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Abstract

By application of the space vector calculus the optimization of the control method of a voltage DC link PWM
converter system with high pulse rate can be performed analytically simple without the necessity of using a
digital computer. The quality functional is defined by the rms value of the output current harmonics. The
optimizing calculation can be performed locally (related to a pulse period and resulting in the determination
of a modulation function) or in a global manner (for the parameters of a given modulation function). It is
shown that local and global optimization lead to the same results.

As further result there follow modulation functions which make possible a substantial reduction of the
harmonic power loss especially in the upper modulation range when compared to the known control functions.
The resulting harmonic power losses can be given directly in the form of simple mathematical expressions
in dependency of pulse frequency and modulation depth.

Based on the duality relations existing between voltage DC link and current DC link PWM converters
furthermore a simple transfer of the results to current DC link PWM converter systems is possible.

1 Introduction

Due to the broad industrial application of converter fed induction motor drives the determination of optimal
control methods constitutes an important part of the theory of the stationary operating behavior of PWM
converter systems. As optimization criteria one can use, e.g., the maximum appearing current amplitude, or
the rms value of the current harmonics generated, or the elimination of certain harmonics. As side condition
of the optimization the output voltage fundamental to be generated by the converter system is given.

The determination of the optimal switching instants of the power electronic devices can be performed
in a region of lower pulse rates (i.e., for higher power systems) on a digital computer via classical switching
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Fig.1: Structure of the power circuit of a three phase voltage DC link PWM converter system. For
usage as PWM inverter for AC machine drives the inductances L and the three phase system u,, can be
interpreted as simple equivalent circuit of the AC machine formed by leakage inductances and machine
counter emf. On the other hand, for mains operation of the PWM converter (PWM rectifier, static VAR
compensator) the inductances have to be connected in series; the voltage system u, is defined by the

mains conditions.

angle optimization methods (Ref.[6]). Compared to that, in the intermediate and in the lower power regions
one aims at high switching frequencies (very high pulse rates) relative to the output frequency. This is made
possible especially by the essential progress made in the area’ of developing of voltage controlled turn-off
devices (IGBTs) and in the area of signal electronics. Caused by the computation time rising much more
than proportional with the number of switching angles to be determined an application of the classical
(conventional) pulse pattern optimization mentioned is hardly possible for high pulse rates.

The calculation of optimal control methods (and, equivalent, of optimal modulation functions for PWM
converter systems with high pulse rate) is the object of this paper.

If one can assume approximations which show good consistency with the exact solutions for high system
pulse frequencies one can reduce the variational problem of the output current harmonics minimization to
a simple extreme value problem. This gives directly the shape of the phase modulation functions of an
appropriately optimized modulation method. Contrary to the classical pulse pattern optimization methods
thereby the computationally involved optimization of a quality functional by digital computer can be omitted.

The starting point of the optimization is the determination of the parameters of the modulation method
which can be treated by an optimization method. There a representation as clear as possible of the ex-
isting relationships in the form of a transformation of the system variables into associated space vectors is
advantageous.

2 Voltage Generation of a PWM Converter System

The space vector of the output voltage of a PWM converter system (see Fig.1)
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is determined via the switching status. According to Figs.2 and 3 we have:
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(the indices denote the converter switching state by the decimal equivalent of the converter switching status
vector interpreted as binary number). There one basically has to distinguish between the microscopic or
local time behavior (t,; t, € [0,Tp/2]) of the quantities within a pulse (half) period Tp and the macroscopic
(or global) time behavior (7 or angle gy —identification of the pulse interval position within the fundamental
period) of the quantities which are based on time averaging over a pulse period. For the possible range of
the modulation depth
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there follows (see Fig.2)
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The equations (2) and (8) are valid independently of the modulation method selected. The equations define
the shape of the phase modulation functions m(gst)(7) (or e(rsT), respectively) via

b6 = (agr—ar)
& = (as-—ag) (12)
bo+ 67 = 1—(a5-—aT)
b7 = ar
§ = (1—as) (13)
with
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As parameter which can be freely choosen there remains the distribution of the non-voltage-forming free-
wheeling status (6o + 67) between begin and end of each half pulse period. Via an optimizing calculation one
can therefore select one modulation function (which gives the extreme for a given optimization criterion)
among the infinitely large number of possible modulation functions.

Note: The equations (2) and (8) naturally are fulfilled also for a sinusoidal shape of the modulation functions
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{(subharmonic modulation method). This, however, determines directly the distribution of the free-wheeling
status
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Furthermore, the limit towards overmodulation is given by
Me(0,1]. (18)

Each function mg(7) with a general shape (e.g., third harmonic) which is added to the simplest (purely
sinusoidal) modulation functions mz s

!
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mp = mp+mg (19)
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influences only the distribution of the non-voltage-forming status. Being a zero quantity, mo(7) is not
projected into the space vector of the converter voltage or into the line-to-line voltage.

3 Optimization for Continuous Modulation

In the following such modulation functions are defined as being continuous which show a continuous time
behavior of the associated phase modulation functions. This means that according to a switching state
sequence

...0267 (21)
within a fundamental period always all bridge legs of the converter system are switched with pulse frequency.
The generation of phase voltages which have a sinusoidal form in the time average over a pulse period is
common to all these modulation methods. A deviation from the sinusoidal shape can be given according
to a zero quantity mo(7). This modulation function portion which has to be set during the optimization
calculus in any case shows time continuous behavior for continuous modulation. As reference point for the
phase voltages the ficticious center point of the DC link voltage is chosen. The line to line voltages of the
three wire system have to be calculated from the phase voltages via forming the differences (there the zero
sequence system is decoupled). As shown in the following now one can choose as reference potential of the
phase generated voltage system not only the DC link voltage center point but alternating the positive and
negative DC link voltage bus. This is equivalent to setting the switching status of always one converter
bridge leg within an interval of a fundamental period where this setting changes cyclically between the
phases. The two remaining converter phases can be controlled via pulse width modulation in such a way
that the (line to line) voltages related to the third ”clamped” phase again show a sinusoidal form in their
time average for a pulse period. These modulation methods which represent a specific case of the continuous
modulation are called discontinuous modulation in the following due to the discontinuous behavior of the
associated modulation functions (or, of the associated zero quantity mo, respectively). They are analyzed
in chapter 4 in more detail.
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For continuous modulation as quality functional
1 . .
I= AIIZV,RST,rma = E/ AZ?‘I,RST,rms(T) dr — Min (22)

Tn

we will select the integral (related to the fundamental period) of the square of the deviation
Aiy =iy —iy (23)
between the current actual and reference value
i (7) = Ly exp junT (24)

shapes or the rms value of the current harmonics. For its calculation one can choose a simple equivalent
circuit of the fed system (considering the high pulse rate assumed) according to

L
dt

= (uy - QN‘) . (25)
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Fig.3: left: Trajectory of the space vector Ain(t,) within one pulse half period; right: associated micro-
scopic time behavior of the phase modulation functions (pulse pattern).

For the space vector of Aiy there follows (see Fig.3)
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(approximation of the circular trajectory of the reference-current space vector by the local tangent). Then
we have
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Aty 17, (7) = iy, o (7) = bou (7) 57 = 0 (31)
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or

i+ ) = (1o 2 ) i) (53)

respectively. As is shown by a simple consideration, one can formulate the sum of the squares of the phase
currents via the «,B-coordinates of the related space vector
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the local rms value (related to a pulse (half) interval) of the current ripple can be expressed according to
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For the calculation of the global rms value (being set equal to the quality functional I) related to the
fundamental period we have

1
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Now, in the sense of a simple averaging of the local harmonic loss contributions the position of the pulse
interval shall be moved time-continuously through the fundamental period. Then with sufficiently good
approximation for high pulse frequency, the summation due to the finite system switching frequency can be
replaced by an integration. This allows to calculate a simple analytical expression for the harmonic power
loss
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A minimization of the quality functional therefore is given via the minimization of the local (always positive)
contribution

Ai?V,RST,rms (1) — Min, (41)




i.e. the local harmonic rms value
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The variational problem at hand (minimization of the quality functional I via determination of the optimal
time behavior of é7(7)) thereby can be reduced to a simple extreme value problem.

Then the optimal distribution of the free-wheeling state has to be set according to
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in connection with
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With this, as a simple and clear suboptimal approximation we receive
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For the global harmonic current rms value there follows
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If we compare this with the evaluation of Eq.(40) for simple sinusoidal modulation
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for which the distribution of the non-voltage forming state is given by Eq.(17) one can see (according to Fig.9)
a substantial reduction of the harmonic losses, especially in the upper modulation region. An illustration of
the modulation method can be given via the representation of the phase modulation functions

2 T 27w 3
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(cf. Fig.4 or Refs.[1],(3], respectively).

4 Optimization for Discontinuous Modulation

The basic idea behind the optimization calculation outlined above is the determination of the distribution
of the non-voltage-forming states between begin and end of each pulse half period according to a switching
status sequence

0267... (53)

t,=Tp /2

...0267
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t,=0

If now the entire free-wheeling state of a pulse period is concentrated at its begin (or end)

b7 = 1— {8+ %6)

s = 0 ‘ (54)
...267 762 267... (55)

t,=0 t,=Tp/[2
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t,=0 t,=Tp/2
AiJZV,RST,rms (T) = Ai?V,RST,rms,Z(T) (59)

in any case an increase of the harmonic losses is to be expected relative to the optimized result. A closer
analysis of the resulting switching state sequence shows, however, that then (under observation of the three-
phase property) one bridge leg is not being pulsed within one third of the fundamental period (denoted as
discontinuous modulation, see section 3). For equal global switching losses thereby the switching frequency
for this control method can be selected higher by the factor (see Fig.5 or Ref.[4], respectively)
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! ! \\\ . [3] (e.g., simple sinuscidal

111,121,131 modulation).
1,0 >t
1S kiy s iy
°© 6 3 2
etz
or f
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1,[5] 1 14 ]
fr (1— 2costp) 3 (61)

2 T T

= ——t c[Z T
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(There the modulation method is defined in dependency of the angle ¢ between the fundamental of the
converter output voltage and the phase current). This leads to a corresponding shift of the audible noise
producing frequencies to higher frequencies. There a dependency

wprp){ir(wnT)} = k1, (rD) iz D) (WNT) (62)

pp(TD) = Wp(TD)fP (63)

between the sum of turn-on and turn-off losses pp (rp) and the switched current is assumed, a dependency
which approximates the actual relationships sufficiently accurately and which is described by the factor
ki,(rpy. Averaging of this switching loss (related to a position of a pulse interval) for a positive (or negative)
output current half period leads for "continous” modulation (e.g., sinusoidal modulation or [1] in Fig.5,
respectively) to a global switching loss of a transistor-diode-pair of a bridge leg (e.g., 7> and D; in Fig.1)

. k
Pprip2 = INfP“‘l‘fﬁ (64)
with
kyrp =kir+kip . (65)
As a calculation of the local harmonic current rms values
A2 ( ) <0 YU € [%) '721:] (66)
N,RST,rms,1\PU =
shows a minimization of the global harmonic losses is given for a cyclic change
1~ (82 + é6) Py € [%%]
674 = v o (67)
0 v € ["2', “3—]
0 YU (S [%) %]
67,51 = x 20l (68)
1~ (62 + d6) vy € [7,“3‘“]

between the two possible, simplified switching state sequences. A more detailed discussion has to be omitted
here for the sake of brevity.
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For the global harmonic losses there results

1 1 M 9M? V3
AL g = 2AZM? 4 - —— (62— 15V3) + 24+ 69
Nyrms,[4] — ¢ k12‘7[4] 37 ( ) 8 e (69)
or
1 1 M 9M? V3
AL = —AiM? 4— — (8+15v3) + 24 2= 70)
Nyrma,[5] = g&n szl,[s] [ V37 ( ) 8 27 (
respectively with
fpm)

(cf. Fig.9).

Equation (70) defines quantitatively a variant of the optimal control method. The modulation functions
related to Eqs.{69) and (70)

2 T T ks
4] M < — [——,——]: = 1- 3M'( ———)
(4] <A ou € |315] MR V3M sin ( oy 3
mg - +1
mr = 1—\/§Msin<pU
T
my = 1+Mcos(<pU+§)
2
YU € [—7[,-1]: mr = \/éMSiH((pU-FI)—l
2" 3 3
mg = \/?:MsingoU—l
my = -1
. ™
me = Msin (¢U+g)—1 (72)
and
2 T s
LM< I = i 2) -
[5]: M < 5 90U€[3,2] mg \/ngm(sou-*-B 1
ms = \/I;Msingou——l
mr = -1
) ™
mg = Msm(gou+g)~1
w27 . s
pu € l=,—|: mp = 1-\/§Ms1n(<pu———)
23 3
mg = +1
mr = 1——\/§Msin<pU
mg = 1+ Mcos ((pU—}—%) (73)

respectively, are shown in Figs.6,7.
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Fig.6: Shape of the phase
modulatien function accord-
ing to Eq.(72) or [4], respec-
tively

Fig.7: Shape of the phase
modulation function accord-
ing to Eq.(73) or [5], respec-
tively

5 Direct Optimization via Phase Modulation Functions

In conclusion we want to briefly treat the direct optimization of a modulation function without the detour of
analyzing the local harmonic power loss contributions. With given shape of one phase modulation function
triple the pulse pattern is completly determined (cf. Eqs.(14)) and therefore also the local distribution of
the free-wheeling state Eq.(13). Effecting this is only possible in a global way via the time behavior of a
parameter determing the modulation functions, such as the amplitude of a third harmonic being added to

the simple phase modulation functions of purely sinusoidal shape

M.
mpr(py) = Mjcospy — —2—3cos 3pu
2T M3
ms(py) = Mjcos <<PU - —3‘> — 5 cos 3oy
2 M
mp(pr) = Mjcos <goU -+ -g-) - —2—3—cos 3oy (74)
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For the global rms value of the harmonic power losses there follows then a functional dependency of the
global harmonic losses according to

M
AIlz\f,rms = AI]?v,rms {Mf_’? - M3—2—1-} (76)
with R
20U,
My = 2O (77)
Uzk

The determination of the optimal relationship minimizing the harmonic power loss

M3 1

= S 78

M lI=min 4 ( )

therefore can simply be achieved again in the form of solving an extreme value problem (cf. Fig.8 and Fig.9,
respectively). It is of basic importance to state that therefore the global and local (see section
3, Eq.47) optimization according to

1 626 1
S1,1=min = {51~ (62 + 66)] — == (62 — 66)} = 67,151 = 5[1 + mr(pv))] (79)
2 46,6 2
with Iy ) o
1
mr(py) = 5 + ‘:fCOS (wu + %) - Tl cos 3pu (80)
lead to identical minima !! The modulation limit there is given by
2
Ml,maa: %‘5‘2% = 0.972 % H (81)
however. The harmonic power loss tms value thereby can be calculated as
1 8M; 3M;] Ms Ms
AL =AM 1= Lhi-2(1-222 : 82
N,rms,[3] 6 In My \/57( + 4 M, M, ( )
For an optimization of the maximum possible modulation there follows
M3 1 2
— == M 0,—1| . 83
M1 'Izmi'n, 6 € [ ’\/5] ( )
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control methods derived in

x
n

this paper (kj,[.;} = kj,[s] =
0 0,29 058 087 213 3/2; Eqs.(69),(70))

6 Comparison of the Optimization Methods and Results

A comparison of all control methods discussed in this paper is shown in Fig.9. A control method based
on the simplification of the switching state sequence appears to be especially interesting in connection with
PWM rectifier systems because they operate in the stationary case with modulation indexes and cos ¢ close
to one.

A treatment of transferring the control method derived here for voltage DC link PWM converters to cur-
rent DC link PWM converters has to be omitted here due to space considerations. A detailed representation
of this problem area can be found in Ref.[5].

A comparison of the evaluation of the expressions gained with the purely analytical approach with
the results of the analysis of the different control methods gained by digital simulation shows very good
consistency already for relatively low pulse rates (pz = 27fp /wy > 21).

7 Conclusion

The calculation method presented here is based on the application of the space vector calculus and on the
introduction of a simple averaging method which approximates the time-discontinuous system motions by
time-continuous representation. This calculation method therefore can be used for the optimization of pulse
patterns of medium and high pulse rates and also for the determination of the harmonic power loss as used
for dimensioning purposes.

From an engineering point of view furthermore especially the presence of an approximate solution as a
simple mathematical expression and the broad applicability of the principle presented here for the analysis
of power electronic circuits has to be pointed out.
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