the modulation function therefore has to be
performed via an appropriate modification of the free-wheeling
state distribution mentioned before by giving an appropriate am-
plitude M;.

3 Minimization of the Harmonic Losses

The quality criterion shall be defined as the sum of the squares of
the rms values of the existing current harmonics or, as harmonic
losses, respectively (cf.Eq.(15)). This suggests itself because then
there (if the skin effect is neglected) the copper losses as well as the
torque pulsations (in the case of supplying to an AC motor where
a sinusoidal air gap flux is assumed) are rated. The minimization
of the quality criterion assumes the knowledge of the fuctional
dependency of the harmonic losses

. 3 por/3 2
AIN ST rme = ‘ﬂj/ﬁs {AZN,HST,rm:,l(MlxMS"{’U)+

dey  (23)

]
A R5T,rma2 (M1, PU) MI,MS___CM,‘!}

on the distribution (as mentioned before) of the not voltage form-
ing states (or, equivalent, of the duration of one of the two free-
wheeling states (cf. Eqs. (9) and (11)) ). Asshown in more detail
in Appendix 2 this functional dependency follows via

1

.9 .
NG AzN,RST,rma,l =
n

%’557{5256(5, — 86) = 2626 [L — (61 + 8 + 62)] } (24)

1.
—A_i{Az.?V,RST,rma,Z =
%{6536 2636 — 467 — 482 — 45,655 — 486526 —
— 88,86626 + 26262 — 8265 + 36366 — 5352} (25)
with
. Uz TP
= JZK°P 26
Ai, 8L (26)
and
626 = 6; + 6256 + 62 ) (27)
where

Ai?V,RST,rmJ(T) = Ai?V,RST,rma,l{67(T)166(7.)’62(1.)} +

+ AiYy rsTemea{86(7),8(T)} (28)
or
AiIzV,RST,rrru,l AiIZV,RST,rm:,ll(57,1; 62) 66) +
+ ALY 7 rme12(87,1; 67,21 62; 66) (29)
with




8 = britbrp=ayp (30)
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TmoT g LC
M,
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respectively, is valid. The optimization therefore can be limited
to that loss contribution

3 27/3 R
AIIZV,RST,rmaJZ = ;!'- ‘/7;/3 At?V,RST'rmJ,IZ(‘PU) YU (32)

which is influenced via modification of the free-wheeling state dis-
tribution by a third harmonic (cf. Eqs.(30), (31) and (29) ). The
quality criterion (cf. Eq.(15)) therefore becomes

I’ = AIIZV,RST,rms,lz g MlTL . (33)
Via
1o 3 M 2M.
—ATi AZ%V,RST,rma,lz - —ZMf-M:f (1 — 7\25) cos 3(pU (34)
there follows
1 2 1 M3 2M3 3 2m/3
) =——M4——(1— )—/ 230y doy .
Azi N,rms12 4 1 M1 Ml 7 Jujs Cos® oy Ay

(35)
The minimum value problem regarding the harmonic losses there-
fore is reduced to a simple extreme value problem according to

d
dM3 {AIIZV,RST,rma,lz} M =const =0. (36)
This yields with
M,
Ms 1=Min = 2 (37)

a result already known from Ref.[2]. The modulation method (in
the following designated by subscript [3]) which is suboptimal for
the lower pulse rate region (cf. Ref.[2]) therefore becomes the
exact solution for the optimization problem for high pulse rates.

A minor limitation of the optimization approach is given, how-
ever, due to a reduction of the maximum modulation depth ac-
cording to

2
=1.122 = 0.972—= . 38
=t Vi 9
However, this value lies significantly above the value which can
be reached with the simple sinusoidal modulation.
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4 Maximization of the Modulation Range

Alternatively to the minimization of the harmonic losses one can
optimize (according to Ref.[1]) the modulation method for obtain-
ing the maximum possible modulation range.

By considering the modulation function of phase R there fol-
lows the operating region which does not show overmodulation
according to

§ = M;cospy — Macos3py <1 (39)
or with M,
7 ks (40)
respectively, as
¢ = M cospy — k31 Micos3py < 1. (41)

For the position of the resulting maximum of the modulation func-
tion within a fundamental period there follows for the set of pa-
rameters My, ks

9kgy — 1
2 2 31
= 42
S 90 = T (42)
with dt
— =0. (43)
d‘PU Mj k3 =const

For the value of the maximum there follows

/ 1 1
bmaz = Miksiy/1+ ‘é‘lgl‘ (1 + gk—m) . (44)

At the modulation limit €mez = 1 the modulation index of the
fundamental becomes a function

My=—— (45)

1 3/2
b (14 52
31 1+3k31

of the parameter ksg; (cf. Eqs.(40) and (11) or Fig.5, respectively)
which can be set. The maximum modulation range therefore is
given according to the solution of a extreme value problem via

dM,
=0 (46)
for 1
kal,Mxmaz = g . (47)

The modulation depth in this case reaches the theoretically pos-
sible maximum value

2
Ml,maz k31=% = % (48)

for .
PUMimeey 2 =G (49)

Fig.5: Maximum modulation index Mjmqz of the
converter system in dependency on the modification
of the phase modulation functions characterized by
k31.




5 Alternate Possibilities for Optimization

In general the minimization of the rms value of the harmonics of
a PWM converter system constitutes a variational problem. For
the quality functional we have there Eq.(15). According to the re-
lationship Eq.(28) an optimization has to be performed "locally”,
i.e. within each pulse period via appropriate setting of the free-
wheeling state distribution (cf. Fig.6 and Fig.7). It results in the
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determination of the optimal distribution function

b _ &

5 = 5, %) - (50)

This distribution function can be given according to Eqs.(8), (30)
and (31) via the duration of one of the two free-wheeling states
(e-g., as in this paper, via §7). The associated phase modulation
functions follow with Eqs. (7),(9) or (4), respectively.
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Fig.6: Hlustration of the optimizability of the local harmonic power loss, related to a pulse
period (cf. Eq.(24)). Dependency of 1/Ai% A g rm,1 = /A2 A% psr me 1 (67, 0U)
(M=0.75).
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Fig.7: Hlustration of the optimizability of the local harmonic power loss, related to a pulse
period (cf. Eq.(24)). Dependency of 1/Ai% Ai} por a1 = 1/ A% Ay por pme1 (67, M) (v =
75°).




With the set-up according to Eq.(11) the structure of the dis-
tribution function has been anticipated, however (cf. section 2).
The variational problem thereby degenerates to a simple extreme
value problem or to an optimization of a quality function, respec-
tively, because as the only parameter which can be set freely there
remains Mj. The distribution of the free-wheeling state defined
herewith not necessarily constitutes the optimal distribution for
each pulse interval. Therefore in the following we want to discuss
briefly the solution of the variational problem mentioned.

As shown in Ref.[4] or Ref.[5], respectively, there follows
5266

1
87 1=Min = {'2*[1 ~ (62 + 86)] — ;—5*“(52 — &)} . (51)
26
A simple check leads to
1
87, 1=Min = 5[1 + mr(pv)] = 67,3 (52)
with 9 M
T
mT(<pU) = M, cos (<pU + —3-> - '4—1 cos 3py (53)
and

3=

878 = [% + %21— cos ((pU -+ %T—F—) - —A% cos 3<,0U} y (54)
however (cf. Eqs.(9), (11) and (37)). Thereby local (related to
one pulse period) and global (related to one fundamental
period) optimization lead to identical results! The modi-
fication calculated in section 3 regarding purely sinusoidal phase
modulation functions therefore implies directly also the minimal
harmonic power loss contributions of each pulse interval,

As is immediately clear one can give

1 1 1 V3M
57,(2] = 5[1 - (52 + 65)] = —2~(50 + 57) = .2— — \/;

sinpy  (55)

as simple suboptimal approximation (cf. Ref.[6] or Fig.8, respec-
tively). This is of interest due to the then possibly less complex
modulation unit for the converter because there the free-wheeling
state can simply be distributed in equal parts at the begin and
end of each pulse half interval.

6 Comparison of the Results

As mentioned already for PWM converter systems with high
pulse rates (independently of the quality functional selected) the

MrsT)

only parameter accessible for the optimization of the modulation
method is given via the distribution of the not voltage forming
state. Accordingly the modulation methods treated here shall be
illustrated graphically via the then given free-wheeling state dis-
tribution or the duration of one of the two free-wheeling states,
respectively. The sum of the duration of the two free-wheeling
states occurring within one pulse half period is determined di-
rectly via the PWM converter output voltage to be generated (cf.
Eq.(8)) and constitutes a side condition of the optimization. In
the case of simple sinusoidal modulation (designated by subscript
[1]) there follows for constant modulation index a shape
b7

bep = 5t 6 (56)
which depends heavily on the angle ¢y (see Fig.9). This is
substantially smoothened for the harmonic-optimal modulation
method as calculated in section 3 (designated by subscript [3]).
A free-wheeling state distribution

b7, ™ 0.5 (57)

in this case therefore can be seen as characteristic for a modula-
tion method being optimized with respect to the harmonic power
losses. With this there follows immediately that an equal distri-
bution

87, =05 (58)
for the entire angle and modulation range leads to a suboptimal

modulation approach (designated by subscript [2]) as defined via
Eq.(55).

A comparison of the harmonic power losses in one phase re-
sulting for the modulation functions treated is shown in Fig.10.
The equations underlying these characteristics

1, o[ sM 3
AI}V.rma.[l] = .G‘szth [1 - —'\/—g_?; + 4
M e [0, 1] (59)
1 8M  9M? 33
2 — A2 par2 — - — —
AIN.rrna,[Z] - GA’I’nM [1 \/§7r + 3 (1 4 >]

Me [o, "?ﬁ] (60)

1., 8M, 3M?
AII%[,rm:,[I&] = .6‘A7'121M12{1 - 7'.3-71‘_ + 4 1 {l - k31 (1 - 2k31)] }
b=t  Melo, > (61)
31 — 4 y \/g ]

can be derived in a simple procedure via evaluation of Eq.(15)
considering Eqs.(24) and (25) (cf. also Ref.[5]). The harmonic-
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Fig.8: "Microscopic” and "macroscopic” shape of the phase modulation functions according to

Eq.(55) or [2], respectively.




optimal modulation method shows especially in the upper mod-
ulation region a significant reduction of the harmonic power loss
as compared to sinusoidal modulation. The suboptimal solution
lies (according to the excellent approximation of the optimal free-

08
086
B1e)

04

0,2

therefore to a complete switching state sequence

T 2

...0267 FeRry
33

0267...

tu=Tp/2

] . (62)

<PU€[

7620
=0

ty

0.2

00 37121

wff

izt

Py

wiy

Fig.9: Dependency of the relativ free-wheeling state duration 87, on the modulation index
and on the converter voltage angle ¢y; left: sinusoidal modulation; right: harmonic-optimal

modulation method.

wheeling state distribution (cf. Fig.9) very close to the global
optimum. In Fig.11 the dependency of the harmonic power loss
on the relative amplitude k3; of the third harmonic (related to the
fundamental) is shown. Due to the relatively flat minimum also
the solution gained by maximization of the modulation range (cf.
Eq.(47)) leads to very good results.

7 Conclusions

In this paper modulation functions have been analyzed leading to
an optimal or suboptimal, respectively, distribution of the free-
wheeling states between begin and end of a pulse half period and

0,06

0,045
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M=0972 2z

1 2
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0,015 /
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For this class of modulation functions (”continuous” modulation
- see Ref.[5]) there has been derived in section 3 a modulation
method being optimal with respect to local and global harmonic
losses, limited to converter systems with high pulse rate.

If the entire free-wheeling state is shifted to one end of a pulse
half period there follows a further group of modulation functions
(" discontinuous” modulation) which is treated in detail in Ref.[5].
It can be shown that for these modulation methods in the upper
modulation range a substantional reduction of the harmonic losses
is given as compared to continuous modulation (¢f. Fig.10). In
this paper a more detailed treatment has to be omitted for the
sake of brevity, however.

In conclusion it shall be pointed out that the approximation
methods giving the basis of the optimization performed here can
be very successfully applied also to the analysis of other power
electronic systems, e.g., direct AC-AC PWM converters. In each
case a clear representation for an engineering point of view is sup-
ported. This is due to the functional dependencies of the charac-
teristic system quantities determined and opposed to purely nu-

Fig.10: Comparison of the normalized har-
monic power losses for various modulation meth-
ods ([1]: Sinusoidal modulation (Eq.(59)); [2]:
Suboptimal space vector modulation (Eq.(60));
[3]: Local and global optimal sinusoidal modu-
lation with added third harmonic (M3 = M; /4,
verified in sections 3 or 5, respectively; Eq.(61));
[4],[5): Optimal control methods derived in
Ref.[5]).
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merical calculation methods. Furthermore, dimensioning of the
system components is simplified.

References

[1]

Buja, G., and Indri, G.: Improvement of Pulse Width
Modulation Technigues. Archiv fir Elektrotechnik 57, 281-
289 (1977).

Bowes, S. R., and Midoun, A.: Suboptimal Switch-
ing Strategies for Microprocessor-Controlled PWM Inverter
Drives. IEE Proceedings, Vol. 132, Pt. B, No. 3, 133-148
(1985).

Zach, F. C., and Ertl, H.: Efficiency Optimal Control
for AC Drives with PWM Inverters. IEEE Transactions on
IA, Vol. TA-21, No. 4, 987-1000 (1985).

Kolar, J. W., Ertl, H., and Zach, F. C.: Calculation
of the Passive and Active Component Stress of Three-Phase
PWM Converter Systems with High Pulse Rate. Proceedings
of the 3rd European Conference on Power Electronics and
Applications, Aachen, Oct. 9-12, Vol. 3, 1303-1311 (1989).

Kolar, J. W., Ertl, H., and Zach, F. C.: Analytically
Closed Optimization of the Modulation Method of a PWM
Rectifier System with High Pulse Rate. Accepted for publica-
tion at the PCIM'90 Conference, Munich, June 25-28 (1990).

van der Broeck, H. W., Skudelny, H. C., and Stanke,
G. V.:  Analysis and Realization of a Pulsewidth Modula-
tor Based on Voltage Space Vectors. IEEE Transactions on
Industry Application, Vol. TA-24, No.1, 142-150 (1988).

Fig.11: Global harmonic losses of one

phase in dependency on the fundamental

amplitude and on the ratio kg; = M;/M;
e (cf. Eq.{61)).

Appendix A

According to Fig.3 we have:

. 2

b sm(-3— —u) c [ﬂ- 27‘-]
= Yu € |7, =

& sin(py — <) 373

3
2 tua(r) t,3(T)

7 = — uyedt, + / Upr o dE

-@U(T) Tr [/;M(T) Upedly () U,2 u]

Ak .
uy = Uy exp jwyt

2 2
b6 = T [tuz—tua] &= T [tus ~ tuz]

uy(pv) = tye b6 + uy, 6; YU = WNT
‘PU)]

2

2 T
ug(pv) = gUzK {66 cos(py ~ -3-) -+ 85 cos( 3

2
upe = lugel = uve = |up,| = 3Uzx

(A1)

(A2)

(A.3)

(A4)
(A.5)

(A.6)

(A7)

(A8)

(the indices denote the converter switching state by the decimal
equivalent of the converter switching status vector interpreted as
binary number). There one basically has to distinguish between
the microscopic or local time behavior (t,; t, € [0,T5/2]) of the
quantities within a pulse (half) period Tp and the macroscopic (or
global) time behavior (7 or angle py — identification of the pulse
interval position within the fundamental period) of the quantities

which are based on time averaging over a pulse period.
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Appendix B

For the quality functional we have

1
I= AI;V,RST,rms = ?r—l; ‘/;'N Ai?\l,RST,rrru(T) dr — Min (Bl)

the integral (related to the fundamental period) of the square of
the deviation

Aiy =iy — iy (B.2)
between the current actual value and the reference value
in(r) = Iyexpj (ont + vups) - (B3)

(This is equivalent to using the sum of the squares of the rms
values of the current harmonics as quality functional.) For its
calculation one can choose a simple equivalent circuit of the sup-
plied system (considering the high pulse rate assumed) according

. T o\ T
Ding,,(T) 561‘-U,6§—£ — (82 + 66)-"£U(T)2_§
. v T
Bixgys(r) = Sotis(r)3E (8.7
respectively, with
dij .
L div = (up — un) (B.8)
and
w(r) = un(r) +jwliy(r)
iv(T+ts) = iy(r) + jwtuiy(r) (B.9)

(approximation of the circular trajectory of the reference-current
space vector by the local tangent). Then we have

. , wr T
to i By 17, (7) = g, o (7) = S (7) ﬁ"- =0 (B.10)
jf’“ = (w —uy) . (B4) _p
For the space vector of Aiy there follows (see Fig.3, Fig.(A.1) uy(7) = 6(T) uve + 62(T) uvs (B.11)
and Fig.(A.2))
dhiy 1 . o .. Te _Tp\ .
= [y %57 (B.5) in(r+ ) = (1+jon—)inlr),  (B1)
m
respectively. As is shown by a simple consideration, one can for-
Ai - & . Te mulate the sum of the squares of the phase currents via the «,5-
N (1) = br[—up(7)] 2L coordinates of the related space vector
Tp
Az = Ag + 6 —up{r)| = (B.6 3
’LN,t,,,,z(T) ’l«N,tu,x(T) ] [EU'B y‘-U( )] %L ( ) Ai?\fla + Ai?\r,s + Ai;V,T — %[Aﬁv’,a + Ai}z\l’,ﬁ} = EIAL‘NV . (B.13)
Az T) = Az T+6u-—y,_*'r-—£ :
Newa () Nina(T) + 8 [0 = 15 (7)] 37 With {hs, Eq.(B.5) sad
K S / [ (t) + Aik (6] de
7 B
(Bier = bui) Jtus et e T
1/ . , 2
g [(AzN,i,a + AzN,i,aAzN,i-}-l,a + AZN,H—l,a) +
it . . . .
" jIm, B + (A'L?V,i.ﬂ + AinipAiniys t+ Al?\f,H—l,ﬁ)] (B.14)
LT
diyo
‘P_i,}'l%z_g
Re, o
) Fig.(A.1): Dlustration of the defini-
Inlap)

tion of the current deviation according to
Eq.(16) ( Aiy ...space vector of the con-
verter output current ).




the local rms value (related to a pulse (half) interval) of the cur-
rent ripple can be expressed according to

Ai?V,RST,rms (T) =

2 =T .2 .2
ol (At + Ads(t) + Aikr(t)] dt =

= %{57 [Aide w035, ]
oo (A%, 0 TAR T Ak L+ Ay st
AN @A b0 DNy, 5N 8]+
8 [Aidya T+ Dk, o+ Aiky st
F DN g0 @A g+ D3 8N 5 6]+

+66 [Aif\,’cmala +Aif\,’f_»‘3,ﬁ]}

(B.15)
with
For the calculation of the global rms value (being set equal
to the quality functional I) related to the fundamental period we
have

1 . ) )
I = AI?V,RST,rms = —T—J;-/T“ (AI.?V,R -+ Az;v’s + Azle,T) dt
N
1 _ ‘ '
= X o (Ot A+ AR ) de, . (Ba)
i V2

Now, in the sense of a simple averaging of the local harmonic loss
contributions the position of the pulse interval shall be moved
time-continuously through the fundamental period. Then with
sufficiently good approximation for high pulse frequency, the sum-

AiN,f“ 2

Re, o0 =

mation due to the finite system switching frequency can be re-
placed by an integration. This allows to calculate a simple ana-
lytical expression for the harmonic power loss

I= AI}V,RST,TT’IJ =

1 2 w=iTe .2 2
= ﬁ/;‘n{?;[ ] (AlN,R+A1N,s+A1N,T) dt,}dr
-

- Ti | A% st pma(r) dr — Min (B.18)
N JTn

via the local harmonic rms value

AiIZV,RST,rma(T) = Ai?V,RST,rms,l{57(T)) 66(T)1 52(7-)} +
+ AiIZV,RST,rm:,Z{(SS(T)! 52(T)} (Blg)

1 .
o7 A’?\r RST,rms,1 =
A’Lﬁ ' rmas,

%57{5256(52 — 8) = 2625 [1 — (614 66 + 62)] } (B.20)

1, .,
iz AzN,RST,rma,Z =
n

16
3{6536 + 2636 — 485 — 465 — 48,656 — 466626 —

— 86364826 + 26362 — 5264 + 36364 — 5;5:} (B.21)
ith
" Ai, = JexTr (B.22)
. T8l ‘
and
Melty) e
—_— 1
Mgtyl T +1
melty) - e ‘uz‘iKUu,(RsT) T
| —_——— ]
i
fu 0t 2ty s

Fig.(A.2): left: Trajectory of the space vector Aiy(t,) within one pulse half period; right:
associated microscopic time behavior of the phase modulation functions (pulse pattern).
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