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Abstract 

The optimization of the modulation method of a PWM converter system in 
general leads to not purely sinusoidal phase modulation functions. In connec- 
tion with the output currents and the forward characteristics of the electric 
valves these phase modulation functions define directly the Conduction losses 
of the power electronic devices. This paper explores the dependency of the 
conduction losses of a bridge leg of a PWM converter system with high pulse 
rate on the shape of the phase modulation functions. This is done for mod- 
ulation methods which are optimized with respect to minimum harmonic 
current rms values. The results are compared to the results gained for simple 
sinusoidal modulation. 

Besides the conduction losses furthermore the switching losses of the elec- 
tric valves are calculated. Deviations from the classical sinusoidal modulation 
here are only obtained for modulation methods for which the output voltage 
is formed by a cyclic change via only two active and a third, not switching 
bridge leg. As the calculations show, these modulation methods allow a sig- 
nificant increase of the effective switching frequency. This effect is dependent 
on the phase angle between the fundamental of the converter output phase 
voltage and the converter output phase current; for this comparison equal 
switching losses as for the simple sinusoidal modulation are assumed. 

In conclusion the optimal modulation of the pulse frequency of a PWM 
converter system is treated. There a side condition has t o  be observed stating 
that the switching power loss has t o  correspond to the power loss occurring 
for operation with constant pulse frequency. The optimal modulation as 
calculated leads t o  a reduction of the harmonic power loss in the upper mod- 
ulation region. Furthermore, due t o  the frequency modulation the spectrum 
is spread out t o  a wider frequency band as compared to the operation with 
constant pulse frequency; there the spectrum is concentrated to harmonics 
in the vicinity of multiples of the pulse frequency. This effect can influence 
the noise generation of, e.g., a motor supplied by a converter. 

tions are used. Attention is paid especially t o  the correspondence of the 
description of the voltage formation using space vector calculus and repre- 
sentation by phase quantities. This is of special importance here because 
the determination of conduction and switching losses (which can be linked 
t o  a certain modulation method) of a PWM converter system (cf. Fig.1) 
corresponds directly to phase quantities (phase currents or phase modula- 
tion functions); furthermore, the optimization of the frequency modulation 
(which is discussed a t  the end of this paper) is essentially connected to a 
description of the system quantities by space vectors. The definition of the 
converter voltage space vector is given by 

% = - 2 [ U U , R  + auu,s +aZ UU,T] a = (6- + j-1 Jj ' (1) 2 2  3 

If purely sinusoidal converter output voltage is postulated according t o  
^ *  

11; = Uu e x p j p u  vu = W N T  (2) 

the control signals for the power semiconductor devices can be derived in the 
simplest case as shown in Fig.2 by "sampling" of sinusoidal phase modulation 
functions 

"Lk(9U) = M c o s 9 u  

m $ ( 9 u )  = Mcos  9 U  - - ( 3 
(3) 
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(cf. Fig.3). The angle 9 u  (or time 7) denotes the position of the resulting 
converter voltage space vector or the position of the corresponding pulse in- 
terval within the fundamental period. There the considerations are limited 
to the treatment of the voltage fundamental or to the average value for one 
pulse period or for half a. pulse period. One full pulse period is used for sym- 
metric regular sampling, half a pulse period is used for asymmetric regular 
sampling (cf. Ref.[l]). This distinction is not important here, however, due 
to the high pulse rate assumed. 

1 Introduction 

In this section we want t o  briefly summarize these modulation methods which 
will be applied in the subsequent calculations. For their characterization the 
resulting harmonic power losses and the shape of the phase modulation func- 

This method (known as subharmonic modulation) leads to relative turn- 
on times (related to the pulse period) of the converter bridge legs (which can 
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Fig.1: Structure of the power circuit of a three-phase 
voltage DC link PWM converter system. For usage as 
P WM inverter for AC machine drives the inductances 
L and the three phase system gN can be interpreted 
as simple equivalent circuit of the AC machine formed 
by leakage inductances and machine counter emf. On 
the other hand, for mains operation of the PWM con- 
verter (PWM rectifier, static VAR compensator) the 
inductances have to be connected in series; the volt- 
age system gN is defined by the mains conditions. 
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Fig.2: Derivation of the switching times of a converter bridge 
leg via intersection of the relevant phase modulation function 
with a triangular signal (shown for asymmetric regular sam- 
pling). 
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Fig& Shape of the phase modulation functions for the classical 
ainusoidal modulation (denoted by [I] in this paper). 

be replaced by three doublcpole switches between positive and negative DC 
link voltage bus regarding their electrical function) according to 

1 
a R ( V U )  = i [I + mR(VCJ)I 

Due to the symmetries of the generated voltage system resulting from the 
three-phase properties the further considerations can be limited to  the inter- 
val of t he  angle 

By introduction of space vector calculus the relative turn-on times of the 
bridge legs given by Eq.(5) can be described as a weightiag (with respect to  
time) 

of the voltage space vectors % 7,  and % o,  which are associated to  
the switching states of the PWM coiverter (cf. Fig.h). The indices denote the 
converter switching state by the decimal equivalent of the converter switching 
status vector interpreted as  binary number. Therefore Eqs.(7) define the 
transition of a description by phase quantities to  a description by space vector 
calculus. The modulation method is characterized by the switching state 
sequence 

p u E [ x , ~ ]  ?r 2K ... 0 2 6 7 I t  - 0 7 6 2 0  ,- 

I V  V I  
uu.7 Uu.0 

this sequence in general is denoted as (7620). The transition between two 
subsequent switching states there is always achieved by switching of only one 
bridge leg. 

In the space vector representation of the converter voltage the two not 
voltage forming switching states 0 and 7 cannot be distinguished. Therefore, 
for definition of the converter output voltage by space vector calculus only 
the entire free-wheeling state period 

60 + 67 = 1 - (62 + 6 6 )  (9) 

can be given. The voltage formation of the converter system (related to  the 
average value for one pulse period Tp) is not influenced by the distributiop 
of the freewheeling states within the pulse interval. The definition of a par- 
ticular distribution of free-wheeling states is really the ultimate basis for the 
definition of phase modulation functions (cf. Eq.(7)). The degree of freedom 
given thereby can now be applied for the optimization of the modulation 
method. The quality functional to  be minimized shall be defined as the 
squared rms value of the resulting current harmonics: 

I =  AI;,^,,,^ = 

Fig.4: Approximation of the reference value of the output volt- 
age space vector via neighbouring converter voltage space vec- 
tors (due to the 60°-symmetry of the voltage space vector9 fol- 
lowing for the different converter switching states one can limit 
the considerations to the interval of pv E [a/3,2~/3] shown 
here). 
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Equation (10) is obtained with good approximation for PWM converter sys- 
tems with high pulse rate (Ref.[2]). For the deviation of the current space 
vector 

AiN = & - ih (11) 
from that of a purely sinusoidal three-phase system 

G(7) = Lk exPj(wN7 + P) (0 = Pt$,& (12) 

we have 

(13) 
dAiN 1 
~ = r, [I&(.) - &(.,t,)l 

dt, 
(cf. Ref.[2]) and 

(14) 
3 .  
2 

Ai$,R + Ai$,s + Ai$,T = -/AiNI2 . 

The minimization of the quality functional I leads t o  

Ai$,RST,rma ( 7 )  -+ Min (15) 

There, Ai$,RST,rma characterizes a "local" (related to a pulse interval) har- 
monic power loss contribution. It can be set equal to the square of a local 
harmonic current rms value. I t  shows the dependency given by 

A ~ $ , R S T , ~ ~ ~  = ~i$,RsT,,,,,i{67(7),66(~), 6z(~)I + 
t Ai$,RST,rm~,2{66(7), 6 2 ( T ) )  (16) 

on the weighting (with respect) to time of the different converter voltage space 
vectors. The  optimal phase modulation functions follow (as, e.g., discussed 
also in Ref.[3]) as 

mR('p") = M1 cos 'p" - M3 cos 3p" 

ms(pu) = Mlcos  'p"-- -M3cos3ppo ( 
(17) 

with 

The corresponding phase modulation functions are shown in Fig.5 (cf. [3]'). 
For the global (as related t o  the fundamental period) harmonic current rins 
value then we have in general with Eqs.(l5), (16) and (10) 

with 

(cf. [3] in Fig.6). The maximum modulation region 

follows for M3/M1 = 116 (cf. Ref.[2] and Ref.[4]). 

A simple suboptimal approximation (denoted by [2] in this paper) can be 
given by distributing the free-wheeling state to equal parts a t  the beginning 
and a t  the end of each pulse half interval according to 

(22) 
1 1 

6 7 ~ 2 1  =  SO t 6 7 )  = 2[1 - (62 +&)I 

(cf. Ref.[2] and Ref.[5]). For the global harmonic rms value there follows 

As already mentioned, for a simple sinusoidal modulation (denoted by [ l ] )  the 
distribution of the free-wheeling states is determined directly by the shape 

of the phase modulation functions. I t  follows as 

1 M  2 7  
2 2  3 67,[11 = - + - cos('pv + -) 

In this case we have for the global harmonic rms value 

As a limiting case of the distribution of the free-wheeling states as dis- 
cussed, also a formation of the switching state sequence according to 

67 = 1 - (62 +66)  

60 = 0 (26) 

or 

67 = 0 

60 = 1 - (62 +66) 

... 0 2 6It  - o6 2 01 0 2 6 . .  . (620) or [7] , - t, = Tp/2 

can be considered. There the entire freewheeling state is concentrated a t  
the beginning or a t  the end of a pulse half interval. Due to the then given 
not optimal "distribution" there result higher harmonic losses of the system, 
however. The  analysis of the associated phase modulation functions (cf. [6] 
and [7] in Fig.5) shows, however, that  then the output voltage system is 
formed by pulsing of only two bridge legs, whereas the third phase remains 
"clamped" t o  one of the two DC link voltage bus bars ("discontinuous mod- 
ulation"). Accordingly the conclusion is obvious that an increase of the pulse 
frequency by a factor t f  = 312 leads t o  equal switching losses and equal 
thermal stress t o  the power semiconductor devices as compared to the case 
of "continuous modulation" (modulation function without discontinuities, or, 
equivalent, pulsing of always all bridge legs as used for methods [l], [2], [3]). 
A closer investigation shows, however, that  the possible frequency increase is 
determined essentially by the phase relationship between output current fun- 
damental and output voltage fundamental. This aspect is treated in section 
3 in detail. The harmonic losses resulting for the modulation methods given 
by Eqs.(26) and (28) (or Eqs.(27) and (29), respectively) follow as 

M E  0 - . (30) 14 
They are shown in Fig.6 (cf. [SI and [7]) for kf,[61,[71 = 3/2. The possible 
frequency increase therefore leads t o  a significant harmonic power loss reduc- 
tion in the upper modulation region, also if compared to optimal continuous 
modulation. 

For a combination (denoted by [4]) of the switching state sequences (given 
by Eqs.(27) and (29)) according to 

there follows 

(cf. [4] in Figs.5, 6). 

An alternative combination (denoted by [ 5 ] )  

(620) for VU E [:,$I 
(762) for 'PU E [;,%I (33) 

leads to 

'By brackets hcrc we denote modulation methods (e.g., in Fig 5 ) ;  references arc given 
by, e.g., "Rcf.[l]" 
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Fig.6:Illustration of the modulation methods discussed in this 
paper via representation by the corresponding phase modula- 
tion functions ([Z], [3]: continuous modulation; [4], [5], [6], [7]: 
discontinuous modulation). 
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Fig.6: Comparison of the normalized harmonic power losses of 
one phase for various modulation methods (discussed in section 
1); [l]: Sinusoidal modulation (Eq.(25)); [Z]: Suboptimal space 
vector modulation (Eq.(23)); [3]: Local and global optimal si- 
nusoidal modulation with added third harmonic (M3 = M,/4, 
Eq.(19); [4],[5],[6],[7]: Discontinuous modulation (cf. Eqs.(SO, 

32, 34)); kf,[4],[51,[61,[71 = 3 / 2 .  
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(34) 

(cf. [5] in Figs.5, 6). Equation (31) in this way defines based on a possible 
frequency increase kt = 3/2 the harmonic-optimal discontinuous modulation 
method (cf. [4], [5], [6], [7] in Fig.6, see also Ref.[2]). 

Finally we want to  point out that all the modulation functions discussed 
here can be derived by extension of a simple sinusoidal modulation according 
to  

mR = m;(+no 
ms = m i + %  
m~ = mh+no 

1 
mo = j ( m ~ + m ~ + m )  . (35) 

The zero quantity mo is not projected into the corresponding space vector 
when the voltage system is transformed (the zero voltage is decoupled); 
only influences the distribution of the free-wheeling states and therefore the 
resulting harmonic losses. 

2 Calculation of the Conduction Losses of the 
Power Semiconductor Devices 

The relative conduction periods of the power electronic devices of the bridge 
legs within a pulse half period are defined (as mentioned in the introduction) 
according to  

(given for phase R and limited to  the positive current half period; cf. Fig.7) 
directly by the shape of the phase modulation functions. If one approximates 
the forward characteristic of the valves by 

U F , T * . D ~  = + PF,T,D ( T I , D I  I (37) 

there follows for the mean value of the conduction losses within one pulse 
half period ("local" conduction losses, i.e. "local" with respect to time) 

with 

- UU i' 12czK 
T 2czK - i !  

Fig.7:Division of the output current flowing into controlled and 
uncontrolled semiconductor devices of a PWM converter bridge 
leg. 

(38) 

(39) 

The integration of these local conduction losses for the positive (or nega- 
tive) half cycle of the output current 

finally leads to 

for the global (i.e., related to  the fundamental period) conduction loss. There 
simple sinusoidal modulation 

1 
QR(T)  = -[I 2 + MCOSWNT] (42) 

is assumed. Integration for the output current half cycle therefore means 
integration of a quantity L Y T ~ ( T )  (or Q D ~ ( T ) )  which is weighted by the instan- 
taneous current value (and dependent on the position 'pu of the converter 
voltage space vector) within an interval which is dependent on the phase 
angle between the fundamentals of the converter output phase voltage and 
current. For the conduction losses of the diode which conducts current for 
positive output current there follows then (cf. also Refs.[6,7,8]) 

The purely sinusoidal output current shape being assumed by Eq.(39) 
limits together with Eq.(38) the validity of Eq.(41) or Eq.(43), respectively, 
to a region of high pulse numbers p z  (ratio of the pulse frequency to the out- 
put frequency). I t  can be used, however, (as a comparison with the results 
of a digital simulation shows) in practice already for p z  > 21 with sufficient 
accuracy for the thermal dimensioning of the valves. One has to mention 
in general that dimensioning on the basis of global power losses (i.e., aver- 
aged over the fundamental period) assumes sufficient (i.e., sufficient for the 
time of averaging applied, i.e., for the fundamental period) thermal inertia 
of the power semiconductors. This assumption is sufficiently well fulfilled 
for pulse rectifier systems for high power (the averaging time is given by the 
mains fundamental period). For converters used in drives the validity of the 
relationships derived in this paper is limited to the higher frequency or mod- 
ulation region. (There, approximately frequency-proportional change of the 
output voltage amplitude is usually given.) For low out output frequencies, 
local power losses have to be considered for dimensioning. 

If the simple sinusoidal modulation is extended by addition of a third 
harmonic Refs.[2, 3, 41 (see [3] in Fig.5 (Eq.(17) in section 1)) among other 
properties also the relative conduction intervals of the valves are influenced 
(cf. Eq.(36)). E.g., there follows for transistor T2  

This means that in any case a corresponding change of the conduction 
losses can be expected. The evaluation of Eq.(40) under consideration of 
Eqs.(39) and (44) leads to 

(45) 
and 

(M3 = 0.25M1 for optimized PWM (cf. section 1)). The part of the loss 
which is dependent on the constant conduction voltage representation there- 
fore is & influenced by the modulation method modification (cf. Eqs.(4l) 
and (43)); the part linked to the conduction resistance is influenced only 
marginally. As can be considered, e.g., graphically in a simple way (cf. Fig.B), 
we can write 

n /  COS[(^^ + l)'prr] C O S [ ' ~ ~ V  + 'p]d'pu = 0 k = 1 ,2 , .  . . . (47) 

Therefore in general for a change of the simple sinusoidal modulation method 
by odd order harmonics or, in general, by a zero quantity mo defined by 
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Fig.8:For derivation of Eq.(47). 

Eq.(35) (see modulation methods [2], [3], [4], [5], [SI and (71 in Fig.5) the 
conduction losses linked to  the not current dependent part of the conduction 
voltage are not influenced. This means that the calculation can be restricted 
to the second loss part; as a closer investigation of the modulation methods 
described in section 1 shows, this power loss contribution can always be a p  
proximated with an  accurracy which is sufficient for dimensioning purposes 
via the expression resulting for sinusoidal modulation. The thermal dimeu- 
aioning of the power electronic devices regarding global conduction losses 
therefore is only marginally influenced by the shape of the modulation func- 
tion. 

P 

3 Calculation of the Switching Losses 

For the calculation of the switching losses related to  the modulation meth- 
ods considered one assumes (according to  the measurement results of, e.g., 
Refs.[8,9,10,11]) alinear dependency of the switching energy loss (appearing 
for one switching cycle of a bridge leg) on the switched current 

~ P , T  { ~ T ( U N ~ ) }  = k i , T  i T ( w ~ 7 )  . (48) 

For the definition of a local switching loss (related to  a position of a pulse 
interval) one can write 

when a high pulse number is implied. 

Averaging 

PP,T = w P , T f P  (49) 

r I 2 - p  

PP,TZ = ' 1' pP,TZ((oU)d('f'U) (50) 
ZK - n / z - p  

of this switching loss appearing within the positive (or negative) output cur- 
rent half period leads for "continous" modulation (e.g., sinusoidal modulation 
[l] or [2] or [3] in Fig.5, respectively) to  a global switching loss of a transistor- 
diode-pair of a.bridge leg (e.g., Tz and D1 in Fig.7) 

PP,TZ,DI = I N  f p  BI,T,D (51) 

(52) 
with 

k i , T , D  = k i ,T  4- k i , D  . 
The shape of the modulation function basically influences the switching 

losses only if the various bridge legs are not pulsed within the entire funda- 
mental period with pulse frequency ("discontinuous" modulation, modulation 
methods [4], [5], [6] and [?I in Fig.5). As Figs.9, 10 show then there has to  
be decided among different cases in dependency on the phase relationship 
between the fundamentals of the output phase voltage and current. For the 
switching losses there follows 
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Fig.9:For derivation of the switching loss depen- 
dency on the phase shift between output volt- 
age and output current for modulation method 
[SI (mR, [S] :  phase modulation function (given for 
phase R); switching frequency status of 
the bridge leg (sR,[s] = 1 for switching bridge 
leg, s ~ , [ q  = 0 for intervals when bridge leg is 
clamped); lower curves: distinction of different 
cases for the phase angle regions of the output 
current). 
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Fig.lO:For derivation of the switching loss de- 
pendency on the phase shift between output volt- 
age and output current for modulation method 
[4] ( m ~ , 1 4 :  phase modulation function (given for 
phase R); SE,[,]: switching frequency status of 
the bridge leg (SE,[,] = 1 for switching bridge 
leg, SE,[,] = 0 for intervals when bridge leg is 
clamped); lower curves: distinction of different 
cases for the phase angle regions of the output 
current). 

(values for the other phase angle regions follow via symmetry considerations 
(cf. Figs.9,10 and 11)). Dependent on the phase angle of the output cur- 
rent and on the modulation method used ([4] or [5]) this makes possible (cf. 
Fig.11) an  increase of the "10cal"~ pulse frequency ( f p , ~ ~ ]  or f p , ~ ~ ] ,  respec- 
tively) by a factor of 

There equal global switching loss is assumed as for the case of the simple si- 
nusoidal modulation for which we have equality of "local" and "global" pulse 
frequency f p .  The shift between the periods where no pulsing of a bridge 
leg takes place and the associated current fundamental has essential influ- 
ence on the possible frequency increase. This is true because the calculation 
of the switching losses (cf. Eqs.(49), (50)) is performed by weighting the 
instantaneous output current value by the local pulse frequency. If a con- 
verter phase is clamped to a bus bar voltage within r / 3  wide intervals (e.g., 

cf. Eqs.(31), (33) or [4], [5] in Fig.5, respectively) then kf shows a signifi- 
cant dependency on the phase shift of the output current. If the clamping 
interval of a phase (i.e., there appear no local switching losses) lies symmet- 
rically t o  the current maximum ('p = 0), as this is the case for modulation 
method (51, the local switching frequency can be increased by a factor 2 as 
compared t o  continuous modulation. The frequency increase of k t  = 1.5 
which could be concluded from a superficial consideration of the problem 
(independent of the current phase angle, see section 1) therefore does not 
represent the maximum achievable value. However, there appear phase angle 
regions, where the clamping states will be located in the neighborhood of the 
current zero crossings (p = r/2).  Then the switching of of the bridge legs 
occurs a t  high current levels (near or a t  the current maximum). The possible 
frequency increase in this case will be given by k f  5 1.5. If the clamping 
states are distributed more evenly over the fundamental period, there results 
- as immediately clear from the previous considerations - a less pronounced 
dependency of the frequency increase on the current phase shift (cf. [4] Fig.5, 
or Fig.11, respectively). 

A closer discussion of the discontinuous modulation methods [6] and [7] 
(cf. Fig.5) defined in section 1 by Eqs.(26) and (28) can be omitted here be- 
cause the frequency increase which becomes possible when these methods are 
applied can be derived directly from the relationships calculated for modula- 
tion method [5]. This becomes immediately clear by comparing [5], [6] and 
[7] in Fie.5. We have 

or 

Fig.ll:Possible frequency increase k t , ~ ; ]  of the modulation 
methods [4] and [5] in comparison to "continuous" modula- 
tion methods (e.g., simple sinusoidal modulation [l]) for equal 
switching losses (as side condition for giving equal bases for com- 
parison purposes). 

'The local puLe frequency fp , l iI  in this section is givm by either fp = 0 for the 
clamping intervals or by fp = fp,[;] =eonstant for the othu time inter& of the 
fundamental period. For furthu methods concerning the "modulation" of the pulse 
frequency see section 4 
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According to  the application area of the PWM converter system (phase 
angle region) the calculations performed give a criterion for selecting the 
modulation method to  be applied. For the application to  AC motor drives, 
e.g., modulation method [4] would be more advantageous than [5]. The reason 
is that then according to Eq.(32) and Eq.(34) in the whole modulation region 
for a phase angle region from 40" to  120" (or -40' to -120') the harmonic 
Iorses of [4] are below the harmonic losses of 15). 

4 Optimal Modulation of the PWM Conver- 
ter Frequency 

The optimization of the continuous modulation can be reduced (as described 
in iection 1) to  a minimization of the local harmonic current rms value (cf. 
h . ( l 5 ) )  

Ai$,RST,rma = Ai$,RST,rm~,l + Ai$,RST,rms,2 (59) 

For the sake of simplicity in the following we only want to  refer to  the sub- 
optimal solution (cf. Eq.(22) or [2] in Fig.5, respectively) 

The dependency of the optimized local harmonic current rms value on the 
modulation depth and phase 'pu of the converter voltage space vector is 
ihown in Fig.12. The characteristic shape of the global harmonic losses is 
given in Fig.6 (cf. [2]). Figure 12 shows a pronounced maximum in the 
upper modulation region in the vicinity of 'pu = ~ / 2 .  Therefore one has to  
raise the question whether or how for a given modulation depth M the shape 

1 2  
G2n2diN,RST.rms.[21 

0.20 

0,15 

0.10 

0.05 

0 

f 

of the harmonic power losses can be smoothened and thereby possibly the 
global harmonic power losses further reduced. The only remaining degree 
of freedom of the modulation method there is given by the variation of the 
pulse frequency which has been assumed constant (independently of 'pu) so 
far. Accordingly the pulse frequency is to  be increased in the region cpu M ?r/2 
and can be decreased in the regions 'pu M r / 3  and 2x13. 

The optimization of the pulse frequency shape f p , F M ( ' p u )  is expressed 
by a quality functional which has to  be minimized 

The associated side condition is given by keeping the switching losses constant 
as they result for constant pulse frequency f p ,  according to  

This means equal thermal stress on the power semiconductor devices. Ac- 
cording to  Eq.(65) the phase shift between converter output current and 
converter voltage again influences the determination of the switching losses, 
as already discussed in section 3. (The discontinuous modulation discussed 
there basically represents a special case of the general frequency modulation 
treated here). Therefore the optimization has to  be performed for each phase 
angle 'p and for each modulation depth M. The side condition (Eq.(65)) can 
be also written as 

I' k f , F M ( P u ,  M, [(cpo, dvu = 2 (66) 

with 

C ( C P U , V ) =  I c o ~ ( ~ u + ~ ) ~ + ~ c o ~ ( ~ u + ~ -  ~ ) l + l ~ ~ s ( i p u + ~ +  %,I'. (67) 

The weighting function C characterizing the influence of the sinusoidal current 
phase shift is shown in Fig.13. 

In general the optimization problem treated here represents a problem 
of variational calculus: one has to  calculate the shape of the relative (local) 
pulse frequency (the extremal) 

(for given M and p) which minimises the global harmonic power losses 

Fig.12:Dependency of the normalized local harmonic power losses Ai$,,,,,,,. of the PWM converter system on 
the position rpu of the converter voltage space vector and on the modulation depth M for suboptimal modulation [Z] 
(Eqs.(22), (61) and (62) has to be applied to Eq.(59)). 
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Fig.lS:Weighting factor C of the normalized local pulse fre- 
quency k f , F M  for calculating the converter smtching losses in 
dependency on the phase angle p and on the angle 1pu (cf. 
Eq.(67)). Due to the symmetries of a purely sinusoidal bal- 
anced three-phase system the considerations can be limited to 
the interval p E [O,r/3]. 

AIi,r,,,8(M,p) where the side condition of constant switching losses is ful- 
filled. As a necessary condition for obtaining the extremal one can give 

which is only dependent on M. The  global harmonic power losses resulting 
for optimal frequency modulation are given in Fig.16. One has to point out 
especially the dependency on p; there is obtained no essential improvement of 
the modulation method [2] (constant pulse frequency), however. (Modulation 
method [2] is treated here as representative case; the other methods should 
show an  equivalent result. This will be treated in more detail in a future 

a 1 1 
a k f , F M  { q F M ( p U ,  M ,  p) sit A i b w w ( p u ,  + 

(69) + k f , F M ( V U , M , P )  C(PU,V) } = 0 
paper.) 

according t o  the Euler-Lagrange differential equation of variational calcu- 
lus. The  side condition given as integral is linked to the calculation by the 
Lagrange multiplier A. (As known, this parameter is finally determined by in- 
serting of the extremal into the side condition (cf. Ref.[l2]).) For the optimal 
frequency modulation there follows 

(/- Ai?J,RST,rma(pul M ,  
k f , F M ( ' P U ,  M ,  (0) = 21 (70) h3 ~ C Z ( p ~ , ~ ) A i : , ~ ~ ~ , ~ m b ( ~ ~ ) M )  dpu 

(cf. Figs.14 and 15). The necessary frequency sweep of the modulation is 
increased with increasing modulation depth and shows essentially a shape as 
already expected in the previous discussion. For a practical realisation this 
frequency shape (in first approximation independent of the phase shift p) 
can be approximated, e.g., by a simple sinusoidal or triangular modulation 

klFH,121 

l,? 

IO5 

I O  

0.95 

0.3 

2* 
7 

n o  

If one considers (besides the resulting harmonic power losses) also the 
resulting noise of, e.g., an  electric motor supplied by the converter, then 
the frequency modulation shows significant advantages as compared to a 
modulation method with constant pulse frequency. This results from the 
fact that  the harmonics (which are concentrated in the immediate vicinity of 
multiples of the switching frequency for constant pulse frequency) are now 
distributed in frequency bands of the width 

B 2fP(kf,FM - 1) ' (71) 

Due t o  the equal spectral power (as known, the spectral power is not influ- 
enced by frequency modulation) their amplitudes are decreased accordingly. 
There the envelope of these spectral components for a large frequency sweep 
is defined by the shape of the modulating signal. There follows, e.g., for trian- 
gular modulation an  almost constant amplitude for the spectral components 
in the frequency regions defined by Eq.(71). 
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Fig.14:Dependency of the optimal normalized frequency k l , F M , [ 2 ]  of the pulse frequency modulation on the position 
pv E [a/3,2a/3]  of the converter voltage space vector and on the phase shift 1p (referred to pv)  of the converter output 
current; M = 0.75 (cf. Eq.(70)). 
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Fig.15:Dependency of the optimal normalised frequency k f , m i  of the pulse frequency modulation on the position 
E [*/3,2~/3] of the converter voltage space vector and on the modulation depth M ;  (p = 0 (cf. Eq.(70)). 
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Fig.lO:Comparison of the normalized global harmonic losses 
of one phase for constant (denoted by [ 2 ] 1 )  and modulated (de- 
noted by [ 2 ] 1 r )  converter pulse frequency. The comparison is 
made for equal switching losses in both cases to give a common 
basis for the comparison. (Parameter of the family of curves: 
phase angle ~p of the output current). 

The resulting noise of the AC motor supplied by a PWM converter then.- 
fore is distributed in a wider frequency band as compared to modulatioii 
methods with constant pulse frequency. There do not appear pronounced 
audible frequencies with multiples of the pulse frequency. A detailed investi- 
gation of this problem area will be the topic of a paper being in preparation. 

5 Conclusions 

The main topic of this paper is the determination of those power loss compo- 
nents of a PWM converter system which can be (besides the harmonic losses) 
influenced by the modulation method selected. Those power loss components 
are usually neglected in pulse pattern optimization methods known from the 
literature because the optimization is performed with the side condition of 

a given average (global) switching frequency, but not with the essential side 
condition of defined global switching losses. 

If the assumption of sufficient thermal inertia of the power semiconductor 
devices is not fulfilled anymore (meaning low output frequencies) one has 
t o  include a dynamic thermal model (transient thermal resistance) for the 
power electronic devices for considering the device behavior with respect t o  
the switching and conduction losses within the fundamental period. A pulse 
pattern optimization then would be thinkable, e.g., with the side condition 
of a maximum allowable chip temperature. 

For the optimization of the stationary behavior of an  AC motor drive 
system (which is the final goal of a pulse pattern optimization) one in general 
should check if a detailed modelling limited only to the motor is sufficient. 
One has t o  consider rather also the loss contributions mentioned in this paper 
and therefore especially the converter losses. It would be not advisable t o  
optimize a few percent of harmonic motor power losses (which are small for 
high pulse frequencies in any case) if one would not consider the possibly 
(much) higher influences on the losses of the converter due t o  the nonideality 
of the power electronic devices. 
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