IMEKO TC4 Symposium Measurement in Electrical and Electronic Power Systems,
Zirich, September 20-22, 1989

MEASUREMENT AND DETERMINATION OF THE INSTANTANEOUS
POWER FLOW VALUES IN THREE-PHASE PWM CONVERTER
SYSTEMS BASED ON THE SPACE VECTOR CALCULUS

JoHaANN W. KOLAR, Hans ERTL and FraNz C. ZACH
Technical University Vienna, Power Electronics Section, GuBhausstrafie 27,
Vienna, AUSTRIA

Keywords: space vector calculus, instantaneous power, PWM inverter

Summary

In analogy to the theory of electrical machines also the operational behavior of a DC link pulse
width modulated (PWM) converter system can be described with minimum effort if a method
corresponding to the space vector calculus is used. This method mentioned gives a power-invariant
transformation of the phase variables into corresponding image variables. This topic seems impor-
tant because PWM converters receive increasing attention and gain more and more importance
in modern power electronics, especially in applications to AC motor drives.

As this paper will show, this method makes it possible to define an expression to be called
"instantaneous reactive power” additionally to the instantaneous value of the resulting power flow.
This assumes restriction to a three phase system (decoupling of the zero-sequence system). This
”instantaneous reactive power” describes the currents which in each instant as a sum do not
contribute to the power flow. Also, this can be interpreted as energy exchange between the phases
of the AC current system.

In accordance to the space vector calculus this definition is valid independent of time behavior,
of harmonic content and of the symmetry of the underlying current-voltage-system. This means
that this definition is not restricted to a description based on the fundamental and it does not
assume determination of an average value as power definitions of the classical AC current calculus
do (e.g., real power, reactive power, distortional power,...). The orthogonal instantaneous power
components derived therefore are ideally applicable to the physically illustrative description of the
stationary and transient behaviour of power electronic systems. This will be shown for the example
of a PWM converter system with a constant voltage DC link.

Concluding considerations are related to measurement and determination of power flow com-
ponents with circuits of limited complexity and to the inclusion of this measurement and deter-
mination procedure into control concepts based on transformation of system values into space
vectors.

The authors are very much indebted to the Austrian FoNDS ZUR FORDERUNG DER WISSENSCHAFTLICHEN
ForscHUNG which supports the work of the Power Electronics Section at their university.
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Introduction

As introduction into the problem area of this paper we want to review the power relations of a
symmetric, purely sinusoidal three wire mains system before deriving general relations (valid for
any current and voltage shape). There we shall have for the voltage and current system

UNR = ﬁN cos th—i—go]
Uys = Uy cos wN< - %) —|~ga] (1)
UNr = Uy cos wN(t+g3"> +<P} )

INp = chos wyt
ins = Iy cos {wN(t—-g)] (2)

iy = chos {wN(t—}-%)] .

Then, for the instantaneous total power of the three phases there follows according to

pn(t) = unrivge+ Unsins + Unzineg (3)
the relation
px(t) = —}—)?fﬁ[l + cos Zth] + %"—sin 2wyt
+ —E?fl [1 + cos 2wy (t — %)] + %M sin 2wy (t — %—) (4)
+ %M [1+cos2wN (t+ %)] + —O"—?)A—’sinZwN (t+ %)
with 3 3
PN:—z—ﬁNchosgo QN:-z-ﬁNstingo. (5)

There a split of the power contributions of the phases into an always positive part (defining the
real power Py) and into a part being symmetrical to zero (defining the reactive power Qy) has
been performed. The superposition of the power flow of the different phases ("phase power flow
components”) leads to the constant instantaneous power (equal to the real power) characterizing
a symmetrical three-phase mains and to power contributions which have the sum of zero in each
point of time

%ﬁv— sin 2wyt + sin 2wN<t - %) + sin 2wy (t + 23:)} = 0. (6)

These contributions are given by the electrical and magnetic energy storage elements. This imme-
diately leads to the time constant energy content

Woey = SLI W = Scuz (")
4 4

of a symmetric electric or magnetic storage of energy. This means that there only takes place a

’re-distribution” of the energy contributions among the phases. Furthermore, this immediately

points out the possibility of modeling the behavior of a three-phase storage of energy by a power

electronic circuit which has to guarantee the energy exchange between the phases as mentioned.




An intermediate storage of energy therefore is not necessary. Therefore, with theoretically ideal
function of the converter circuit (infinitely high switching frequency), the ”simulation” of an in-
ductive or capacitive behavior without real energy storage devices is possible by switching devices
only.

Due to this interesting aspect the idea of reactive power compensation by an (”active”) power
electronic unit, in general to be called static var compensator, is near at hand. However, there
the real conditions in electrical energy supplying mains (unsymmetry, harmonics, ...) have to be
considered by modification of the ideal conditions mentioned initially.

Definition of the Power Flow Components in a Three-Wire System by
Application of Space Vector Calculus [1], [2], [3], [4], [5], [6], [7], [8], [9]

For describing the stationary and dynamic working behavior of a general three-wire system the
space vector calculus known from the theory of electrical machines suggests itself. There the space
vector transformation in general transforms three linearly dependent (phase) quantities into the
linearly independent components (which are sufficient for a complete representation) of the space
vector being defined in the complex plane (see Fig.1). For the definition of the space vector we
have

2 . . —2m
Uy = 3 [unr + auns + &’ uy,r] Q@ =€expj5 a’ = eXPJ";_ . (8)

Fig.1l. Trajectory of stator current
space vector of an induction motor sup-
plied by a voltage DC link PWM con-
verter (asymmetric regular sampling,
pulse number pz=21, horizontal: a-

axis, vertical: f-axis)

A zero-sequence system being contained in general in the phase voltages (linear independence of
the phase voltages due to the free choice of the reference potential) thereby is decoupled according
to

Uno + AUNo + a’ uyo = 0, (9)
2
3 (unr +auys +a’uyr) = 3 (“}v,R +auy s +d’ u},,T) . (10)

Thereby, however, there is given no limitation of the representation of three-phase systems accord-
ing to
pr(t) = Unringt+Uysiys +uyrive +3unoino, (11)




u;V,RST == uN,RST - uN,O ) (12)

Uno = 3 [unr + un,s + unz)
. 1. . }
INoy = 3 [iwr +ins +inr]=0. ; (13)

This is because, due to the first law of Kirchhoff, there does not exist a current zero-sequence
system which could cause a power flow in connection with the voltage zero-sequence system.

For the calculation of the instantaneous power of the three-wire system we have to apply the
relation Y/

pult) = 5 R{uwi) (14)

when space vector calculus is applied. The evaluation of Eq.(14) in phase quantities leads to

pn(t) = R { [uN,R ine +Unsiys + UnT ?:N,T]

+ J% [UN,R(lN,T —ins) +uns(ivg —inr) + UN,T('&N,S - %N,R)]} . (15)

The resulting instantaneous power flow of the phases therefore is determined according to

pr(t) = R{sy(2)} (16)

via the real component of a general instantaneous power space vector
sy(t) = pa(t) +ign(t) = {uyiy} . (17)

Because the current and voltage space vectors completely describe the current/voltage system in
each point of time, for the imaginary component of s,(¢)

1

gn(t) = 7§ [uN,R(iN,T —ins) tuns(ivg —inr) + unr(ins — iN,R)}
1. . .
%[ ve(tys —une) +iys(unvr —unr) + inr(une — UN,S)] ) (18)

the assumption suggests itself that thereby power flows between phases are characterized which do
not contribute as a sum to the resulting energy flow. This can also be stated because (according to
Eq.(18) ) the phase and line-to-line quantities connected together have to be gained via projection of
the space vectors to axes lying perpendicular with respect to each other. For a clearer representation
of the physical conditions a description of the power quantities in «, @-coordinates (see Fig.2)

Uy’ = una + jung iy’ =ine+Jing (19)
px(t) = g(uN,a ina T Unping) (20)
an(t) = g(uw iNa — UNa INg) (21)
or in 7, p-coordinates
uy? = |uy|exp joy, i = livlexp je;, (22)
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respectively, appears favorable. Considering Eq.(18), the transfer of a defined instantaneous power
pn(t) for required minimum current space vector magnitude is only possible for parallel current
and voltage space vectors. This is equivalent to a symmetric resistive load for the three-line system
(see Fig.4). According to Eqs.(21) or (24), respectively, ‘then there is gy(¢) = 0 in each point of

time. Due to 5

Bt s e = linl (29)
there exists a general proportionality between the transmission losses and the current space vector
magnitude. Therefore, the energy transmission described previously is power loss optimal for the
minimum current space vector magnitude. Therefore, there immediately is found a physically clear
explanation of the imaginary component of the power space vector. For

gnv(t) = 0 ing(t) = liylsing = 0 (26)

in each point of time the power losses connected with the transmission of py(t) are minimized.
Therefore, the phase power flows are used in an optimal manner for the energy conversion leading
to an ideal use of the supply lines.

Assuming an arbitrary load current distribution (described by a space vector i;) we therefore
can obtain a redistribution of the phase currents using a ”compensator” such that the mains current
1y determined according to

'L'N - .'L:L + 'L:c (27)

guarantees an energy transmission with minimal power loss. The compensator thereby only has to
supply the part ¢ (¢) and therefore no resulting instantaneous power; therefore the compensator can

be realized by a power electronic circuit which does not contain a physical energy storage element
(see Figs.3, 4). This assumes ideal function (as mentioned, infinitely high switching frequency).
A compensation (smoothing) of power fluctuations on the load side thereby in principle is not
possible, however. It has to be mentioned, however, that the ”compensation strategy” given by
Eq.(26) only represents one of different possibilities. E.g., another aim of the compensation is
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Fig.4. Principle of the compensation represented in phase and space vector quantities

thinkable, such as coupling the mains current system to the positive-sequence system of the mains
voltage. Thereby, however, (as a more detailed analysis shows) only the mean value of the power
delivered by the compensator becomes zero and not the instantaneous power of the compensator.
This would require an energy storage device. According to the considerations made before, in the
following the quantity py(t) is called instantaneous reactive power. The terms instantaneous real
power and instantaneous reactive power are chosen in that way because they turn into the well
known terms real power and reactive power used in basic electrical engineering (where only linear
and quadratic mean values are considered) for the symmetric stationary case (purely sinusoidal
quantities) considered initially.

For illustrating the physical meaning of the appearance of an instantaneous reactive power we
want to briefly consider here the power loss optimal energy transmission for a single-phase mains.
For this the quotient A = P/S (power factor) defined according to

P \/1 T ad \/ 17 I
= - 1 —_ 2 et
T /(; u T /0 i dt Urms Tms (28)




(where S is the apparent power describing the load condition and

1 T 1 T
= f/; pdt = ‘j:./; uidt (29)

the transmitted power averaged in a time interval T, i.e. the real power) is only 1 if current and
voltage are connected to each other by a time constant factor

ult) _
=" (30)

("maximum correlation”). This is immediately clear by considering the CAUCHY-SCHWARZ in-

[ st <[ rered [ ored] oy

which turns for validity of

fl=) _
=" (32)

/abf(w)g(m)d:c = \//abfz(m)d:c \//abgz(m)daz. (33)

The ”optimal” load, therefore, in single-phase systems only can be determined "a posteriori”
or, for an integration interval of constant length moving with time, "from the history”. If only
the instantaneous value of current and voltage are known, only magnitude and direction of the
instantaneous power flow can be described; a separation of a "reactive part” naturally is impossible.
Furthermore, one has to point out that a load resistance being not time constant already leads to
the appearance of reactive power (which is a mean value!). Reactive power therefore is not always
to be connected to the presence of electrical or magnetic storage devices or to a reversal of the
power flow direction (ideal switch as ideal reactive element!).

into

If the single-phase system is extended to a three-phase system we also have to consider (besides
the resulting power flow in all phases) the power exchange taking place between the phases; this
exchange does not contribute to the power transmission. Under no circumstances one can con-
sider the complete three-phase system as a combination of independent single-phase systems. As
represented via the complex power (Eq.(17)) one can therefore (contrary to single-phase systems)
define an instantaneous reactive power besides the instantaneous (real) power. The compensation
of this instantaneous reactive power is only given for topographically equal load in all three phases
(e.g., Y-connection of equal resistances). A time constant “optimal” load is not assumed in this
connection.

If the system power flows are not considered in a special point of time but within a time
interval a further question arises: the definition of an ”optimal” (time constant) load for the power
transmitted within this time interval. For this the definitions of basic electrical engineering are to
be used, e.g. the apparent power definition according to

1 T
Sz = > o= / u? dt > / i2dt . (34)
i=R,S,T T Jo i=R,S, T

For the sake of brevity we do not want to go into further details of the associated problems.
Instead, we always want to characterize the power flow components based on the knowledge of the
instantaneous values of current and voltage, or we want to obtain the power transmission being
optimal (i.e., with minimum loss) in any particular point of time.




Measurement of the Instantaneous Power Flow Components and Gen-

erating the Reference Values of the Inverter Currents  [1]

After discussing the physical meaning of the real and imaginary components of the instantaneous
power space vector we now want to discuss their measurement in more detail. This is of importance
especially for inclusion of the power components into the control concept of a power electronic
system (e.g., PWM rectifier, PWM inverter, static var compensator, . ..) based on transformation
of the system quantities into space vectors. The determination of py(t) and gn(¢) has to be
performed based on Eqs.(20) and (21) (see Fig.5). There one has to apply the following equations
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Fig.5. Measurement of the instantaneous real and reactive power flow based on the space vector

calculus

1
Uy = (’LLRS +uRT) = Ur — g(uR+uS +uT) (35)

1
U = 7§u ST (36)
(which are shown for the voltages as example) for transformation of the phase quantities into «, -
coordinates. Based on the difference of the actual values and the reference values of the power

components furthermore approriate control signals for the inverter power devices (magnitude and

Q|

phase of the converter voltage space vector (averaged over a pulse period)) have to be derived via
controllers for the instantaneous real power and for the instantaneous reactive power. Besides the
"detour” via a,(-coordinates also the formulation of gy(t) and py(t) is of course possible via the
definition of the phase quantities (Egs.(3), (18) ). There it is sensible to take the opportunity
of simplifications according to the linear dependency of the line-to-line voltages and the phase
currents.

If the converter control is achieved via an inner loop current control, the phase current reference
values on the other hand have to be derived based on the reference values of p(t) and ¢(¢) according
to (see Fig.6)

q up
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- = tap+ia 37
+3(u§+u/23) ? yP+z g ( )
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There for the inverse transformation of the «,-coordinates into phase quantities free of a zero-
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Fig.G. Transformation of the instantaneous real and reactive power reference values into phase current
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sequence system we have

1 VB ,_ L /3

o =LY S P 39
Up = U Us Sta t S Us g 5% 5 e (39)
where again the representation for the voltage is used as example. For the components giving the
instantaneous real and reactive power of the a component (which directly corresponds to the phase
current ¢p) there follows

. 3pujy

1o 40
* (u%zs + udp + U%R) ( )

i usr(ip usy + 15 Urg + ir Ugs) (41)

(Uhs + ule + ufz)
Optimization of the Energy Transmission in a Three-Wire System [10],[11]

The determination of phase current reference values treated in the previous section is now consid-
ered for a compensator (e.g., realized by a voltage or current DC-link PWM converter) in parallel
to the load (being possibly, e.g., also a complete section of the mains). There, the compensator
has to supply the instantaneous reactive power without influencing the resulting instantaneous real
power flow. The reference value of the compensator phase current (phase R) then is determined by
Eq.(41). There one has to insert the instantaneous values of the load currents for the phase cur-
rents. With this there follows a minimum instantaneous value of the transmission losses between
the supplying mains and the load. This simply can be checked also by an optimizing calculation
in phase quantities. This calculation has to be performed under the additional conditions

Un,rlc,R T UNslces T UNTlcr = P (42)

tcrtics+ticr = 0 (43)




for the optimization criterion
(ipr —tcr) + (ir,s — z'c,s)z + (ipr — iC,T)Z =J—min. (44)

By the additional condition Eq.(42) the power consumption of the compensator is defined. (Ideally,
this would be zero; in reality, however, the compensator losses have to be covered. This has to
be performed by adjusting of py by the DC link voltage (or current) controller.) The additional
conditions have to be introduced because otherwise the compensator would supply the total in-
stantaneous power corresponding to a trivial solution of the optimization problem. For the optimal
mains currents we have

INRST = irrsT + ic,RsST - (45)

The compensator phase currents are given by
1 . . .
3pc [UN,R - g(uN,R + up,s + uN,T)] usr (g Un,st + 1s Unrr + i7 Un,RS)

iC.R - + 46
(U?V,Rs + u?V,ST + UIZV,TR) (u%r,ns + uzzv,s'.r + u?\r,TR) ’ (46)

represented for phase R, the other phases can be treated by cyclic interchange. As a comparison
with Egs.(40) or (41) shows, the results gained by using the optimization calculation based on
phase quantities are identical to the results gained using space vector calculus. For the relation
between compensator and load currents we have

e,k = lcrp T icRg LC,RST,g = LIL,RSTg (47)

according to the remarks made previously for the supply of the instantaneous load reactive power
by the compensator. )

If the compensation ("re-distribution”) is not treated for a load current system, but for the
optimal (minimum loss) reference value determination of a mains current shape for given mains
voltage system and a given instantaneous power py to be transmitted, then, according to

UNRINR T UNsins +UNT INT = Dy (48)
iner+tivstivy = 0 (49)
ii,’R + z’i,,s + i?V,T = J— min, (50)

we receive
1
3pN [UN,R - g(’UN,R +Uuns t+unr )}

(51)
(u}?\/’,RS + u?v,sa" + u%f,TR)

(currents in phases S and T follow by cyclic interchange); giving the optimal mains current shape

INR =

mentioned is equivalent to a direct calculation of the mains current system resulting for compen-
sation of the load current system.

The optimization can be illustrated graphically in form of an elliptic paraboloid (defined by
Eqs.(43) and (44)) with a plane given by Eqs.(42) and (43) (see Fig.7). The optimum is identical
with the vertex of the parabola resulting as intersecting curve of both surfaces. Equation (51) also
already has been derived in the course of the application of the space vector calculus (Eq.(40)).
This is also shown by the possible replacement of the optimization criterion (eq.(44)) by the relation

Uy,s7 INR T UNTRINS T Unprsine = v = 0, (52)

For the sake of completeness we finally want to consider here the optimization of the energy
transmission of a four-wire system. This in general cannot be described completely by the space

10
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vectors defined here. The mathematical relations then have to be formulated in phase quantities
according to

UNRICR + Unstcs +Unricy = O (53)
(ier —icr) + (ips —tcs) + (tpr —ier)?
+[(iL,R+iL,S +iL,T)_(iC,R+iC,S+iC,T)]2 = J "—‘>m?/n, . (54)

The compensator currents follow as

4py, [UN,R ~ lunr +uys + uN,T)]

(55)

iR = ipp — .
[U?V,RS + Uy or + Uk rr Ui R+ uds U%JT]

Equation (55) shows directly that the compensator has to accept the difference between the phase

load current and the current giving the instantaneous power. There the compensator is of more

general structure, i.e., it is not simply realizable by a forced commutated three-phase bridge circuit.

The optimum mains (or load) current shape follows immediately via i¢ rsr = 0. We now want to

consider purely theoretically the case of not weighting the neutral current according to the losses

introduced by it; then there follows

PrUnr
[UJZV,R + ui')'v,s + uJZVT]

There, (for a closer analysis) the then given operating conditions would have to be compared to
these conditions given for a compensation according to Eq.(55). This shall not be done here for
the sake of brevity.

(6)

lc,cR = LR

Analysis of the Voltage-DC-Link PWM Converter System [12],[13],[14]

In order to satisfy the compensating condition given by Eq.(26) in each point of time we have to
assume the free reference value specification of a compensating current space vector. Impressing

11




this space vector can be achieved, e.g., by using a forced commutated voltage or current DC link
PWM converter system (see Fig.8). Its function will be treated in the following concerning the
power flows, especially relating to the generation of the instantaneous reactive power.
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Fig.8. Realization of a compensator by a voltage DC link PWM converter system

For a voltage DC link PWM converter system a converter current (compensator current) space
vector can be implemented practically without delay via the equilibrium of mains and converter
voltages across the inductances in series. The system switching status can be completely described

in each point of time by the switching status matrix

S = [311 S12 513] ) (57)

S21 S22 Sa23

There the elements s,;; can assume the values 0 or 1 because they represent binary switching
functions. Because a bridge leg can be replaced concerning its function by a two-pole switch
between the positive and the negative DC link bus, we have as limiting condition

S$11F 831 =1 S12+ 822 =1 S13t 83 =1. (58)

Besides the description by phase switching functions we also can use the characterization by a

switching status space vector defined by

2 2
8 = 3 [s11 +as; + a’ S13) ls| = ‘3‘ (59)
(sr = 811, S5 = S13, 87 = 833). Then we have
2
uy = sUzx = = 21 +a =08 +a’ UU’T] ’ (60)
3 Uzx Uz Uzk

The real power supplied to the DC link (identically zero for the ideal compensator) can be calculated
by the power balance

: 3 "
pu(t) = Uzxizgg = ’2'%{11411} (61)
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From this the DC link current follows as

Pu
Uzx

According to Eqs.(60) or (62) one can formulate mathematically simply the description of the
"transformation” of AC side into DC side quantities (or vice versa) by the switching status space
vector. The realization in a practical circuit of the DC link current according to Eq.(62) can also
be achieved (based on the phase currents) simply and directly via appropriately controlled analog
switches (see Fig.9). Thereby analog multipliers can be avoided. The inclusion of the output signal

. 3 " . . .
lzg = 5 R{siy} = srivr+Sstys+Srivy = (62)
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Fig.9. Determination of the instantaneous real and reactive power flow components of a voltage DC link
PWM converter system (for forming the instantaneous reactive power the quantities given in parantheses
are valid)

of the circuit described into the control of the instantaneous power flow (which can be realized by
the converter system) suggests itself.

The circuit given before achieves the realization of the DC link current (of the instantaneous
power) basically by direct representation of the function of the converter bridge half. The converter
function therefore is completely described when also Eqs.(58) are considered. Based on this the
derivation of the instantaneous reactive power appearing at the terminals

3

w(t) = ;S{uyi’} (63)
is possible by a circuit of equal structure. Then, however, according to
au(t) = S8 (s} = —=[snling —ins) + 56 g —iva) +n (ins —iug)]  (64)
= —S{siy} = —=|sr(ipr—1 ss(typ—1 sy (tys — 1
Upx qu 5 st \/§ r\tUuT U,s s\tu.r U,T T \tu,s U,R

the phase currents have to be replaced by ”line-to-line currents” and a correction of the output sig-
nal amplitudes has to be performed (see Figs.9-12). Table 1 shows a summary of the instantaneous
power expressions resulting for different switching states.

Dependent on the converter switching status there occurs always a short circuit between at least
two phases of the three-wire system. The difference of the respective phase currents determines
the instantaneous reactive power according to Eq.(64). For a closer analysis, e.g., for the switching
status [011] the phase currents according to iy grsr = ty,rsrp + tv,rsT,q have to be split into a part
for the instantaneous real power and for the instantaneous reactive power. For the instantaneous
power components we have (see Fig.13)

Pu,o1; = (iU,S Uzx + iU,T uZK) = (PU,S + PU,T) (65)
qu,o11] = ’%(W,S Uzx — tyr uzx) = ﬁ(PU,s - PU,T) .
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Fig.10. Instantaneous real and reac-
tive power (pu/Uzx (lower trace) or
qu/Uz i (upper trace), respectively) for
a voltage DC link PWM converter sys-
tem for supplying an induction machine
under load conditions (c.f. Fig.1) re-
lated to an approximately constant DC
link voltage Uz x

Fig.11. Representation of a space
vector of the instantaneous power (tra-
jectory) related to the DC link voltage
(c.f. Fig.10; vertical: instantaneous real
power; horizontal: instantaneous reac-

tive power); for exclusive consideration

B

of fundamentals (averaging) there fol-
lows a point of the circle diagram of the

induction machine

The transformation of the instantaneous power components into phase currents (Eq.(46)) leads to

iU,R,p,[Oll] - —iU,R
. iy + iu,
1y,5,p,[011] (—’Uj‘é“‘g_T‘)“ (66)
} (lor +ius)
Ly, T,p,[011] R
2
and
iU,R,q,[Oll] = 0
. yg —1
1y,5,q[011] = ""“—‘—( = 5 vr) (67)
. (iU,T - iU,s) .
1y, T,q,[011] “‘—2— = —y,s,q[011] -
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ill.ll.ll

Sr Ss St “U%;{‘Pv(t) Uix qu(t)
6 o o0 0 0
0 0 1 'iU,T %(iu,s - iU,R)
0 1 0 u,s %(iU,R - iU,T)
o 1 1 iv,s +ivr = —lur F(tvs — tur)
1 0 0 ‘iU,R ’ %(iU,T - iU,S)
1 Y 1 7:U,R + iU,T = —iU,s '\'/l‘g(iU,T - iU,R)
10 wr+ivs = —tur %(iU,R —iy,s)
1 1 1 0 0

Table 1

The current determining the instantaneous reactive power therefore is given by that current com-
ponent which flows between the two shorted phases S and T. Thereby no resulting power flow is

— Pylt} — 3qyit)

s13

S Uzk

Fig.13. Power flow components of a voltage DC link PWM converter system for the switching status
[011] (511 = 0, 8319 = 1, 813 = 1)
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present. This also gives an illustrative description of the power flow between the phases which is
connected to the instantaneous reactive power (see Fig.14).

Fig.14. Ilustration of the for-

mation of an instantaneous reac-

tive power under the presence of

nonlinear elements (semiconduc-

tor devices of a voltage DC link
PWM converter; switching sta-
tus [011])

[
[
o
o

Naturally only the arithmetic mean of the currents of the shorted phases results in a contribution
to the real power. As a coarse simplification it is possible to form an instantaneous reactive power
based on a system nonlinearity (switching status dependent short circuit between two phases)
also for interpreting a short by an infinitely large capacitance (which does not build up a voltage
independent of the current flowing). We want to mention critically, however, that this formulation
connects a quantity whose existence is related here to the nonlinear system behavior to an energy
storage device which cannot exclusively cause the existence of an instantaneous reactive power.

Analysis of the Current DC Link Converter System [12], [14], [15], [16]

For the current DC link converter ( see Fig.15) the converter current system is formed by an
appropriate distribution of the (very much constant) DC link current to the different phases. This
distribution is given by a proper control method. In turn, the system switching status is completely
defined by a switching status matrix (Eq.(57)). However, concerning the phase switching functions
the limitations

S11+ 812+ 813 =1 821+ S0 + 833 =1 (68)
have to be observed. This means that simultaneous conduction of more than one power electronic
device in one bridge half has to be excluded if complete controllability is required. The operation of
one bridge half therefore can be replaced by one three-pole switch between the phases concerning
its function. If again based on

iy =slzk (69)
a switching status space vector is defined, we have with
1 .
Sp = f‘”zU,R = (311 - 321)
ZK
1.
8s = ’j’"“lv,s = (312 - 322) (70)
ZK
1
Sp = f"‘zu,T = (313 - 323) 3
ZK
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Fig.15. Realization of a compensator by a current DC link PWM converter system

2 2

s = g[(«gn - 321) + Q_(Sn - 322) + QZ(313 - 323)] lﬁ{ = "\7—5 . (71)
For generating the instantaneous real and reactive power components according to
pu(t) 3 .
. = g R {uws}, (72)
1
T (1) = uzgk = upr(S11— $21)+ uys (812 — S22) + vur (S13 — $23) » (73)
ZK
t 3
2 = ey, (74
—at) = | o= sn) + ) (513 = s2)
— = —=|(uys—u S11 — 82 uyr — Uyr)(S12 — 8
IZK \/§ U,s urT 11 1 [ UR 12 22
+ (o, — tys) ($13 — 522)] (75)

again a circuit can be given (see Fig.16) whose structure corresponds to the power circuit of
the PWM converter (and which avoids application of analog multipliers). There, however, all
power electronic devices (therefore the whole converter structure) have to be represented by analog
switches because the knowledge of only one switching function of a bridge leg is not sufficient for
characterizing the switching status of the second valve of the same bridge leg (see Eqs.(68)). A
summary of the instantaneous real and reactive power expressions valid for the different switching
states is given by Table 2.

For a given converter switching state there is given an open-loop for at least one phase here. Ac-
cording to the duality of the current and voltage DC link PWM converter systems the phase voltage
of this phase appears as forming the reactive power. The instantaneous power flow components
given, e.g., for switching status [100,001] can be explained according to

Pu, 100 = (tzk Up,sT + tzx Yups) = (pu,st + Pu,rs)

(76)

- 1 . |
qu, 100 = \/g(ZZK Uy,sT — 1zK uU,RS) = ﬁ(PU,ST—PU,Rs)
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Fig.lﬁ. Determination of the instantaneous real and reactive power flow components of a current DC

link PWM converter (for formation of the instantaneous reactive power the quantities in parantheses are
valid)

(as already shown for the voltage DC link converter) by superposition of two power components
of the phases conducting current here (see Fig.17).

Fig.17. Power flow components of a current DC link PWM converter for switching status S = [100,001]

Instantaneous Power Components of Inductive and Capacitive Power

Storage Devices  [14]

Finally, as a simple application of the theory described here so far we shall briefly discuss the
characterization of a symmetrical magnetic or electrical storage device by the instantaneous real
and reactive power flow.

For the space vector of the instantaneous power of an inductive storage device we have in
analogy to Eq.(17)

s.(t) = p(t)+iql(t) . (77)
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s T—pu(t) e w(®)
(1o 8]
[0 0] 0 0
[5 ¢ 1]
[ 3 2 2 ] (vu.r — wur) %(UU,ST — Uy ps) = +\/§u£,'5
{ (1) (1) ﬁ ] (uy,r — Uy,s) _\/%(UU,ST — UyTr) = —\/gub,Tg
[ 8 (1) (1) ] (up,s — uU,T) ’\}?(UU,TR ~ Uy ps) = _\/gu/U,R
[ (IJ é 8 ] (uv,s — wur) ‘\/l”g'(uU,TR — Upsy) = —|~\/?:'u,£,,,_,
[ 3 (1) é ] (vvr — up,s) “{}?(uv,Rs — Uyg) = +\/§uIU,R
[ (1) 3 é ] (uv,r — up,r) %(UU,RS —Uysr) = ”‘\/§ub,s
Table 2
From Eq.(77), under consideration of
i, = |i] expiepy, u, = % (78)
there follows _
ot =§%mm%%+mw%ﬁ} W . (19)
The instantaneous real power
= 35 (507)] et "

only is present when the total magnetic energy of the storage device changes, i.e., when the mag-
nitude of the current space vector changes. The instantaneous reactive power is dependent on the
stored magnetic energy and on the angular speed of the space vector according to

3. .,
ar(t) = Slislwo, I = 20, wi(t) - (81)

Dynamically, by no means it always assumes only a positive value. A rotation of a current vector
of constant magnitude therefore is (c.f. Eq.(80)) possible ®without resistance”; that means that
this is not connected with a resulting energy exchange between storage device and mains. The
angular speed of the current space vector therefore only determines the rate of re-distribution of the
phase energies of the storage device by corresponding currents which flow through the supplying
mains. For the stationary symmetric case (current space vector of constant magnitude and constant
angular speed) we therefore have

3 .
QL = -2—wa2 = 3wLI}

Lyrms

P, =0. (82)
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The instantaneous power components then turn into the quantities P, and Q; (known from basic
electrical engineering). There, @, shows a positive value here (i.e., for the magnetic storage)
according to the definition of the instantaneous power space vector (Eq.(17)).

For considering a capacitive storage device there follow with

sol®) = pe(t) + ac(t) | (83)
and du
U = |ug| exp oy, e = C—==¢ (84)
these completely analogous relations:
w0 = 430 ()] .
wolt) = —Sluclen,C = 20, wi(t) (56)

The sign of Q¢ is negative for the stationary, symmetric case!

Conclusions

This paper treats the description of a three-wire system by space vector calculus concerning the
appearing instantaneous power flow components. The quantities instantaneous real power and
instantaneous reactive power are defined. For disappearing instantaneous reactive power a power
loss optimal energy transmission is given. Therefore, an immediate meaning is given for this
quantity.

One special advantage of space vector calculus is its clearness (because the representation can
be made with minimum effort). Furthermore, its application to the control of a converter suggests
itself; this can be said due to the possibility of direct inclusion of the quantities instantaneous real
and instantaneous reactive power (which are determined via a relation of voltage and current space
vector components) into the control of the power electronic system. The reason for inclusion of
the quantities mentioned is given by the fact that a power electronic system finally has to define
the instantaneous power flow components.

Of special importance furthermore is the fact that for voltage and current DC link PWM con-
verter systems the instantaneous power components simply can be determined by a representation
of the converter function with little effort concerning circuit technology. (The PWM converter
system mentioned represents that group of forced commutated converters which have many appli-
cations especially in the drives area.)

Generally it has to be mentioned that the considerations given here naturally form only a part
of a general theory which still has to be analyzed in more detail. It has been tried here to describe
this part of the theory in relation to power conversion in power electronic systems.
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