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ABSTRACT

This paper treats the simplified purely analytical
estimation of the stress of passive and active compo-
nents of PWM converter systems. The approximation
of the actual system behavior thereby is gained accor-
ding to the generation of limit values or mean values,
respectively. This is done by transition from a sum-
mation of the "local” contributions of the single pulse
periods (related to the interval center) to the integra-
tion of a quasicontinuous time function of equal local
power loss. The latter function is gained via shif-
ting the pulse interval through the period given by
the (voltage or current) fundamental period. A mo-
dification of the phase modulation functions allows
furthermore the minimization of the harmonic losses
on the AC side. (This minimization is immediately
clear after transformation of the system variables into
space vectors.) When compared to harmonic optimal
modulation methods known so far the optimization
given here results in considerably lower current har-
monics rms values in the upper modulation region.
Therefore it is especially well applicable to the con-
trol of PWM rectifier systems. As the comparison of
the approximate solutions and of the results of a di-
gital simulation shows, already for relatively low con-
verter switching frequencies (low compared to the ou-
tput frequency) a good consistency of the results is
given. Therefore, the relationships derived can be ap-
plied immediately for the dimensioning of converter

systems using FETs, BTs or IGBTs.
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Introduction

PWM converter systems with voltage DC-link have found broad
acceptance inindustrial applications within the last years. In first
line we have the use as converter for machines and drives (pulse
width modulated (PWM) inverters), mains converters (PWM rec-
tifiers), static VAR compensators etc. The common basis of the
system mentioned is given by the basically equal circuit configu-
ration of the power circuit (see Fig.1). The dimensioning of its
active and passive components in any case is linked to a digi-
tal simulation or measurements of laboratory hardware models.
This is also documented by the relatively high number of relevant
publications in this problem area. A basic disadvantage of this
method is, however, that any single simulation run can only give
results for a single set of parameters (for a single point in the
parameter space). In order to characterize the system behavior
in the entire operating region one has to perform a multitude of
simulation runs. Their results offer (if represented graphically
in normalized form) only limited insight regarding the parame-
ter dependency of the characteristic values. This is because only
numeric values are gained by a simulation.
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Starting from this situation which is not very satisfying from
an engineering point of view (where an easy’estimation of results
would be desirable) this paper tries to do the following: for pulse
converter systems with high pulse frequencies simple analytical
relationships concerning the dependencies of the device stress on
‘the operating parameters (DC link voltage, size of electric and
magnetic storage elements, pulse frequency) shall be given.

The basics for this approach is given by an averaging method
described in the following. It transfers discontinuous current and
voltage forms into continuous signals which are approximately
equal to with respect to the power losses. The comparison with
the results of a digital simulation shows an excellent consistency
for pulse frequencies which are high compared to the output fre-
quency. Considering the high pulse frequencies realizeable with
today’s turn-off power semiconductor devices (BT, IGBT, FET,
GTO), the insight into the stationary working behavior of mo-
dern PWM converter systems is essentially deepened. Further-
more, the equations given in this paper at the end of each section
can be applied immediately as dimensioning basis.
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Fig.1: Structure of the power circuit of a three phase voltage
DC link PWM converter system. For usage as PWM inverter
for AC machine drives the inductances L and the three phase
system uy can be interpreted as simple equivalent circuit of the
AC machine formed by leakage inductances and machine counter
emf. On the other hand, for mains operation of the converter
(PWM rectifier, static VAR compensator) the inductances have
to be connected in series; the voltage system uy is defined by

the mains conditions.

Computation of the Conduction Losses

Due to the three phase structure of the system (identical structure
of the phase legs) the analysis can be limited to the analysis of one
phase leg (Fig.2). For the mean value related to one pulse interval
(local mean value) of the converter voltage we have according to
Fig.3:

Usx
2
The running variable k giving the position of the pulse interval
within the period given by the fundamental frequency has the

range of values

Gy(kTp) = ~2X[2a(kT5) — 1] . ey

ke[0,(pz—-1)] . (2)

For the definition of the pulse number pz we have:
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Assuming a sinusoidal output voltage (fundamental frequency)
Eq. (1) yields

z = fr (3)

@y(r) = Uy sinwyr . (4)
Considering the definition of the modulation depth M we receive

for the duty ratio « for the bridge leg (which in its basic function
can be represented by a reversing switch)

afr) = -;-[1 + Msinwyr] , (5)

2ty

. 6
Uon (6)
The variable  thereby is set for identification of a "macroscopic”
quasi-continuous behavior which is gained from the real signal

M=

[ "jz'“ZK
¥
o
1
[z 3
! ==
R o ;
S o $ 0 "l
N ! /
T o= Y
3
I o == T
iy ¢
| Bameyungere
“7lzx

Fig.2: Division of the output current flowing into controlled
and uncontrolled semiconductor devices of a PWM converter
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Fig.3: Formation of the converter output ("microscopic”) mean
value related to the pulse period; thereby a defined ("macrosco-
pic”) duty ratio is assumed

shape by averaging over a pulse period (the “microscopic” be-
havior). The resulting “microscopic” mean value always has to
be related to the position of the pulse period which has to be
considered as being moveable over the fundamental period. For
higher pulse rates the mean value converges towards the converter
output voltage fundamental.

According to Eq. (7) the conduction power losses of a bridge
leg transistor have to be computed via the mean value of the
product of the forward voltage drop and the collector current
relative to the fundamental period.

1 .
P, F,ri = '1';" / Up,TilTi dt (7)
N YTn

If the forward characteristic of the semiconductor is approximated
according to (see also Fig. 3)

wpp = Upp + Tppini (8)

we receive with

1 R
Ipi a0y = Ty Jra ip; dt (9)

1 .
Ilz'i,rm‘ = Ew;_/TN 1‘;"-’ dt 14 (10)
Peri = UrgIriang + TF,TI;'.',m. . (11)

The conduction losses are determined accordingly as well by the
mean value as by the rms value (by the form factor) of the tran-
sistor current in general.

Similary we have for the non-controllable elements (diodes):

urpi = Urp + Trpini (12)

PF,Di = UF,DIDi,avg + TF;DIIZH,rma (13)

With respect to a mathematically simple formulation we make
the following assumptions (for further considerations):

e Symmetric regular sampling

» Limitation to discrete phase angle values ¢, ; such that
the current zero crossings coincide always with the begin or

the end of a pulse interval, respectively.
® pz=2i 1=1,2,3,...

As the further derivation shows, these assumptions do not limit
the general validity of the results (i.e., for the derivation of the
limit values). Evaluation of Eq.(9) leads to

1 k- .-
prr1 = Uprp {'ﬁ; Z [ - ip; dt 5 +

k=0 o
1 =&
-

- + TEr 'T; 2 ‘/;._ak!;_ irgdty (14)

with 7

—p P

o= |2 4L
o= [T (15)
P = Puyiiy (16)
Qy, = a(tk) . (17)

According to Eq.(19) now the local integrations (point of time
1) in Eq. (15) can be extended to the formulation of microscopic
mean values.

1 1 r.
Pery = Upp {TN_E [5,—/1@‘- dt] Tp} +
P
1

+ rer {ﬁ;Z[%;/i;idt] TP} (18)

For assuming infinitely high pulse frequency

Tp — dr (19)
I
o +3 (1+2k)— = (20)

(thereby the microscopic time interval Tp is converted into a
macroscopic time differential or, the discrete points of time 1,
are converted into the continuous time 1) we receive

. 1 e .
ir1,009(T) = T / i (1) dt, = a(r)ira(T),  (21)

~a(r)Ze

" 1 e 2 ,
o) = 7 [ D = e (22)

A timewise discontinuous signal therefore is converted into
one with equal power loss (equal linear and quadratic current
mean values; see Fig.4). The result of the local averaging on one
hand can be interpreted as evaluation of a (macroscopic) infinitely
small pulse interval; on the other hand, it can be interpreted
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as the calculation of a mean value over a (macroscopic) finitely
wide interval, being related to the interval center. For a finitely
wide pulse interval thereby an only linear approximation of the
current shape to be integrated is assumed. The evaluation of the
macroscopic mean values (relative to the fundamental) which is
really interesting for calculation of the conduction losses can be

'%UZK A

performed via Eqs.(21,22) in a simple manner in closed form by

1 =
Ppry = UF,T{':ZTN'/;,_ im,“y(r)d‘r}%‘
1 ‘:‘3-
o [T dmar @)

Based on a purely sinusiodal output current with general phase
angle with respect to the converter output voltage

in(t) = Iy sin(wyt + ) . (24)

the averaging method shall be briefly analyzed in the following.
It is sensible to compare the local contribution of the exact cal-

culation .
tatay £

8¢, = iT.' Clt ) (25)

T
tx—oy "f

to the expression gained by application of the averaging method

3, = ft,._.%ﬁ tri(T)a(r) dr . (26)

A brief calculation (not given here) shows that the deviation of the
approximate solution only appears for a higher than first power
of the pulse period (normalized with respect to the fundamental
period). This very good consistency is also given for the macros-
copic mean value as shown in Figs.5 and 6 based on a relative
error definition given by

[ff;;’:;)/w iTi,aug(T ) dr -3, fz'p(k) iy dt]
ok Jroqr iri dt

As Fig.6 shows, the amount of the deviation is essentially
determined by the amount of the modulation and by the phase
shift between modulating function and output current. For the
sake of brevity we want to omit here a closer discussion of the
error (amount) area which can be interpreted easily.

The statements made so far for the macroscopic linear mean
value are also confirmed for the macroscopic quadratic mean va-

(27)

fI;T-’,ng =

lue. This is according to Fig.7 based on an analogous error defi-
nition

e [ (28)
8, = 1o, di
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=L, war)dr, (29)
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Fig.4: Application of the averaging method for calculation of
a continuous time function corresponding to the local ("micros-

copic”) mean value of ir;
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Fig.5: Value of the relative error of the analytically closed
approximation of the linear ("macroscopic”) transistor current
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Fig.8: Relative error of the approximation method (linear aver-
aging method) in dependency on the modulation depth and the
phase angle
~¢t+m)/wn +3 .
ff.,q;:” i ome (T) @7 ~ Ty Jrpgey 15 dt
Frgiem, = [ = =) T ] . (30)

Dk oy 1 dt
Based on Eq.(23), the computation of the local conduction losses
of the transistor T1 or the Diode D2, respectively, leads to
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Uped, i
prrilpv) = F; Y [1+ Msinpy) {1 4 IETiN sin(pu + S")]
.sin(py + @) ,(31)
Urpol . i
proaev) = F’g z [1 - Msingpy] [1 + r;}p N sin(pv + ‘P)]
\D

.sin(py + @) -(32)

Thereby the validity of these equations is limited to the interval

(33)

dependent on the output current direction and on the phase angle
counting direction (determined in Fig.4). The macroscopic power
loss behavior determined herewith will form an essential base for
dimensioning the semiconducters especially for low output fre-
quency. This is because then there is no sufficient averaging (for
defined thermal time constant) resulting in largely constant jun-
ction temperature. For higher output frequencies (or for corre-
sponding thermal inertia) the relationships

Yy =wnT  pu € [~p,—p+ ],

Ppr1 = g!f—i& ['11? + % cos ‘P] +rong’ [é + 3 cos ‘P} ’ (34)
Prps = -"—‘S—;ﬁ! [i — X cos (,o] +repl? [§ — % cos SD} | (35)

can be used. The sum of the conduction losses of one half of a
bridge leg will be (based on Eqs.(34,35) ) determined by

Pp = 2(Prr1 + Proa) (36)

P = {;(UFT +Upp) + _'M(UF,T —Ugpp)cosp +

37
+ 4(7'FT+TFD)+ (rF,T—rp'D)cosga. (37)

If one assumes constant forward voltage drop (independent of
the current magnitude) of the semiconductors, Eq.(37) can be
simplified according to

IPF ~ O'SUFIN,TMJ;'

(38)

Thereby one has to choose U as average value between transistor
and diode forward voltage.

1371 s

0025

™ % 0

Fig.T: Relative error of the approximation method (genera-
tion of a quadratic macroscopic mean value) in dependency on
the modulation depth and the phase angle

Similary to the calculation method for the conduction losses

one can via
1 e
ﬂm = 2—/

ﬂDz = "'/ (40)

easily give the average duty ratio of the diodes and transistores
of the bridge leg (which is interesting from a theoretical point of
view) by

" L d(wyr) s (39)

1.(1 - @) d(wyT)
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1 M
ﬂT“*,BTl“*‘ﬂTz—'ZﬂT:‘i Tcosp, (41)
1 M
Bp=1-— r =5 = Cos® . (42)

As Fig.8 shows, the conduction period of the semiconductors rises
and falls with increasing modulation. With increasing cos¢ it
is shifted from the uncontrolled to the controlled semiconductor
devices. cosy = -+1 in any case means power flow out of the DC
link. Then, as given before, mainly the transistors conduct the
current.

brlo

cos@

Fig.8: Relative conduction period of the controlled and uncon-
trolled semiconductor devices in dependency on the modulation
depth and the phase angle

Calculation of the Switching Losses

Besides the determination of the conduction losses especially for
higher switching frequencies the calculation of the switching losses
of the semiconductor devices is important for thermal dimensio-
ning of the power circuit. Thereby there exists basically a variety
of thinkable approaches from which two are described briefly in
the following.

If the switching losses are gained via parameters known from
data sheets or from measurements of the switching behavior (fall
time etc.) we have, e.g., for rough approximation of the local
turn-off energy loss ( L, — parasitic inductance of the circuit)

1.. . .
Wot11 = 3 [i3,Ls + iraUztor + iz kprUsx] - (43)

Thereby a linear approximation of the current dependency of the
fall time according to

R s
tyr =ty + kyrir [kyr] = 1 (44)
is assumed. With
Poss(T) = woss {iz(T)}Hr (45)
1 ~ gt
Potriry = 5~ / Porsa(wnT)d(wnT) (46)
T =
we receive for the macroscopic turn-off power loss
INUZK Iz
Popri = tror + [L +k;oUzil ¢ fr - (47)

Giving a falltime for the actual current shape during the swit-
ching interval is very insufficient, especially when tail-currents
are present; therefore it is much more meaningful to start with a
measurement of the turn-off energy loss for a defined parameter
set (DC link voltage, juction temperature, ... ). The switching
energy loss (turn-on and turn-off losses) appearing within a pulse
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interval therefore can be given immediately for controlled and
uncontrolled valves in dependency on the current being switched.
Starting from Eq.(47) or from a measurement method for the
shape of the characteristics (not described in detail here) a qua-
dratic approximation

wpr{ir(wyT)} = kypip + kypid | (48)
Ws Ws
[fir] = o [kor] = o (49)
is recommended. With
prr = wprfp (50)
1 pren
Ppry = g/‘; prr1{wnT)} d(wyT) (51)
it follows for the switching power loss of a transistor
-~ [k .k
Pory = Iy (_;Z" + IN’:I'Z) fr (52)

wherefore an estimate can be given in a simple manner according
to

kar =0  Ppp = 0.5k 0Ly m.fr [ (53)

One has to observe that Eq.(52) implies a linear dependency of the
switching losses on the pulse frequency (independent, however, of
the averaging method used here).

The total losses of a bridge leg transistor result (together with
Eq.34) in

(54)

o= %
+

14 %coscp]] + “—Lk‘: ’%I}ﬁ-

x
1 M kazfe | 72
3 T 5 cosp| + =24 IZ .

TeT

Eqgs.(54) and (34) allow furthermore a comparison of the con-
duction and switching losses of a valve. Also, for given maximum
allowable power loss (according to a maximum junction tempe-
rature) one can give (based on Eq.(54) the dependency of the
allowable AC current peak value on modulation and cos¢. This
limit forms one of the border lines of the converter operating
region.

For the uncontrolled valves basically analogous simple relati-
onships are valid which could be based on the given considerati-
ons. The respective treatment shall be omitted here.

Calculation of the DC-Link-Current Parame-
ters

Because the capacitance of an electrolytic-capacitor can be linked
to a defined current carrying capability, the size of the DC link

. O

%RsT |
t tp/ZTP
1
40 4—— ap xg oy — 1 J
N. NN o5l -
o . ’ e
. / N pru——t e} -
X / i o
" fog-ag -0y : r
0 T [ Lt -
21 24y, .
[ I T 'Uuz% o1
izt
WRsT - +gim) ¥
;
s ~lyl1)
~ir +g - T f
/ N
vy 7
‘p/mN ’ N T T %
7/ T
/ .
- frn o AN

capacitor is essentially determined (among other things) by the
capacitor current rms value.
For a symmetric three phase voltage (current) system

ap = l + —M-— sinwyt
R = 3 3 N
1 M, 2
as = 3 + - sin (th — —3—) (55)
1 M. 2
ap = '2—+-—2—-sm (th+-§—) ,
iN,R = jN sin(th+<p>
2 2
iN,S = IN sin (th‘!‘QD "“,/—;‘r‘) (56)
2 2
iyr = Iysin (‘-"Nt +e+ '?;—"')

at the input of the PWM converter considered, segments of the
ac side currents are switched into the DC link according to the
switching status (see Fig.9). For the mean value or the rms value
of the DC link current we have then in the interval

90v=wN'r€[(7r—%), (7r+:g-)] s (87)

izK,a0g(T) = —iN,T(T)[aR(T)‘“aT(T)]”P

+ ins(r)[as(r) — an(r)] (58)
BomeT) = iha(r)[an(r) - ar(r)] +

+ is(r)[as(r) — an(r)] - (59)

The local DC link current mean value due to the time constant
power flow of a symmetric three phase system also shows a time
independent value

iZK,aug(T) = ij cosp = IZKyOVy . (60)

3
4

For the macroscopic DC link current rms value

R 3 /("*‘e‘) 2

ZK,rms ; (r—-’-) 1‘ZK,rms{wNT} d(wNT) (61)

(due to the 60° periodicity of the DC link current shape averaging
can be limited to a sixth of the base period) there follows

V3

L

I;K,rma =

M2 (% + cos? <p) . (62)

For constant load of the DC link therefore the capacitor current
rms value can be determined via

| izx  Tzkevg

In

=3
-

! ez

i
U

Yy

tulte Fig.9: Switching status dependent generation of the DC link
current via phase current segments
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izk = tc,zx + IzK,00q » (63)
/ e zxlzr,amedr = 0, (64)
T
I;K,rms = Ié,ZK,rma + I;K,avy (65)
as
A, 3
Ig'yZK,rmn = MIIZV [Z;r + cos® P (;\;/rg - %M)] (66)

(see also Fig.10). For cos¢ = 0 for the then disappearing mean
value of I;x the rms value I¢ gx rm, coincides with Izx . .,. The
maximum of the shape of Iczxrm, at M (cosp & + — 1) can
be explained by the dependency of the DC link current mean
value on the modulation M. Regarding a worst case consideration
especially the evaluation of Eq.(66) is of importance for the value

83 1
4cos?p

!
M= (1 +
which is related to the maximum. Thereby with decreasing cos ¢
the maximum value mentioned before is turned into a boundary
maximum (not given by Eq.(67) ) occurring at M = 1 (for sinu-
soidal modulation) or at M = 2/+/3 (achievable by a modification
of the modulation approach).

(67)

kN
fN I(:.zK,rms

Fig.10: Dependency of the DC link capacitor current rms va-

lue on modulation depth and phase angle

As can be seen from Fig.11 for a characteristic parameter set,
already for relatively low pulse frequency very good convergence
is given for the DC link current values which are determined via
Eqs.(62) and (66) (when compared to the values gained via di-
gital simulation). Basically in Egs.(62) and (66) there is no de-
pendency on pulse frequency and value of the inductances on the
AC side (which also can be leakage inductances of an AC ma-
chine); this is according to the assumption of purely sinusoidal
currents (or neglection of harmonics). Therefore, generally for a
sufficiently smooth phase current shape one can assume a good
approximation of exact results by the equations given.

Calculation of the AC Side Harmonic Losses

Besides application of the averaging method described for cal-
culation of characteristic values as a basis for dimensioning the
power semiconductors (as well as for the DC side energy stor-
age, i.e. the DC link capacitor) the averaging method can also be
used for determination of the AC side harmonic losses. This topic
will be treated in detail in a future paper now being in prepara-
tion. Here, for the sake of completeness, essential results shall be
presented.
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Fig.11: Comparison of the results of the approximation me-
thod and the digital simulation

e Uz Ty
With ; _ ZZK P
A"’n 4 ZL b (68)
[ ! 1r
Py =WNT =Py =5, (69)
m(r) = 220 _ faa(ry -1 (10)
UZK

there follows for the rms value of the current harmonics for sinu-
soidal modulation — designated by subscript [1]

1 3M? )
ALy ey = gALM? [1 - % + —JZI-] . (1)
Thereby the modulation is limited to M < 1, however.

If one applies a modulation method (which in general is called
space vector modulation) — designateded by subscript [2], one can
increase the modulation range up to the theoretical limit (Mo, =
2/+/3) which is achievable without overmodulation. Furthermore
the harmonic losses can be reduced considerably according to

]

47

Al

N,rms

8M 9IM*? ( (72)

1
=ZAEM? |1 -
2] 6 In [ \/:‘3‘” + 8
if compared to sinusoidal modulation (see Fig.16). For the related
modulation functions (Fig.12) we have

2 , n 27 3 ,
[2]: M <L —\7—5; vy € {g,—g—] : mp -Z-Mcos<pu
V3M
ms = sin ¢y,
M
my = -— siny, (73)
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The shape of the modulation functions in the entire base inter-
val thereby can easily be determined by cyclic extension corre-
sponding to the phase axis sequence for rotation of the converter
voltage space vector to be produced.

A closer analysis of the current harmonics space vector trajec-
tory shows that the only available degree of freedom for a pulse
pattern optimization in general lies in selecting the distribution
of the free-wheeling states within a pulse half period. The modu-
lation function shape (which results in an optimal behavior of the
harmonics) can be gained immediately from the knowledge of the
analytic dependency of the harmonic losses on the distribution
mentioned before. Thereby one can approximate very well the
shape of this optimal modulation functions by functions given by
Eq.(73).

Mgy

Fig.12: Shape of the phase modulation function according to
Eq.(73) or [2], respectively

MRsT

0 7 Lo
/ .
sy P
-1 i
1 My =1
-2 J M3=0,25

Fig.13: Shape of the phase modulation function according to
Eq.(75) or [3], respectively

According to

AL = s {1 - Yo

, (74)
+22 1=t (1-212)] |

also for "correction” of the simple sinusoidal modulation by ad-
dition of a third harmonic (Fig.13) with appropriate amplitude a
harmonic loss minimization is possible (Fig.16). For definition of
the modulation depth we have

2’0.(/' 3

2uy,
M = = M =
! UZK ’ 2 UZK

(75)
The modulation functions follow as

M.
M cos ey, + 73 cos 3¢y, ,

mp =
2 M. ,
ms = M,cos (go{, - —-33) - —23c053<pu ,
2 M.
mp = M,cos ((p{, + —37:) - —2—3 cos 3y, . (76)
EPE Aachen, 1389
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A minor disadvantage of the optimization

M. 1
___51! == (77)
]M‘1 J=min 4

is given, however, by a minor limitation of the overmodulation-
free modulation range

= 0.972 2 .

= V3
The entire modulation range can be used only in the suboptimal
point

M 1,maec

(78)

il
M, l7=min

Common to all modulation methods treated so far is the ge-
neration of phase voltages which are sinusoidal in the average;
they can be possibly also be "corrected” by harmonic of the or-
der 3 and multiples of 3. The reference point is the (ficticious)
center point of the DC link voltage. The voltages act on the ou-
tside only according to their differences forming the line to line
voltages. So called zero components therefore are not projected
into the output variables ( this also can be shown immediately by
space vector calculus; furthermore a three-wire system (neutral
not connected) is assumed).

Alternatively one can choose not only the DC link center point
as reference point of the resulting phase voltage system, but also
(alternating) the positive and negative DC link rail. Further-
more, one can (in cyclic sequence) assume the switching status of
always one converter phase according to the modulation functions
(Figs.14,15)

1
=z (79)

2, T . T
[4] MS—EﬁﬂUG[g,E P mp = 1—\/§Msm(go£,——§)
ms = +1
. me = 1——\/§Msingo;,
2
o [g—;—r} mp = \/§Msin(ga;,+g)-1
ms = \/éMsingp'U——l
my = -1, (80)
2 , T T . , ™
[5]:M37§¢U€[3’5] mp = \/?:Msm(so(,—l—g)—l
ms = V3Msing} —1
me = =1
n 27 . ,
Yu [‘2‘,‘5"] mp = 1-+3Msin ((p(,—§>
mg = +1
my = 1-vV3Msing},  (81)

as being fixed within an time interval. The two remaining coverter
phases then have to be controlled by pulse width modulation such

MRy

Fig.14: Shape of the phase modulation function according to
Eq.(80) or (4], respectively




that the line to line voltages (gained by referencing these two
phase voltages to the third) yield sinusoidal forms as a ”pulse
interval average”.

By application of this approach one can increase the conver-
ter pulse frequency by a factor of 3/2 as compared to methods
used so far. This can be seen immediately from the shape of the
modulation functions; the average converter switching frequency
remains the same. Thereby one can also shift the audible noise
producing frequencies into higher regions. A further advantage
becomes clear when one determines the resulting harmonic rms
values

AL g = LA M? [4 - 2 (62-15v3)+
(82)
+ W (24 ﬁ)],
AIf,Ym,’[slzéAi,ﬁMz[4 - 2 (8+15v3)+
(83)
aM?
8

(2+{5)] :

Mgy
'\‘r\ L —
\2m .
Tr// > Py
VI
M=1

Fig.15: Shape of the phase modulation function according to
Eq.(81) or [5], respectively
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Fig.lﬁ: Comparison of the normalized harmonic power losses

for various modulation methods

These lie (see Fig.16) when related to the same average converter
switching frequency in the upper modulation region about 50%
below the values of the modulation methods mentioned in the
beginning of this paper (methods which have been described as
harmonic optimal so far). Especially for PWM rectifier systems
the new modulation method proposed here seems to be optimally
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suited because these systems always operate close to a modulation
depth of 1 in the stationary case according to the approximately
constant mains voltage.

Conclusions

As this paper shows the introduction of a simple averaging me-
thod makes possible the calculation of closed form analytical rela-
tionships which characterize the component stress of PWM con-
verters with high pulse frequency. Furthermore this approach can
be used for evaluation of the quality function of the optimiza-
tion of a control method. In general, there exists the possibility
to analyze and approximate a multitude of problems arising in
connection with the operation of three phase (and also for single
phase) PWM converter systems (e.g., current dependent distor-
tion of the converter output voltage due to the forward voltage
drop of the power semiconductor devices, or due to switching time
delays).

In this connection one has to point out in principle that the-
reby (for calculation in three-wire systems) the application of
space vector calculus offers essential advantages concerning trans-
parency and possibilities of interpretation and extension of results
when compared to using phase variables.
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