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Abstract

The optimization of the modulation method of a PWM converter system in
general leads to not purely sinusoidal phase modulation functions. In connec-
tion with the output currents and the forward characteristics of the electric
valves these phase modulation functions define directly the conduction losses
of the power electronic devices. This paper explores the dependency of the
conduction losses of a bridge leg of a PWM converter system with high pulse
rate on the shape of the phase modulation functions. This is done for mod-
ulation methods which are optimized with respect to minimum harmonic
current rms values. The results are compared to the results gained for simple
sinusoidal modulation.

Besides the conduction losses furthermore the switching losses of the elec-
tric valves are calculated. Deviations from the classical sinusoidal modulation
here are only obtained for modulation methods for which the output voltage
is formed by a cyclic change via only two active and a third, not switching
bridge leg. As the calculations show, these modulation methods allow a sig-
nificant increase of the effective switching frequency. This effect is dependent
on the phase angle between the fundamental of the converter output phase
voltage and the converter output phase current; for this comparison equal
switching losses as for the simple sinusoidal modulation are assumed.

In conclusion the optimal modulation of the pulse frequency of a PWM
converter system is treated. There a side condition has to be observed stating
that the switching power loss has to correspond to the power loss occurring
for operation with constant pulse frequency. The optimal modulation as
calculated leads to a reduction of the harmonic power loss in the upper mod-
ulation region. Furthermore, due to the frequency modulation the spectrum
is spread out to a wider frequency band as compared to the operation with
constant pulse frequency; there the spectrum is concentrated to harmonics
in the vicinity of multiples of the pulse frequency. This effect can influence
the noise generation of, e.g., a motor supplied by a converter.

Keywords:PWM Converter System, Pulse Pattern Optimization, Conduc-
tion Losses, Switching Losses, Phase Modulation Function, Optimal Fre-
quency Modulation

1 Introduction

In this section we want to briefly summarize these modulation methods which
will be applied in the subsequent calculations. For their characterization the
resulting harmonic power losses and the shape of the phase modulation func-
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tions are used. Attention is paid especially to the correspondence of the
description of the voltage formation using space vector calculus and repre-
sentation by phase quantities. This is of special importance here because
the determination of conduction and switching losses (which can be linked
to a certain modulation method) of a PWM converter system {cf. Fig.1)
corresponds directly to phase quantities (phase currents or phase modula-
tion functions); furthermore, the optimization of the frequency modulation
(which is discussed at the end of this paper) is essentially connected to a
description of the system quantities by space vectors. The definition of the
converter voltage space vector is given by

2 1. V3
Y =3 {uvr + 2uv,s + a® upr) Q:(—E +JT) . (1)
If purely sinusoidal converter output voltage is postulated according to
uy = Uy exp jou YU =WNT 2)

the control signals for the power semiconductor devices can be derived in the
simplest case as shown in Fig.2 by "sampling” of sinusoidal phase modulation
functions
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(cf. Fig.3). The angle py (or time 7) denotes the position of the resulting
converter voltage space vector or the position of the corresponding pulse in-
terval within the fundamental period. There the considerations are limited
to the treatment of the voltage fundamental or to the average value for one
pulse period or for half a pulse period. One full pulse period is used for sym-
metric regular sampling, half a pulse period is used for asymmetric regular
sampling (cf. Ref.[1]). This distinction is not important here, however, due
to the high pulse rate assumed.

This method (known as subkarmonic modulation) leads to relative turn-
on times (related to the pulse period) of the converter bridge legs (which can
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Fig.1: Structure of the power circuit of a three-phase
voltage DC link PWM converter system. For usage as
PWM inverter for AC machine drives the inductances
L and the three phase system uy can be interpreted
as simple equivalent circuit of the AC machine formed
by leakage inductances and machine counter emf. On
the other hand, for mains operation of the PWM con-
verter (PWM rectifier, static VAR compensator) the

inductances have to be connected in series; the volt-
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age system u, is defined by the mains conditions.
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Fig.2: Derivation of the switching times of a converter bridge
leg via intersection of the relevant phase modulation function
with a triangular signal (shown for asymmetric regular sam-
pling).
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Fig.8: Shape of the phase modulation functions for the classical
sinusoidal modulation (denoted by [1] in this paper).
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be replaced by three double-pole switches between positive and negative DC
link voltage bus regarding their electrical function) according to

aplpy) = % [1+ mr(ev)]
as(py) = % {1+ ms(pu)] (5)
az(pu) = 301+ me(eo)] -

Due to the symmetries of the generated voltage system resulting from the
three-phase properties the further considerations can be limited to the inter-
val of the angle

L=z 6
s (6)
By introduction of space vector calculus the relative turn-on times of the

bridge legs given by Eq.(5) can be described as a weighting (with respect to
time)

T 27
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of the voltage space vectors uy 7, Uy, e, Uy,z 30d Uy g, Which are associated to
the switching states of the PWM converter (cf. Fig.4). The indices denote the
converter switching state by the decimal equivalent of the converter switching
status vector interpreted as binary number. Therefore Eqs.(7) define the
transition of a description by phase quantities to a description by space vector
calculus. The modulation method is characterized by the switching state
sequence

T 27

- = 7620
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this sequence in general is denoted as {7620}. The transition between two

subsequent switching states there is always achieved by switching of only one

bridge leg.

In the space vector representation of the converter voltage the two not
voltage forming switching states 0 and 7 cannot be distinguished. Therefore,
for definition of the converter output voltage by space vector calculus only

the entire free-wheeling state period

So+ér=1-(82+6) 9
can be given. The voltage formation of the converter system (related to the
average value for one pulse period Tp) is not influenced by the distribution
of the free-wheeling states within the pulse iriterval. The definition of a par-
ticular distribution of free-wheeling states is really the ultimate basis for the
definition of phase modulation functions (cf. Eq.(7)). The degree of freedom
given thereby can now be applied for the optimization of the modulation
method. The quality functional to be minimized shall be defined as the
squared rms value of the resulting current harmonics:
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Fig.4: Approximation of the reference value of the output volt-
age space vector via neighbouring converter voltage space vec-
tors (due to the 60°~symmetry of the voltage space vectors fol-
lowing for the different converter switching states one can limit
the considerations to the interval of py € [n/3,27/3] shown
here).



Equation (10) is obtained with good approximation for PWM converter sys-
tems with high pulse rate (Ref.[2]). For the deviation of the current space
vector

Aiy =iy —iy (11)

from that of a purely sinusoidal three-phase system

in(r) = Iy expiont +9) 0= pu i, (12)
we have dA: 1
v _ L _
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(cf. Ref.[2]) and
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The minimization of the quality functional I leads to
Aiil,RST,rmn (7') — Min . (15)

There, Ai%,' RST,rms Characterizes a "local” (related to a pulse interval) har-
monic power loss contribution. It can be set equal to the square of a local
harmonic current rms value. It shows the dependency given by

A} rsT rme,1{67(7),66(7), 62(7)} +
4+ Ay rorrme,2{8s(7),62(7)}
on the weighting (with respect) to time of the different converter voltage space

vectors. The optimal phase modulation functions follow (as, e.g., discussed
also in Ref.[3]) as

A RS T rms (T)
(16)
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The corresponding phase modulation functions are shown in Fig.5 (cf. [3]').
For the global (as related to the fundamental period) harmonic current rms
value then we have in general with Eqs.(15), (16) and (10)

1. 8M, 3M? My M;
2 _ Y a2l 1ly_M (] _o%s
AIN,rms.[BJ - GAlan {l Var + 1 [1 M 1 2M1 (19)
with UneT
. zxTp
= 20
Aty oL (20)
(cf. [3] in Fig.6). The maximum modulation region
Me [0 2 ] (21)
v

follows for M3/M; = 1/6 (cf. Ref.[2] and Ref.[4]).

A simple suboptimal approximation (denoted by [2] in this paper) can be
given by distributing the free-wheeling state to equal parts at the beginning
and at the end of each pulse half interval according to

b2 = %(50 +67) = %[1 — (62 + 66)] (22)
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(cf. Ref.[2] and Ref.[5]). For the global harmonic rms value there follows
2
Mec |(0,—| .
o]

()
(23)

e
As already mentioned, for a simple sinusoidal modulation (denoted by [1]) the
distribution of the free-wheeling states is determined directly by the shape

V3

1By brackets here we denote modulation methods (e.g., in Fig.5); references are given
by, e.g., "Ref[1]"
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of the phase modulation functions. It follows as

1 M 2x
brpp == 4+ — Iy,
=g + 2 cos(py + 3 ) (24)
In this case we have for the global harmonic rms value
1 8M 3IM?
Al =-A2M?|1- — + = .
Nyrms 1] = g i M |1 Jor += Me[0,1] (25)

As a limiting case of the distribution of the free-wheeling states as dis-
cussed, also a formation of the switching state sequence according to

b7 = 1—(82+%)
b = 0 (26)
...267 762 267... 762} or [6 27
’tu:O |tu=Tp/2 {(rez}orf6] (1)
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b = 0
bo = 1—(& +b) (28)
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can be considered. There the entire free-wheeling state is concentrated at
the beginning or at the end of a pulse half interval. Due to the then given
not optimal "distribution” there result higher harmonic losses of the system,
however. The analysis of the associated phase modulation functions (cf. [6]
and [7] in Fig.5) shows, however, that then the output voltage system is
formed by pulsing of only two bridge legs, whereas the third phase remains
"clamped” to one of the two DC link voltage bus bars ("discontinuous mod-
ulation”). Accordingly the conclusion is obvious that an increase of the pulse
frequency by a factor ky = 3/2 leads to equal switching losses and equal
thermal stress to the power semiconductor devices as compared to the case
of "continuous modulation” (modulation function without discontinuities, or,
equivalent, pulsing of always all bridge legs as used for methods [1], [2], [3]).
A closer investigation shows, however, that the possible frequency increase is
determined essentially by the phase relationship between output current fun-
damental and output voltage fundamental. This aspect is treated in section
3 in detail. The harmonic losses resulting for the modulation methods given
by Eqs.(26) and (28) (or Eqs.(27) and (29), respectively) follow as

R

Vi
Me [o, \%] . (30)

They are shown in Fig.6 (cf. [6] and [7]) for kye)(7) = 3/2. The possible
frequency increase therefore leads to a significant harmonic power loss reduc-
tion in the upper modulation region, also if compared to optimal continuous
modulation.
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For a combination (denoted by [4]) of the switching state sequences (given
by Eqgs.(27) and (29)) according to

{762} for  wve [g—“, 72_r]
T 27 1)
{620} for vy € [7, ~3~]
there follows
1 1 M 9M? V3
AL g = SAEM 14— —— (62-15V3) + — |24 —
Norms 4] = g B [ V3r ( ) 8 ™
Me l:O i} (32)
V3
(cf. [4] in Figs.5, 6).
An alternative combination (denoted by [5])
{620}  for  yue[}3] )
33
T 27
{762} for py € [7, T]

leads to
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Fig.5:Nlustration of the modulation methods discussed in this
paper via representation by the corresponding phase modula-
tion functions ((2], (3]: continuous modulation; [4], (5], [6], [7]:
discontinuous modulation).
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Fig.6: Comparison of the normalized harmonic power losses of
one phase for various modulation methods (discussed in section
1); [1]: Sinusoidal modulation (Eq.(25)); [2}: Suboptimal space
vector modulation (Eq.(23)); [3]: Local and global optimal si-
nusoidal modulation with added third harmonic (Ms = M; /4,
Eq.(19); [4],(5])(6],[7]: Discontinuous modulation (cf. Eqgs.(30,
32, 34)); ksl sl o) in = 3/2-
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(cf. [5] in Figs.5, 6). Equation (31) in this way defines based on a possible

frequency increase k; = 3/2 the harmonic-optimal discontinuous modulation
method (cf. [4], [5], [6], [7] in Fig.6, see also Ref.{2]).

Finally we want to point out that all the modulation functions discussed
here can be derived by extension of a simple sinusoidal modulation according
to

(34)

mr = mph+mp
ms = my+mg
mr = mp+m
1
my = 5(mg+m5+mq-) . (35)

The zero quantity mpo is not projected into the corresponding space vector
when the voltage system is transformed (the zero voltage is decoupled); mq
only influences the distribution of the free-wheeling states and therefore the
resulting harmonic losses.

2 Calculation of the Conduction Losses of the
Power Semiconductor Devices

The relative conduction periods of the power electronic devices of the bridge
legs within a pulse half period are defined (as mentioned in the introduction)
according to

O‘R(‘PU)
1-ag(ev)

QTZ(WU)
api(ev)

with gy = wyT (36)

(given for phase R and limited to the positive current half period; cf. Fig.7)
directly by the shape of the phase modulation functions. If one approximates
the forward characteristic of the valves by

upri,pi = Upr,D + TAT.D i Di » (37)

there follows for the mean value of the conduction losses within one pulse
half period ("local” conduction losses, i.e. "local” with respect to time)

PET2(T) = UrT iT2.a0g(T) + TET 2 rme (T)
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Fig.T:Division of the output current flowing into controlled and
uncontrolled semiconductor devices of a PWM converter bridge
leg.

The integration of these local conduction losses for the positive (or nega-
tive) half cycle of the output current

. x/3-p
wn i
Ppry = Urr Tay J=xl2=¢ ag(r)ir(r)dr o +
wN
xf2-¢
1 wN 9
+ rRT i‘; rf2eyp ap(t)iz (r)dr (40)
Wy
finally leads to
Uprly [1 M L1 M
Prry = TN {; + o cos qo] +rerly [E + 3508 w] (41)

for the global (i.e., related to the fundamental period) conduction loss. There
simple sinusoidal modulation

ag(r) = %[1 + M coswyT] (42)

is assumed. Integration for the output current half cycle therefore means
integration of a quantity arz(7) (or api(r)) which is weighted by the instan-
taneous current value (and dependent on the position ¢y of the converter
voltage space vector) within an interval which is dependent on the phase
angle between the fundamentals of the converter output phase voltage and
current. For the conduction losses of the diode which conducts current for
positive output current there follows then (cf. also Refs.[6,7,8])

UFJ)fN [1

Ppp1=

2 T 4 8 3

- Ecosw} +rppl% [1 _M coszp] . (43)

The purely sinusoidal output current shape being assumed by Eq.(39)
limits together with Eq.(38) the validity of Eq.(41) or Eq.(43), respectively,
to a region of high pulse numbers pz (ratio of the pulse frequency to the out-
put frequency). It can be used, however, (as a comparison with the results
of a digital simulation shows) in practice already for pz > 21 with sufficient
accuracy for the thermal dimensioning of the valves. One has to mention
in general that dimensioning on the basis of global power losses (i.e., aver-
aged over the fundamental period) assumes sufficient (i.e., sufficient for the
time of averaging applied, i.e., for the fundamental period) thermal inertia
of the power semiconductors. This assumption is sufficiently well fulfilled
for pulse rectifier systems for high power (the averaging time is given by the
mains fundamental period). For converters used in drives the validity of the
relationships derived in this paper is limited to the higher frequency or mod-
ulation region. (There, approximately frequency-proportional change of the
output voltage amplitude is usually given.) For low out output frequencies,
local power losses have to be considered for dimensioning.

If the simple sinusoidal modulation is extended by addition of a third
harmonic Refs.(2, 3, 4] (see [3] in Fig.5 (Eq.(17) in section 1)) among other
properties also the relative conduction intervals of the valves are influenced
{cf. Eq.(38)). E.g., there follows for transistor T2

1 M, M.
arafev) = 5 + —2—1 cospy — 73 cos3py - (44)

This means that in any case a corresponding change of the conduction
losses can be expected. The evaluation of Eq.(40) under consideration of
Eqs.(39) and (44) leads to

_Ueziv 1 M, N1, M M,
Ppry = 2 - + 7 Os¢ +rerly 3 + 3, COsP — Tpcos 3¢
(45)
and
Urpin [1 M, o1 M M
= I |- - — . 2 3
Pp'm 2 n cos| + rp'DIN 3 Ir cosp + T5n cos 3¢

(16)
(M3 = 0.25M, for optimized PWM (cf. section 1)). The part of the loss
which is dependent on the constant conduction voltage representation there-
fore is not influenced by the modulation method modification (cf. Eqs.(41)
and (43)); the part linked to the conduction resistance is influenced only
marginally. As can be considered, e.g., graphically in a simple way (cf. Fig.8),
we can write

n/COS[(Z’c + Dyvlcoslpy + ¢ldpy =0 k=1,2,... . (47)

Therefore in general for a change of the simple sinusoidal modulation method
by odd order harmonics or, in general, by a zero quantity mo defined by
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Fig.8:For derivation of Eq.(47).

Eq.(35) (see modulation methods (2], (3], [4], [5], [6] and (7] in Fig.5) the
conduction losses linked to the not cunent dependent part of the conduction
voltage are not influenced. This means that the calculation can be restricted
to the second loss part; as a closer investigation of the modulation methods
described in section 1 shows, this power loss contribution can always be ap-
proximated with an accurracy which is sufficient for dimensioning purposes
via the expression resulting for sinusoidal modulation. The thermal dimen-
sioning of the power electronic devices regarding global conduction losses
therefore is only marginally influenced by the shape of the modulation func-
tion.

|
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3 Calculation of the Switching Losses

For the calculation of the switching losses related to the modulation meth-
ods considered one assumes (according to the measurement results of, e.g.,
Refs.[8, 9, 10, 11]) a linear dependency of the switching energy loss (appearing
for one switching cycle of a bridge leg) on the switched current

wP,T{iT(ri)} = kx,T h'(wNT) N (48)

For the definition of a local switching loss (related to a position of a pulse
interval) one can write

ppr =wprfp (49)
when a high pulse number is implied.
Averaging
1 +x/2~¢
Ppgg = 2—/ prra(vv)d(ey) (50)
T Jox/2-9

of this switching loss appearing within the positive (or negative) output cur-
rent half period leads for ”continous” modulation (e.g., sinusoidal modulation
{1] or [2] or [3] in Fig.5, respectively) to a global switching loss of a transistor-
diode-pair of a‘bridge leg (e.g., T; and D, in Fig.7)

kn-n

Prrap1 = Infp (s1)
with

(52)

The shape of the modulation function basically influences the switching
losses only if the various bridge legs are not pulsed within the entire funda-
mental period with pulse frequency (”discontinuous” modulation, modulation
methods [4], [5], {6] and {7] in Fig.5). As Figs.9, 10 show then there has to
be decided among different cases in dependency on the phase relationship
between the fundamentals of the output phase voltage and current. For the
switching losses there follows

kyrp =kyr+kip .

Ink
Praapy = NEuzpfei [1- &5 cosy] pel0, Bl
_ INk1TDfP[] [smg-{-cosg] pel5, )
- INkL,T%DfP [4] [1 _ (J;— )simp] pe [13[' %]
(53)
Ink
Prmip = DRI feorg)  pelf) g
Inki7,0 fp[5 3sing €[, 2]
£ 2 vEi3 3

SRY4]

fycosioy- @l
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Fig.9:For derivation of the switching loss depen-
dency on the phase shift between output volt-
age and output current for modulation method
[5] (mg,;s): phase modulation function (given for
phase R); spye: switching frequency status of
the bridge leg (sp[s) = 1 for switching bridge
leg, sps) = O for intervals when bridge leg is
clamped); lower curves: distinction of different
cases for the phase angle regions of the output
current).
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(values for the other phase angle regions follow via symmetry considerations
(cf. Figs.9,10 and 11)). Dependent on the phase angle of the output cur-
rent and on the modulation method used ([4] or [5]) this makes possible (cf.
Fig.11) an increase of the "local”? pulse frequency (fp, 14 ot fps), respec-
tively) by a factor of

_ frys _ 1 i
krw =g = '———[] BT (p] vel0 g
= 2 T
= [sing +cos ] v€lg 3l (55)
1 T T
1 pe[E, T
[~ G any] (3.3
_fris 1 T
R N (e =) pelos] (56)
- 2 T
= ve(5 3]

V3singp
There equal global switching loss is assumed as for the case of the simple si-
nusoidal modulation for which we have equality of "local” and "global” pulse
frequency fp. The shift between the periods where no pulsing of a bridge
leg takes place and the associated current fundamental has essential influ-
ence on the possible frequency increase. This is true because the calculation
of the switching losses (cf. Eqs.(49), (50)) is performed by weighting the
instantaneous output current value by the local pulse frequency. If a con-
verter phase is clamped to a bus bar voltage within 7/3 wide intervals (e.g.,

20 :
(5]
1
P! .~
15 — \
| -
wl TN —
- S
111,12),13) ‘ Jl
1.0 et : {
m b1e b I
0 i 3 3 2
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Fig.10:For derivation of the switching loss de-
pendency on the phase shift between output volt-
age and output current for modulation method
[4] (mR,;q: phase modulation function (given for
phase R); SR4 switching frequency status of
the bridge leg (srq = 1 for switching bridge
leg, spq = O for intervals when bridge leg is
clamped); lower curves: distinction of different
cases for the phase angle regions of the output
current).

cf. Eqs.(31), (33) or [4], (5] in Fig.5, respectively) then k; shows a signifi-
cant dependency on the phase shift of the output current. If the clamping
interval of a phase (i.e., there appear no local switching losses) lies symmet-
rically to the current maximum (¢ = 0), as this is the case for modulation
method [5], the local switching frequency can be increased by a factor 2 as
compared to continuous modulation. The frequency increase of k; = 1.5
which could be concluded from a superficial consideration of the problem
(independent of the current phase angle, see section 1) therefore does not
represent the maximum achievable value. However, there appear phase angle
regions, where the clamping states will be located in the neighborhood of the
current zero crossings (¢ = m/2). Then the switching of of the bridge legs
occurs at high current levels (near or at the current maximum). The possible
frequency increase in this case will be given by ks < 1.5. If the clamping
states are distributed more evenly over the fundamental period, there results
- as immediately clear from the previous considerations - a less pronounced
dependency of the frequency increase on the current phase shift (cf. (4] Fig.5,
or Fig.11, respectively).

A closer discussion of the discontinuous modulation methods [6] and [7]
(cf. Fig.5) defined in section 1 by Eqs.(26) and (28) can be omitted here be-
cause the frequency increase which becomes possible when these methods are
applied can be derived directly from the relationships calculated for modula-
tion method [5]. This becomes immediately clear by comparing [5], [6] and
[7] in Fig.5. We have

ks 16)(%) = fes)(e — %) (57)

or

krin(0) = Frgs(e+ ) - (58)

Fig.11:Possible frequency increase kyy; of the modulation
methods [4] and [5] in comparison to “continuous” modula-
tion methods (e.g., simple sinusoidal modulation [1]) for equal
switching losses (as side condition for giving equal bases for com-
parison purposes).

3The local pulse frequency fp,(s) in this section is given by either fp = 0 for the
clamping intervals or by fp = fp[;) =constant for the other time intcrvals of the
fundamental period. For further methods concerning the "modulation” of the pulse
frequency see section 4
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According to the application area of the PWM converter sysiem (phase
angle region) the calculations performed give & criterion for selecting the
modulation method to be applied. For the application to AC motor drives,
¢.g., modulation method [4] would be more advantageous than [5]. The reason
is that then according to Eq.(32) and Eq.(34) in the whole modulation region
for a phase angle region from 40° to 120° (or —40° to —120°) the harmonic
losses of [4] are below the harmonic losses of [5].

4 Optimal Modulation of the PWM Conver-
ter Frequency

The optimization of the continuous modulation can be reduced (as described
in section 1) to a minimization of the local harmonic current rms value (cf.

Ea.(15))

-2 —_ °2 2
AlN,RST,f‘mA - A1N,RS1"w:u,1 + AzN,RST,rm:,Z (59)

48
N 3‘67{5255(52 —86) — 2626 [1 — (67 + b6 + 62)] }

2
ALy RSTrme1

1, 16
ﬁm},' RST rmes2 ?{6636 + 2626 — 465 — 465 — 462626 — 466626 —
S

—  86,86626 + 2626% — 6366 + 36366 — 6%62} (60)
with
626 = 83 + 8266 + 62 (61)
and
M . T
b6 = sin ((pu + ‘3-)
V3M . T
b = 2 sin (zpu - E) . (62)

For the sake of simplicity in the following we only want to refer to the sub-
optimal solution (cf. Eq.(22) or (2] in Fig.5, respectively)
1

67’[2] = 5[1 - (62 + 65)] . (63)
The dependency of the optimized local harmonic current rms value on the
modulation depth and phase ¢y of the converter voltage space vector is
shown in Fig.12. The characteristic shape of the global harmonic losses is
given in Fig.6 (cf. [2]). Figure 12 shows a pronounced maximum in the
upper modulation region in the vicinity of py = 7/2. Therefore one has to
raise the question whether or how for a given modulation depth M the shape

, 2
224N gstems, (21
n

020
015
0%

0,05

o

of the harmonic power losses can be smoothened and thereby possibly the
global harmonic power losses further reduced. The only remaining degree
of freedom of the modulation method there is given by the variation of the
pulse frequency which has been assumed constant (independently of ¢y) so
far. Accordingly the pulse frequency is to be increased in the region py ~ 7 /2
and can be decreased in the regions py ~ 7/3 and 27/3.

The optimization of the pulse frequency shape fpra(pu) is expressed
by a quality functional which has to be minimized

2%
3

J

The associated side condition is given by keeping the switching losses constant
as they result for constant pulse frequency fp, according to

=
AR

1

I —— e
k;,:uu(‘f’uy M, p)

A rsTrmas(w, M) dpy — Min . (64)

1t

2x _§_¢

kfy

L (65)

ky kprmlpu, M,¢) fp inr(eu, ) dov = fp

This means equal thermal stress on the power semiconductor devices. Ac-
cording to Eq.(65) the phase shift between converter output current and
converter voltage again influences the determination of the switching losses,
as already discussed in section 3. (The discontinuous modulation discussed
there basically represents a special case of the general frequency modulation
treated here). Therefore the optimization has to be performed for each phase
angle ¢ and for each modulation depth M. The side condition (Eq.(65)) can
be also written as

f, " kreaclou, M, ) Llew, o) dpu =2 (66)

with
(pu, @) = |cos(pu + @) + | cos(py + 9 — g)l +{cos(ev + o + g)l‘- (67)

The weighting function ¢ characterizing the influence of the sinusoidal current
phase shift is shown in Fig.13.

In general the optimization problem treated here represents a problem
of variational calculus: one has to calculate the shape of the relative (local)
pulse frequency (the extremal)

1
krm = }.;fp,pu = kyru(ou, M, ) (68)

(for given M and ¢) which minimizes the global harmonic power losses

2—Tr T T 1' l‘ T 'l 1 T T 7 T T T T T\l \
3
2,82 \ '\\(
FooE2 INRST,rms,[2] 0,05
Py r
r 0
I t Q
2 =}
I U (1 t
3

Fig.12:Dependency of the normalized local harmonic power losses Ai%y ps7,ems of the PWM converter system on
the position pu of the converter voltage space vector and on the modulation depth M for suboptimal modulation {2]

(Eqs.(22), (61) and (62) has to be applied to Eq.(59)).
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AI},,"M(M ,) where the side condition of constant switching losses is ful-

filled. As a necessary condition for obtaining the extremal one can give

2]
ks pum

1 1
wu, M, p) A
+ Aksrmpu, M,¢) {(ev,9) } =0

{ k5 par( Aty ps7 ems (00, M) +

(69)

according to the Euler-Lagrange differential equation of variational calcu-
lus. The side condition given as integral is linked to the calculation by the
Lagrange multiplier A. (As known, this parameter is finally determined by in-
serting of the extremal into the side condition (cf. Ref.[12]).) For the optimal
frequency modulation there follows

1 .
2 Y ttoure) AikRsTem (00, M)

kyrm(pu, M,0) = (70)

I
3 .
/;r {/C’(‘PU:‘P) AiY s ems(9U, M) dey
3

(cf. Figs.14 and 15). The necessary frequency sweep of the modulation is
increased with increasing modulation depth and shows essentially a shape as
already expected in the previous discussion. For a practical realization this
frequency shape (in first approximation independent of the phase shift )
can be approximated, e.g., by a simple sinusoidal or triangular modulation

M=z075 /il
. ';é:”‘ 0 >
- A \\‘;:éigs“:\‘\\“‘
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|
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Fig.13:Weighting factor ¢ of the normalized local pulse fre-
quency ky par for calculating the converter switching losses in
dependency on the phase angle ¢ and on the angle pu (cf.
Eq.(67)). Due to the symmetries of a purely sinusoidal bal-
anced three-phase system the considerations can be limited to
the interval ¢ € [0,7/3].

which is only dependent on M. The global harmonic power losses resulting
for optimal frequency modulation are given in Fig.16. One has to point out
especially the dependency on ; there is obtained no essential improvement of
the modulation method [2] (constant pulse frequency), however. (Modulation
method [2] is treated here as representative case; the other methods should
show an equivalent result. This will be treated in more detail in a future
paper.)

If one considers (besides the resulting harmonic power losses) also the
resulting noise of, e.g., an electric motor supplied by the converter, then
the frequency modulation shows significant advantages as compared to a
modulation method with constant pulse frequency. This results from the
fact that the harmonics (which are concentrated in the immediate vicinity of
multiples of the switching frequency for constant pulse frequency) are now
distributed in frequency bands of the width

B~ 2fp(ksrm—1). (71)
Due to the equal spectral power (as known, the spectral power is not influ-
enced by frequency modulation) their amplitudes are decreased accordingly.
There the envelope of these spectral components for a large frequency sweep
is defined by the shape of the modulating signal. There follows, e.g., for trian-
gular modulation an almost constant amplitude for the spectral components
in the frequency regions defined by Eq.(71).
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Fig.14:Dependency of the optimal normalized frequency ky pagz of the pulse frequency modulation on the position

@u € [7/3,27/3] of the converter voltage space vector and on the phase shift ¢ (referred to oy ) of the converter output

current; M = 0.75 (cf. Eq.(70)).
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Fig.15:Dependency of the optimal normalized frequency ksra of the pulse frequency modulation on the position
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Fig.16:Comparison of the normalized global harmonic losses
of one phase for constant (denoted by [2];) and modulated (de-
noted by [2]1r) converter pulse frequency. The comparison is
made for equal switching losses in both cases to give a common
basis for the comparison. (Parameter of the family of curves:
phase angle ¢ of the output current).

The resulting noise of the AC motor supplied by a PWM converter there-
fore is distributed in a wider frequency band as compared to modulation
methods with constant pulse frequency. There do not appear pronounced
audible frequencies with multiples of the pulse frequency. A detailed investi-
gation of this problem area will be the topic of a paper being in preparation.

5 Conclusions

The main topic of this paper is the determination of those power loss compo-
nents of a PWM converter system which can be (besides the harmonic losses)
influenced by the modulation method selected. Those power loss components
are usually neglected in pulse pattern optimization methods known from the
literature because the optimization is performed with the side condition of
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a given average (global) switching frequency, but not with the essential side
condition of defined global switching losses.

If the assumption of sufficient thermal inertia of the power semiconductor
devices is not fulfilled anymore (meaning low output frequencies) one has
to include a dynamic thermal model (transient thermal resistance) for the
power electronic devices for considering the device behavior with respect to
the switching and conduction losses within the fundamental period. A pulse
pattern optimization then would be thinkable, e.g., with the side condition
of a maximum allowable chip temperature.

For the optimization of the stationary behavior of an AC motor drive
system (which is the final goal of a pulse pattern optimization) one in general
should check if a detailed modelling limited only to the motor is sufficient.
One has to consider rather also the loss contributions mentioned in this paper
and therefore especially the converter losses. It would be not advisable to
optimize a few percent of harmonic motor power losses (which are small for
high pulse frequencies in any case) if one would not consider the possibly
(much) higher influences on the losses of the converter due to the nonideality
of the power electronic devices.
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