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Abstract 

A given converter voltage space vector can be realised by a three-phase PWM 
converter system by switching only two bridge legs. There, the third phase 
is clamped to the positive or negative DC link voltage. This method is called 
discontinuous modulation due to the discontinuous shape of the generating 
phase modulation functions. (On the contrary, continuous modulation is 
given in the case where all bridge legs are switched. The phase modulation 
functions are continuous in this case.) As a closer analysis shows, the dis- 
continuous method allows to increase the effective system pulse frequency, 
dependent on the phase angle between converter output voltage and output 
current. There, the basis for a comparison with the continuous method is 
chosen as equal average switching losses of any converter bridge leg. There- 
fore, there result operating regions where the quality index (defined by the 
harmonic losses) for discontinuous modulation is significantly beneath the 
index for continuous modulation. 

For harmonic-optimal operation therefore one has to change between con- 
tinuous and discontinuous modulation (or between various variants of the 
discontinuous modulation) in dependency on the load status. The harmonic 
losses of the control methods are calculated directly in the time domain. For 
this purpose, the space vector calculus is applied and approximations are 
used which are sufficiently exact for PWM converter systems with high pulse 
frequency. 

Besides the determination of the exact limits of the operating regions of 
the various modulation methods the paper also discusses suboptimal approx- 
imations of these limits for the application of the system as PWM rectifier, 
static Var compensator or machine converter. 

According to the duality relationships between DC voltage link and DC 
current link PWM converters all control (modulation) methods described 
here can be directly tranferred to the DC current link converter. 

Keywords: Three-phase DC Voltage Link Inverter/Rectifier System, Space 
Vector Calculus, Current Harmonics RMS Value, Pulse Pattern Optimisa- 
tion, Continuous Modulation, Discontinuous Modulation. 

1 Introduction 

In the following the mathematical formulation of the voltage generation and 
of the the harmonic losses is described. Also, a summary of the optimization 
of the continuous modulation and the basics of the discontinuous modulation 
are given. Then a detailed analysis of the methods for controlling a three- 
phase PWM converter system with DC voltage link (cf. Fig.1) based on 
discontinuous modulation is presented (cf. also Ref.[l], Ref.[2], Ref.[3]). 

There, exclusively the converter operation without overmodulation is con- 
sidered. Furthermore, pulse frequencies are assumed which are sufficiently 
higher than that of the output voltage fundamental. This allows analytically 
closed calculations and therefore results in simple mathematical expressions 
for the characteristic quantities of the modulation methods. 

2 Space Vector Calculus and Voltage Gener- 
ation 

Due to the floating mains/load neutral point the representation of the con- 
verter voltage system can be given via the related space vector 

There, the phase voltages UU,R,  UU,S and U ~ , T  shall be referenced to the 
center point of the DC link voltage. The zero-quantity 

(2) 
1 

210 = Z(UU,R + u U , S  + W , T )  

(which is decoupled due to the space vector transformation) characterizes a 
voltage contribution which a t  a given time appears equally in all converter 
phase voltages. This contribution defines the voltage between mains/load 

Fig.1: Structure of the power circuit of a three-phase 
voltage DC link PWM converter system. For usage 
IYI PWM inverter for AC machine drives the induc- 
tances L and the three phase system gN can be inter- 
preted as simple equivalent circuit of the AC machine 
formed by leakage inductances and machine counter 
emf. On the other hand, for mains operation of the 
PWM conserter (PWM rectifier, static Var compen- 
sator) the inductances have to be connected in series; 
the voltage system gN is defined by the mains condi- 
tions. 
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neutral point and DC link voltage center point for the case of a mains/load 
voltage system without zero quantities. Furthermore, this contribution does 
not influence the generation of the output currents. 

According to Eg.(l) the sinusoidal converter voltage system to be gener- 
ated is described by 

= fi&exp j(pu 9u = W N T  . ( 3 )  

For the definition of the modulation depth we have 

For the further considerations we can assume that the converter bridge legs 
are replaced by two-pole switches between positive and negative DC link 
voltage bus. If we relate a two-level switching function to each bridge leg 
according to 

1 
UU,R = +ZUZK s P , R  = 1 

we can denote each of the 8 possible converter switching states by a binary 
number ( S P , R , S P , S , S P , T ) ~  (which is formed based on the instantaneous values 
of the switching functions) or by its decimal equivalent. 

Due to the 6O0-symmetry of the converter voltage space vectors resulting 
for the various converter switching states (except the freewheeling states 
(000), (111) ) the considerations in the following are limited to the angle 
interval 90 E [2, $1. As Fig.2 shows, in the angle interval considered, a 
particular output voltage space vector &j is formed regarding its time average 
over a pulse half-period fTp by a switching state sequence 

a 2a 
V u E [ 3 , 5 ]  . . . 0 2 6 7 I t  ,- - 0 7 6 2 0  It, = = 0 2 6 7  ... . (6) 

For defining the switching states we have here, accordingly to the previously 
made remarks, 

(7) 

The switching state sequence is selected regarding minimal switching f r o  
quency such that switching of only one bridge leg leads to the following con- 
verter voltage space vector. This explains the order of the switching states 
in alternating increasing and decreasing sequence (cf. Eq.(6)). The variable 
t,  denotes a local (microscopic) time within the pulse periods. The position 
of the pulse interval within the fundamental period is defined by the angle 
9u or by the global (macroscopic) time T .  For the (relative) duration of the 
switching states related to one pulse half-period there follows 

60 + 67 = 1 - (62 + as) . (9) 

3 Space Vector of the Output Current Har- 
monics 

The calculation of the output current harmonics 

A& = i N  - & (10) 

existing due to the way of generating a given output voltage space vector I& 
(which is only possible in the average over a pulse period) can now be per- 
formed directly in the time domain. There, a sufficiently high pulse number 
pz = T N / T p  = f p /  f N  is assumed (TN..  .fundamental period, Tp. .  . pulse 
period, f N  and f p  are the related frequencies). The ideally to be generated 
output current space vector shall be given by 

&(TI = i;Y exp j ( u N T  + (p) 9 = 9G.c . (11) 

For a harmonic-free mains voltage system the output current harmonics 
are defined directly based on the integral of the local deviation between the 
reference value and the actually generated converter voltage. For approxima- 
tion of the circular trajectory of the output current fundamental space vector 
by the local tangent in the instant T (macroscopic position of the considered 
pulse interval) the space vector AiN of the current harmonics describes a 
trajectory within a pulse half-period as shown in Fig.3, starting and ending 
in the origin of the coordinate system. 

The ratio of the sides of the triangle giving the current deviations are 
determined like the relative switching state time intervals (cf. &s.(8), (9)) 
directly by modulation depth M and phase angle (pu of the converter voltage 
space vector to be generated. However, there is nothing said about the split of 
the freewheeling state between beginning and end of each pulse half-interval. 
This represents a parameter for optimizing the modulation method regarding 
the harmonics. 

4 Harmonic-Optimal Continuous Modulation 

If one chooses the rms value of the current harmonics as quality factor (to be 
minimized by an optimal converter control) according to 

I 
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(approximation for high pulse number), one can include the considerations 
made in section 3 directly into the Optimization procedure. A minimisation 
of the phasorelated global harmonic losses has to be performed according to 
Eg.(12) by minimising the (always positive) power loss contributions of the 
single pulse intervals. Then the optimization can be performed separately for 
each pulse interval based on a quality factor 

I' = Ai$,RsT,r,,,,(~) + Min . (13) 

Fig.2: Basically there can be generated only such output volt- 
age space vectors & which lie within the equilateral triangle 
formed by the converter voltage space vectors *J and 
The margin in direction to overmodulation therefore is given 
(if the generation of a sinusoidal output voltage system is re- 
quired) by M = -& (aa shown); parameters of &: M = 0.75, 
1pv = 75O. 
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Fig.% Trajectory of the harmonic current8 apace vector A&, within a pulse half-period; right side: microscopic time behavior 
of the related normaliied converter voltages (pulse pattern). The non-voltageforming free-wheeling state is realized alternating 
by the switching states (OOO) and (111); according to continuous modulation it is split up between beginning and end of each 
puhe half-period; parametern: M = 0.76, (PV = 76'. 

(which can be defined aa local harmonic current rms value). In Eq.(13) the 
sum of the phase contributions is denoted by RST. Equation (13) is directly 
related to the trajectory of the harmonic currents space vector AiN by 

Comparison with concepts from mechanics shall illustrate the considera- 
tions made here: Equation (14) has a similarity to the definition of a 2'd order 
moment of inertia of a mass distribution (in this we there is the analogy 
to the harmonic current space vector trajectory which is considered having 
mass) related to an  axis leading through the "bearing point" of the harmonic 
cnrrent triangle. (The "bearing point" I (see Fig.3) lies in the origin.) 

Then the optimisation problem is clearly analogous to the problem to 
shift the harmonic triangle by appropriate distribution of the freewheeling 
states 0, 7 such that a minimiration of the "moment of inertia" is achieved. 
In the course of the actual calculation we have to consider, however, a time- 
weighting (67, 66, 62,60) of the single trajectory segments. This goes beyond 
the analogy described. 

For the local harmonic current rms value we receive after an involved 

with 

The optimiration of the harmonic current losses of the modulation method 
(cf. Eq.(12)) therefore is reduced to the solution of a simple extremal value 
problem 

The freewheeling state interval 67 received leads under consideration of 
%.(E) and %.(9) or 

(20) 
67- 67 

60 
- 

1 - (67 + 66 + 62)  

directly to the optimal distribution of the freewheeling states. 

the optimkation calculus 
In thia paper we only want to diacum briefly the suboptimal solution of 

which in the following will be used as characteristic example of continuous 
modulation.' 

The modulation method corresponding to Eq.(21) (as also given in Ref.[4], 
where i t  is called optimal, however) shows advantages regarding its practical 
realisation. This is due to the freewheeling state distribution which is i n d e  
pendent of 'pu and shows equal parts a t  the beginning and at the end of each 
pulse half-interval. As compared to the optimal solutions (cf. Refs.[2],[5]) 
there result only marginally higher harmonic losses. Furthermore, the volt- 
age region up to the theoretical overmodulation limit (M = $) can be used, 
as opposed to the optimal solution (M 5 0.972%). 

Further methods (known from the literature, cf. Refs.[6],[7]) which are 
based on the extension of simple sinusoidal modulation by addition of phase 
voltage harmonics of the order 3N show no substantial differences regarding 
the modulation limit (limit to overmodulation) and regarding the harmonics 
conditions. Therefore, a more detailed discussion shall be omitted here; the 
reader shall be referred to Ref.[S]. 

For the global harmonic losses (as used later for a comparison of various 
modulation methods) of the modulation method defined by Eq.(21) and d e  
noted as [2]* in the following, there follows under consideration of Eqs.(l2), 
( W ,  (161, (171, (18) and (21) 

In general, the denomination of the modulation methods in this paper is 
based on other papers of the authors in the area "Harmonics Optimiration of 
Modulation Methods of Three-phase PWM Converters" (cf. Rek.[l], (21, (31, 
[SI). Therefore the denomination is purposely not in the sequence as treated 
in this paper in order to make comparisons with earlier papers easier. 

5 Discontinuous Modulation 

If (contrary to the previously analysed (sub)optimal freewheeling state die 
tribution) the whole freewheeling interval is shifted according to 

* 2* 
VU E [?,TI ... 2 67It  - o7 62It  - %2 6 7 . . .  

c -  ) r -  2 

'Continuous modulation .hd be given when according to a switching sequence 

within each pulse hdf-period d converter bridge legs M switched. The control Sign& 
then can be thought to be derived from continuous phase modulation functions. Therefore 
there occur always both free-wheeling states (000) and (111) of the converter system (cf. 
Fig.3, left hand side; beginning and end of the puLe half-period) in the switching sequence. 

'Brackets denote modulation methoda in this paper; references m e  marked, e.g., M 
Ref. [2] . 
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to the beginning (in the following denoted as modulation method [SI) or, 
according to 

to the end (modulation method [7]) of the pulse half-period considered (t,, E 
[0, &I), we receive increased current harmonics and harmonic losses as com- 
pared to the optimal solution. (This can be explained dearly again by using 
the then higher "moment of inertia" of the harmonic current triangle (the 
"bearing" is in either of the corner points; see Figs.4 and 5, cf. also Fig.3). 

An analysis of the switching state sequences given by Eqs.(24), (25) shows 
that the vdtage generation in this case is performed by switching only two 
bridge legs where the third phase is "damped" to the positive or negative 
DC link vdtage bus (cf. Fig.4 - damping of phase S to +:UZK and Fig.5 - 
clamping of phase T to -~UZK). 

Therefore, the line-to-line vdtages are generated directly. This is opposed 
to the case of continuous modulation (switching of bridge legs) which is 
based on phase voltages related to the DC link voltage center point. Consid- 
ering the cyclic change of the damping states between the phases (symmetry 
of the generated threephase system), as a result each bridge leg is not pulsed 
within a third of the output voltage fundamental. If we assume equal average 
switchinglosses as for continuous modulation, this makes possible an increase 
of the (effective) system pulse frequency (cf. section 6) defined by a factor 

( f p .  . . pulse frequency for continuous modulation). This results accordingly 
in a reduction of the initially increased local harmonic loss contributions 
(which are caused by the shift of the frecwheelingstates). (A pulstfrequency- 
proportional reduction of the linear dimensions of the current harmonics tri- 
angle results.) This motivates a closer analysis of discontinuous modulation 
methods3 and a comparison with continuous modulation. 

Basically, a comparison of different modulation methods can be made on 
the basis of local and of global parameters. A local comparison (of each 
pulse period) is related to the concept of the local harmonic loss contribution 
(cf. Eq.114)) as introduced for optimizing the continuous modulation. For a 
comparmm related to the fundamental we have to apply the (global) current 
harmonics rms value (cf. Eq412)). 

At this location (cf. Fig.6) we want to add the dependency of the normal- 
ised local harmonic losses Ai~,,,,,,,,[21 on the modulation index and on the 

'Ifrithineachpdse hdl-period only two bri+leg.arc switched (i.e., thcfm-rhcdins 
state is not split up between be- and end of the pulse half-period), this CMC 

be c d e d  dircontinuour modulation in the followins. The reason is that in thi. CMC the 
modulation signal. of the bri+ l e g  can be au-cd to he derived f" an intmcctim 
of a triangular carrier signd (with p& frcqumcy) with discmtimous phase modulatim 
tuIlctiolu (ef. ~crs.[i], [a]). 

Fig.4: Trajectory of the space vector A&, of the current harmonica for a switching sequence according to Eq.(24) (modulation 
method [SI). There are conditions shown for the case of a pulse frequency equal as for continuous modulation and for the C M ~  

of a pulse frequency increased by a factor of kt,(sl = i; right side: microscopic time behavior of the related normalised converter 
phase voltages (for k ~ , p ]  = !); parameter: M = 0.75. rpv = 75'. 

Fig.6: As Fig.4, but modulation method (7) (according to Eq.(25). 
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Fig.6: Dependency of the normalised harmonic louts Ai&,Rm,-,,[21 on the modulation index M and on the phase rpv of the converter 
voltage apace vector I?; for modulation method [a] (continuow modnlation). 

position of the pulse interval for the (sub)otimal continuous modulation 
PI (cf. Eqs.(8), ( W ,  (161, (17) and (21)). 

For characterising the local harmonic power 1- contributions of the (db 
continuous) modulation methods [6] and [7] there follow Figs.7 and 8 after 
introducing the defining equations 

* 2* 
CPU E [i, 31 60,[6] = 0 67,[6] = 1 - (62 + 66) (27) 

and * 2* 
CPU E [it 51 6 7 ~ q  = 0 6 0 ~ q  = 1 - (62 + 66) (28) 

and considering Eqs.(8), (15), (16), (17). Due to the there not yet consid- 
ered possibility of increasing the pnlse frequency (as mentioned before, factor 
kf,fi]) the local harmonic losses (cf. Figs.7 and 8)  lie always above the a p  
proximation of the minimum surface as given for [2] (cf.Fig.6). 

Figures 7 and 8 suggest the definition of a further discontinuous modu- 
lation method [4] by combining modulation methods [SI and [7] according 

(cf. Fig.9). According to the defining equation, in dependency on the position 
of the converter voltage phasor that particular modulation method is 

selected there which makes the smallest contribution to the global harmonic 
power losses. E.g., for = 75' and M = 0.75 (cf. Figs.7 and 8) modulation 
method [6] shows a distinctively lower harmonics power loss contribution as 
compared to modulation method [7]. This can be illustrated also by the 
Merent  "moment of inertia" of the current harmonic triangles as shown in 
Figs.4 and 5. 

Based on the explanations given, the (discontinuous) modulation method 
denoted by [5] and defined by the alternative combination 

of modulation methods [SI and [7] does not seem to be very advantageous a t  
first (cf. Figs.10 and 9). However, as shown in detail later, the admissible 
pnlse frequency increase for [5] in wide operating regions lies substantially 
above the increase as possible for [4]. (The basis of comparison is given by 
maintaining the same average switching losses (related to the fundamental) 
as occurring for continuous modulation for pulse frequency fp). This justifies 
an inclusion of modulation method [5] into further considerations. 

After comparing the local harmonic power loss contributions of modula- 
tion methods [6], [7] and of the derived methods [4], [5] we wil l  now calculate 
the harmonic power loss defining the actual quality index (or the harmonic 
current rms values related to the fundamental) of the different modulation 
methods, and compare the results. 

The (normalised) harmonic power 1- for continuous modulation have 
been given already in section 4. For discontinuous modulation there follow 
under consideration of the defining equations (Eqs.(27), (28), (29) and (30)) 
of the various modulation methods the relationships 

and 

(L~J,] denotes, as mentioned, the possible frequency increase when discontinu- 
ous modulation [i] is applied as compared to applying continuous modulation 
(21 (cf.Eq.(26))). 

Figure 11 shows graphically the relationships defined by Eqs.(23), (31), 
(32); (33) and (34). As one can expect, the harmonic power losses for dis- 
continuous modulation lie in the whole modulation region above the values 
obtainable by continuous modulation (note: kt,[ ,]  = l!). 

For exclusive consideration of discontinuous modulation (as immediately 
clear by inspection of Figs.7,8,9,10) the modulation method [4] shows the 
l o r u t ,  the modulation method [5] the highest harmonic power losses. [6] and 
[7] lead to identical results (cf. Eqs.(31), (32) and the symmetry conditions 
of Figs.7 and 8) and lie between [4] and [5]. 

Finally, we want to mention that for all modulation methods treated here 
the maximum possible modulation range (limit to overmodulation) is given 
bv 

(35) 

This can be explained by the fact that discontinuous modulation only means 
that the distribution of the free-wheeling states is in a different manner as 
compared to continuous modulation. The distribution of the freewheeling 
states does not influence the voltage space vector + (cf. Fig.2) which is 
generated in the average over one pulse period, but it influences essentially 
the occurring current harmonics. 
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Fig.7: Dependency of the normalised local harmonic power loues Ai&,R,,,,,,l,l on the modulation index M and on the phase (pu 
of the converter voltage space vector for modulation method [6] (discontinuous modulation); parameter: k j , i q  = l! 

M 

Fig.8: As Fig.7, but for modulation method [7]; parameter: kt,[,] = l! 
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Fig.0: As Fig.7, but for modulation method [4]; parameter: k,,lrl = I! Modulation method 141 follows from a combination of 
modulation methods [6] and [7] according to: [6]: (pu E [f, t ] ,  [?I: lpu E [ z ,  p]. 
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Fig.10: As Fig.7, but for modulation method [5]; parameter: kt,ls] = I! Modulation 
modulation methods [6] and [7] according to: [7]: pu E [!, f] ,  [6]: lpu E [ f ,  91. 
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6 Admissible Pulse Frequency Increase for 
Discontinuous Modulation 

As shown in Refs.[l], [ E ]  one can obtain the average (related to the funda- 
mental) switching loss Pp,T2,D1 of a diode/transistor combination (T2 and 
D1, see phase R in Fig.1) for high pulse rates simply by integration of 

i.e., of the local power losses p p , ~ a , ~ l ( p ~ ) .  There, the integration has to be 
made over that interval within which the electric valves (e.g., T2 and D1) 
alternatively conduct the phase current. In the case a t  hand this means the 
half-period with positive current. The local power losses are defined according 
to 

PP,TD('PU) = -WP,TD('PU)  = f p  ' W P , T D  

as switching energy loss weighted by the switching frequency. As experimen- 
tally verified, this energy loss shows approximately a linear dependency 

(37) 
1 

TP 

W P , T 2 , D l { i N ( ~ V ) }  = h , T D  iN(V'V) ( N ( ( P U )  2 0 (38) 

with the factor 

378 

method 

0.29 0.58 0.87 2n 

M- 

[51 follows from a combination of 

Fig.11: Comparison of the (global) current har- 
monic rms values for continuous modulation [2] and 
for discontinuous modulation [4-71 on the basis of 
kt,[q = 1. Under consideration of the increase of the 
effective pulse frequency which becomes possible for 
discontinuous modulation (d section 6) the discon- 
tinuous modulation methods (shown for the example 
of [SI for kt,lsl = 1.6) show lower harmonic losses in 
the upper modulation region (for M > M[2~,[.~) than 
the continuous modulation [a].  

k i , T D  = k i , T  + k i , D  (39) 
on the phase current i ~ ( p p 0 )  to be switched locally a t  position vu.  For con- 
tinuous modulation there follows under the assumption of a purely sinusoidal 
phase current shape 

(40) 
- ~ , T D  

PP,T1.D1 = I N f P y  . 

If a converter bridge leg is switched only in certain segments (i.e., for 
discontinuous modulation; cf. section 5 ) ,  there results a corresponding re- 
duction of the averaged switching losses. Also, one can say that the effective 
pulse frequency of the converter can be increased for equal average switching 
losses 88 for continuous modulation. 

Remark: Besides the switching losses also the local conduction losses 
are influenced for clamping of a bridge leg in certain time intervals. This is 
because within these intervals the current flows only through the transistor 
or the diode of one half of the converter bridge leg (and not through valves 
of different bridge leg halves). A more detailed analysis (Ref.[3]) shows no 
essential changes of the conduction losses averaged over the fundamental 
period, however. Therefore, in the following we do not want to consider this 
aspect. This is especially adequate here because we consider PWM converters 
with high switching frequency where mainly the switching losses determine 
the junction temperature. 

The possible switching frequency increase is influenced by the duration 
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and distribution (or by the position) of the clamping intervals within the cur- 
rent fundamental (cf. Ref.[3]). The switching losses are reduced substantially 
if, e.g., for a given phase angle there exists a phase relationship between con- 
verter phase voltage and phase current such that the clamping intervals will 
lie in the vicinity of the current maxima On the contrary, if the clamping 
intervals lie in the vicinity of the current sero crossings there results a smaller 
switching loss reduction and therefore a lower possible switching frequency 
increase. In summary, each discontinuous modulation method [i] shows a 
characteristic dependency of the possible switching frequency increase kt,[;] 
on the phase angle 'p of the output current. 

A detailed analysis (given in Ref.[3]) leads to 

Values for the other phase angle regions follow by symmetry considerations 
(cf. Fig.12). 

2.0 1 1.75 

1.25 

As can be seen from Fig.12, one can achieve twice the effective pulse frc 
quency (clamping is performed symmetrically with respect to the positive 
and negative maxima of the phase current, cf. Ref.[3]) for selected phase 
angles using modulation methods [5], [SI and [7]. This also results in a har- 
monic loss reduction by a factor of l / k j  = 4 as compared to kt = 1 (cf. 
&s.(31),(32),(33),(34)). The modulation method [4] (cf. Fig.11) showing 
the smallest harmonic power losses (as achievable by discontinuous modula- 
tion) for kt = 1 allows only a pulse frequency increase by 50%, but for the 
whole phase angle region. 

Now the question arises which modulation method will result in the small- 
est harmonic power losses for given modulation index and phase angle, or, 
where a transistion between continuous modulation and discontinuous mod- 
ulation has to be made. 

7 Transition from Continuous Modulation to  
Discontinuous Modulation 

The calculation of that modulation index M[z~,[il from which on (for given 
kt,[il) the harmonic power losses AZ&,rm,ol of the discontinuous modulation 
method [i] are decreased below the losses for continuous modulation can 
simply be performed by solving the resulting quadratic equations 

0.03 

0.02 

0.01 

0 

1.0 

Fig.12: Dependency of the possi- 
ble frequency increase L j , [ i ]  on the 
phaae angle cp between converter 
p h w  voltage and phase current 
(d Eqs.(41), (421, (431,. (44)) 
for discontinuous modulation b] 
(related to continuous modula- 
tion with equal average switching 
power IOU). 

1 0 . 8 7  

M 

0.58 

0.29 

0.0 

1.0 1.25 1.5 

M 
kl.151 - 

Fig.lS: Dependency of the minimum min { &AI&,s,l,l} of the normalised harmonic power losses of continuous modulation [Z] 
and of discontinuous modulation [SI on the frequency increase k,.[q.  In the topographical representation (right hand side) the region 
of continuous modulation [Z] is pointed out by the dotted area. 
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(given for modulation method [5]; the other equations are analogous, cf. 

The combination of modulation methods [2] and [5] in dependency on 
is shown in Fig.13. For k t , ~ ~ ]  = 2 the harmonic power losses of the 

discontinuous modulation lie below the losses of the continuous modulation 
in the whole modulation region. 

For a given phase angle, we ean calculate the respective value kt,[i~ for 
each modulation method by using Eqs.(41), (42), (43), (44). In a further 
step, we can determine the intersections M[2~,li~ (Eq.(45); cf. also Fig.14)). 
Therefore, there follow directly these phasoangles/modulation-reIlions where 
continuous modulation [2] leads to the lowest harmonic power loss (pointed 
out in Fig.14 by the dotted area). 

Eq.(23) and Eqs.(31), (32), (33) 1. 

8 Harmonic-Optimal Combination of Contin- 
uous and Discontinuous Modulation 

Because in the previous section only the transition from continuous modula- 
tion to discontinuous modulation has been treated, we now want to investi- 
gate in conclusion which modulation method ([2], [4], [5], [6] or [7]) results in 
the lowest harmonic power losses for given modulation index and phase angle. 
We also wi l l  show the dependency on the respective operating condition. The 
minimum area of the harmonic power losses resulting by using Egs.(23), (31), 
(32), (33), (34), (41), (42), (43), (44) is shown in Fig.15. We want to mention 
that the optimal transition between the modulation methods regarding the 

1.25 

I E 
0.25 

0 

possible frequency increase or regarding the effective system pulse frequency 
is not continuous. 

Basically, therefore one has to change from continuous to discontinuous 
modulation in the upper modulation region. The discontinuous modulation 
method to be applied is essentially determined by the given phase angle 'p or 
by the frequency increase (kt,c,l('p), cf. Fig.12) possible there. As a simple 
suboptimal approximation of the harmonics power loss optimal transition 
strategy (defined by the dotted boundary lines in Fig.15, right hand side) 
therefore one always has to apply that discontinuous modulation method 
which allows the maximum frequency increase. 

In general, there follow different harmonic optimal modulation methods 
for each specific application of the PWM converter system. For application 
as PWM rectifier we have high modulation indices and phase angles close to 
0. The harmonic optimal modulation method is given by [5]. For operation 
of the converter as static Var compensator we have a phase angle close to 
3~: and also high modulation indices. Accordingly, we then have to apply 
modulation method [4]. For machine converters we have a comparatively 
wide phase angle and modulation index region (9 *[:, :I). Furthermore, 
we then have to consider the dependency of the current amplitude on the 
phase angle (note that the comparison of the modulation methods has been 
performed for phase-angleindependent current amplitude, cf. Eq.(40)) and 
a thermal limitation of the discontinuous modulation (cf. remark regarding 
the thermal inertia of power electronic devices in section 9). Also, in this 
case, the discontinuous modulation (modulation methods [6] and [7]) shows 
significant advantages in the upper speed range as compared to continuous 
modulation [2]. Therefore, the discontinuous modulation has to be included 
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Fig.14: Illustration of the 
determination of the limit 
between continuous modu- 
lation [2] and discontinu- 
ous modulation [4]-[7] in 
dependency on the phase 
angle; region of continuous 
modulation [2] pointed out 
by the dotted area. 

Fig.16: Dependency of the normalised harmonic power l o s ~ s  on the phase angle 'p and on the modulation index M for harmonics 
power loss optimal combination of continuous modulation [2] and discontinuous modulation [4], [5], [6] or [7]. The representation is 
limited to 'p E [0, f]. The other regions follow by considering Figs.12 and 14 using simple symmetry considerations (note especially 
[6] and [7] in Fig.14). One can clearly recognise the application limits of the different modulation methods as pointed out in the 
topographical representation. The region of continuous modulation [2] hss been pointed out again (as in Figs.13 and 14) by the dotted 
=ea. 
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into the choice of the modulation method in any case. 

Basically, there would be a frequency increase by a factor of k j  = 2 
for the entire phase angle region 9 E [-E, +f]  possible using discontinuous 
modulation. (Therefore, an even greater reduction of the harmonic power lass 
would be achieved.) However, then the clamping region (being symmetrical 
to the current maximum for 9 = 0) of the discontinuos modulation [5] would 
have to be shifted according to the phase angle (or to the current maximum). 
[5] then coincides with [6] for 9 = +f and with [7] for 9 = -I (cf. Fig.12). 

9 Conclusions 

As mentioned, we have assumed a sufficiently high converter pulse rate pz 
for the calculations made. A comparison (not given in detail here) of the 
approximate calculation and of a digital simulation shows already for pz 2 
21 excellent consistency of the results (maximum deviation < 1%). The 
assumption of high pulse rates therefore does not mean a basic limitation of 
the considerations given in this paper. This is especially true because modern 
power electronic devices allow relatively high switching rates. 

Regarding the comparison of continuous and discontinuous modulation 
(which is based on equal average switching power loss, related to the funda- 
mental period) we have to note that this implies a sufficiently high thermal 
inertia of the power electronic devices. Only then the local power loss shape 
results in an only marginally changing junction temperature, which is de- 
termined by the power loss average and which can be used for a thermal 
dimensioning of the power semiconductors. For low output frequencies (e.g., 
for supplying AC machines in the lower speed/modulation region) or for low 
thermal inertia of the valves, the maximum junction temperature is deter- 
mined directly by the I d  power loss shape. Then the comparison of dif- 
ferent modulation methods becomes much more complicated. For a specific 
application of the results derived in this paper therefore one has to check the 
time dependency of the junction temperature. This can be done, e.g., by a p  
proximating the transient thermal resistance by a thermal equivalent circuit 
of second order and by using the local switching and conduction losses. A 
calculation to check the conditions for mains operation of a converter system 
consisting of 100A/1200V IGBT half-bridge modules shows that the assump 
tions made in this paper are sufficiently well met. In this case we have oper- 
ation with high modulation indices and therefore discontinuous modulation 
(cf. Fig.15); the details of this calculation have to be ommited here for the 
sake of brevity. The thermal limitation of the discontinuous modulation (to 
be inserted into Fig.15) for application as modulation method for drives with 
high speed range wil l  be the topic of a future paper being under preparation. 

Specific methods of discontinuous modulation methods given in the lit- 
erature (see Refs.[9], [lo], [ll], [12], [13]) which can be derived as subsets of 
the modulation methods treated here do not consider the "thermal side con- 
dition" and are based on a possible frequency increase by a factor of k j  = i. 
The possible frequency increase there is only derived from the lower number 
of switchings per pulse half-period for discontinuous modulation (2 instead 
of 3 switchings as used for continuous modulation). There i t  is not taken 
into account where (Le, for which current) the switch occurs. The actually 
possible frequency increase for these modulation methods wil l  be also the 
topic of a future paper. 

We have to note that also for classical pulse pattern optimization (cf., 
e.g., Refs.[14], [15]) the actual thermal conditions of the power electronic 
devices remain unconsidered. There, a given quality index is optimized by 
appropriate shifting of a given number of switching angles per fundamental 
qnarter period. Therefore, the thermal stress on the power electronic devices 
is changed during the course of the optimiration. This aspect is especially of 
interest if the pulse pattern shows clamping intervals (cf. Ref.[l5]); this can 
lead to a reduction of the switching losses (as for discontinuous modulation) 
and, alternatively to a higher admissible number of switching angles. A closer 
analysis of these aspects (which have not been discussed in literature so far) 
would be certainly of interest. However, the computational effort probably is 
very high because already without considering these aspects computing times 
w tremendous for a higher given nnmber of switching angles. 

A comparison of the solutions presented here with the classical pulse pat- 
tern optimization shows in general that also there (Le., already for a relatively 
low number of switching angles) in the case of a loss minimisation (cf. EOC 
in Ref.[l5]) two classes of solutions can be observed. They correspond basi- 
caUy to the continuous and to the discontinuous modulation as can be seen 
by comparing the dependencies of the normalized harmonic power losses on 
the converter modulation index (cf. Fig.11). 

In conclusion, we want to point out that (as shown in Ref.[l6] and as 
mentioned also in Ref.[l3]) all the considerations described in this paper also 

can be applied to converters with DC current link if one applies the duality 
relations. Due to the very clear representation of the system quantities by 
space vectors and due to the implicite decoupling of zero quantities also in 
this case this method has to be highly preferred as compared to using phase 
quantities. A more detailed discussion shall be omitted here for the sake of 
brevity. 
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