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Bearingless machines are successfully used for a variety of applications that demand for low mechanical losses, low wear and low
contamination. These machines require exact knowledge of the radial and angular rotor position in order to ensure stable levitation.
This information is obtained with different position sensors. Alternatively, a sensorless approach can be used to determine the rotor
position. The omission of the angular sensors leads to a reduction in costs and an improvement in reliability and allows to explore
new areas of applications for bearingless machines. However, few zero and low speed sensorless angle estimators are published to
this date. Therefore, a novel estimator to determine the rotor angle at zero and at low speeds and thus allowing sensorless operation
over the whole speed range of the bearingless permanent magnet synchronous machine is proposed in this paper. The observer
utilizes the radial position measurements and a model of the bearing force generation to determine the error of the angular position
estimation.

Index Terms—Bearingless, Sensorless, Control, Observer.

I. INTRODUCTION

A bearingless machine is an electric motor with an inte-
grated magnetic bearing. The rotor of such a machine is

levitated using a magnetic field. This eliminates the need for
mechanical bearings and allows the rotor to be operated in a
sealed compartment. Bearingless machines are well suited for
applications with demands on high speeds, low wear and low
particle generation and contamination [1]–[3].

This paper focuses on a bearingless permanent magnet disc
drive [4], of which a schematic drawing is shown in Fig. 1.
The rotor consists of a ring-shaped permanent magnet with
a diameter that exceeds its axial length. This topology is
chosen because it features passive stability in three degrees
of freedom. Therefore, only three degrees of freedom have
to be controlled actively [5], [6]. The control system utilizes
information from displacement and angular sensors to achieve
stable levitation and a high drive performance. The cost and
complexity of the system can be reduced if an angle-sensorless
control is used. This allows for new areas of operation for
bearingless machines.

A similar development can be reported for electric machines
with conventional bearings. Different ways of sensorless es-
timation of the rotor angle for permanent magnet machines
are reported in the literature [7]–[10]. These methods can be
divided into two categories: either the machine voltages and
currents are measured to obtain information about the induced
voltage and the rotor flux angle or high frequency signals
are injected into the machine terminals to measure the phase
inductances. The first approach requires a minimal amplitude
of the induced voltage and thus can only be employed for
medium and high speeds. The second approach works for all
speed ranges. However, any rotor displacement in a bearing-
less machine will disturb the inductance measurement and,
therefore, have a direct impact on the angle estimation. A
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Fig. 1: Schematic representation of the bearingless permanent magnet ma-
chine.

third approach is available for bearingless machines in which
the radial displacement of the rotor can be used to obtain
information about the rotor angle.

This paper proposes the usage of a novel zero- and
lowspeed-angle observer to obtain the rotor angle based on
observations of the radial bearing behaviour. The force and
torque generation in a bearingless machine are described based
on the flux density harmonics in the airgap. Subsequently, the
influence of a rotor angle estimation error on the behaviour
of the radial position control is examined. This serves as a
basis for the formulation of the angle observer structure. The
operational principle of the observer is investigated through
simulations. Finally, the implementation of the method is
discussed.

II. FORCE AND TORQUE CALCULATION

The radial forces and the torque acting upon the rotor of a
bearingless machine can be calculated by using the Maxwell
stress tensor [11]. The force and torque calculation neglects
z components of the flux due to the axial symmetry of the
bearingless disc drive. Therefore, it is sufficient to consider
the radial and tangential flux components in the airgap. The
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TABLE I: Relevant variables definingthe magnetic flux density in the airgap
of a bearingless machine.

Description Var. Range
Displ. in x Direction ∆x ∆x ∈ [−2 mm, 2 mm]
Displ. in y Direction ∆y ∆y ∈ [−2 mm, 2 mm]
Rotor Angle θ θ ∈ [0, 2π]

Drive Current ÎD, φD ÎD ∈ [0, 5 A] , φD ∈ [0, 2π]

Bearing Current ÎB, φB ÎB ∈ [0, 5 A] , φB ∈ [0, 2π]

TABLE II: Relevant field harmonics of the radial and tangential flux density
components in the airgap (k ∈ [r, t]).

Description Amplitude Relevant Harmonics
Zero Displacement B̂k,i,0 = const i ∈ [1, 3, 5, 7]

Rotor Displacmenet B̂k,i,∆ ∝
√

∆x2 + ∆y2 i ∈ [2, 4, 6, 8]

Bearing Field B̂k,i,B ∝ ÎB i ∈ [2, 4, 8]

Drive Field B̂k,i,D ∝ ÎD i ∈ [1, 5, 7]

calculation is carried out by integrating along the contour ξ
shown in Fig. 2. The coordinate α depicts the position on ξ.
Force and torque are calculated as

Fx ∝
∫ 2π

0

(
B2

r −B2
t

)
cos (α)− (2BtBr) sin (α) dα

Fy ∝
∫ 2π

0

(
B2

r −B2
t

)
sin (α) + (2BtBr) cos (α) dα

Tz ∝
∫ 2π

0

BtBrdα.

(1)

The flux density components Br and Bt can be approximated
by their space harmonics Bk,i as

Bk (α) ≈
∑
i

B̂k,i sin (iα+ φk,i) , k ∈ [r, t] . (2)

The amplitude B̂k,i and phase φk,i of the space harmonics
are dependent on the rotor position as well as the drive and
bearing currents in the stator windings.

If magnetic saturation is neglected then the ith space har-
monic of the magnetic flux density can be stated as

Bk,i = Bk,i,0 (θ) +Bk,i,∆ (θ,∆x,∆y)

+Bk,i,B

(
ÎB, φB

)
+Bk,i,D

(
ÎD, φD

)
,

(3)

with the relevant variables listed in Tab. I. Table II lists the
correlations between the parameters and the harmonics with Î
beeing the amplitude and φ beeing the phase of a current.

III. BEARING BEHAVIOUR

The radial position controller of a bearingless machine
controls the bearing currents in the stator windings to ensure
a stable levitation of the rotor at a given reference position
x∗, y∗. The controller requires information about the radial
position and the angle of the rotor magnet to achieve this task.
It is assumed that the radial position is known exactly but the
rotor angle is only estimated. The actual rotor angle is denoted
by θ, the estimation by θ̂ and the error by ∆θ = θ̂ − θ.

Assume that θ = 0, meaning that the rotor flux ~ΨR is placed
on the x axis, there is no angle estimation error, θ̂ = θ, and the
rotor is at a reference rotor position x∗ > 0, y = 0 as shown

(a) (b)

Fig. 2: Passive and bearing forces for a displaced rotor with zero angle
estiamtion error (a) and non-zero angle estimation error (b).

in Fig. 2(a). If higher flux density harmonics are neglected,
the flux density components on the contour ξ are

Br,1 = B̂r,1,0 cos (α)

Bt,1 = B̂r,1,0 cos (α− π/2)

Br,2 = B̂r,2,∆ cos (2α)

Bt,2 = B̂t,2,∆ cos (2α− π/2)

(4)

with B̂r,2 > B̂t,2. Inserting (4) into (1) shows that the radial
displacement results in a force ~F∆. The bearing controller
needs to generate a bearing force ~F ∗

B that compensates ~F∆.
Therefore, the radial position controller imposes bearing cur-
rents in the stator coils leading to the bearing flux density
harmonics

Br,2,B = B̂r,2,B cos (2α+ π)

Bt,2,B = B̂t,2,∆ cos (2α+ π/2) , (5)

which, accoring to (1), leads to a zero net force and zero
torque.

However, if the rotor angle estimate is not correct then the
bearing will behave differently. Assuming, that the rotor angle
is changed to θ > 0 as shown in Fig. 2(b). The passive flux
density harmonics of order one and two are

Br,1,0 = B̂r,1 cos (α− θ)
Bt,1,0 = B̂r,1 cos (α− θ − π/2)

Br,2 = B̂r,2,∆ cos (2α− θ)
Bt,2 = B̂t,2,∆ cos (2α− θ − π/2) .

(6)

Assume that the radial position controller has no information
about the new rotor angle, meaning that the estimated angle
θ̂ = 0⇔ ∆θ > 0. Therefore, the bearing flux components are
as given in (5). Inserting (5) and (6) into (1) results in

FB,x < F ∗
B,x, FB,y > F ∗

B,y = 0, Tz < 0. (7)

This shows that a rotor angle estimation error |∆|θ > 0
has two effects on the bearing behaviour. First, the second
order flux harmonics of a displaced rotor and the bearing
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harmonics lead to a torque T∆,z. The magnitude of this torque
is proportional to the displacement. The torque is forcing
the rotor angle to the estimated angle, driving the estimation
error θ̂ to zero. Second, the angle estimation error leads to a
deviation of the bearing force. The applied bearing forces ~FB

can be stated depending on the ideal bearing forces ~F ∗
B and

the rotor angle estimation error as

~FB =

[
cos (∆θ) − sin (∆θ)
− sin (∆θ) cos (∆θ)

]
· ~F ∗

B. (8)

IV. OBSERVER STRUCTURE

The angle observer is based on the force coupling described
in (8). The observer estimates the angle error ∆θ̂ by evaluating
the difference between the ideal bearing force ~F ∗

B and the
actual bearing force ~FB.

A simplified block diagram of the radial bearing with
observer is shown in Fig 3. The two position controllers are
labeled Cx(s) and Cy(s), the radial bearing is labeled B(s)
and the observer is labeled O(s). The position controllers
calculate the reference bearing currents IBx, IBy based on the
deviation of the rotor position x, y from the reference position
x∗, y∗. Block T denotes a park transformation, transforming
the bearing currents to the stator frame. The transformed
currents will lead to the forces Fx, Fy, which define the rotor
movement together with any external forces Fx,e, Fy,e.

Fig. 3: Simplified block diagram of the radial bearing and the angle observer.

The functionality of the observer is shown in an example.
First, the observer is used to estimate ∆θ̂ but the observer
loop is not closed, meaning that θ̂ is not changed.

Assume that a constant radial force ~Fr,e is pulling the rotor
in the negative y direction. The rotor reference position and
the initial rotor position and angle are randomly set to

x∗ = y∗ = 0, θinit = 60◦

xinit = yinit = −2 mm.
(9)

Note that, ∆θ̂ is not used to update θ̂, meaning that θ̂ = θinit.
Figure 4(a) shows the radial rotor position and that the
rotor approaches the reference levitation position after 1 s.
After 2 s the rotor is rotated by 15◦ by an external torque
as shown in Fig. 4(b), which increases ∆θ. Figure 4(c)
shows that the bearing currents during 1 s < t ≤ 2 s are
IB,x ≈ 0 mA, IB,y ≈ 870 mA. The currents are required to
compensate ~Fr,e. The angle of the ideal bearing force is

∠~F ∗
B = arctan

(
IB,y
IB,x

)
= 90◦. (10)

The bearing currents change to IB,x ≈ −0.3 mA, IB,y ≈ 1 A
as θ is increased. The angle of the ideal bearing force becomes
∠~F ∗

B ≈ 74◦ due to the radial bearing controllers that enforce
x ≈ x∗, y ≈ y∗. The estimated error

∆θ̂ = arctan
(
~IB

)
− arctan

(
~Fr,e

)
− 180◦ (11)

is shown in Fig. 4(d). The observer estimates that the real rotor
angle deviates from the estimated value by ∆θ̂ ≈ −16◦.
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Fig. 4: Simulation of radial bearing performance with external force ~Fr,e,
radial rotor position (a), bearing currents (c), rotor angle and observer
angle (b) and estimated angle error (d).

The observer loop is closed for the second example. This
means that ∆θ̂ is used to update θ̂. Also, the constant radial
force is generated internally by setting the radial reference
position such that

r∗ =

√
(x∗)

2
+ (y∗)

2
> 0. (12)

This results in magnetic flux density harmonics as described
in Tab. II and subsequently in a radial displacement force
~F∆ according to (1) that must be overcome by the bearing.
This displacement force is used as ~Fr,e in equation (11) to
determine the rotor angle.

Figure 5 shows the results of the simulation of the ma-
chine with full dynamics including higher order flux densities
as listed in Tab. II. The reference rotor position is set to
x∗ = 1 mm, y∗ = 0 mm, c.f. Fig. 5(a).

The estimated angle error ∆θ̂ is calculated according to
(11) and is used to update θ̂. Figure 5(b) shows the real rotor
angle θ, which is unknown to the observer, and the estimate
θ̂. The estimation error, shown in Fig. 5(c), is always less than
10◦. The rotor speed estimate is calculated by derivation of
the angle estimate and is used for the drive current controller.
Figure 5(d) shows the machine speed n, the reference speed
n∗ and the machine speed estimate n̂. The machine speed is
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constant after approximately 11 s. An integrator part is added
to the observer

θ̂ (t) = θinit + Pobs ·∆θ̂ (t) + Ii ·
∫ t

0

∆θ̂ (τ) dτ (13)

which drives the estimation error ∆θ to zero once the rotor
speed reaches the reference speed, c.f. Fig. 5(c). The integrator
limits the usage of an integrator part in the speed controller
since the interaction of the integrator in the observer and the
integrator in the speed controller will lead to oscillations. The
system can thus be optimized for either fast decay of the angle
error or a small steady state speed error.
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Fig. 5: Simulation of closed loop observer performance for acceleration from
0 to 100 rpm with radial rotor position (a), rotor angle and angle
estimate (b), estimation error (c) and rotor speed and rotor speed
estimate (d).

V. IMPLEMENTATION

Some requirements must be met when implementing the
method for a bearingless machine. The initial rotor angle can
be detected by the control scheme presented in [12]. The rotor
can then be brought to levitation with this initial angle. The
passive stability of the rotor angle estimate ascertains that the
machine control is functional at zero speed. The radial position
control will then evaluate the bearing currents during levitation
to detect an external radial force. If such a force is available
then the observer can utilize it to detect the rotor angle.
Alternatively, the rotor reference position is set according to
(12) to generate a sufficient displacement force. The rotor is
then allowed to rotate freely and the drive control is used to
accelerate the machine efficiently.

The observer method is based on the assumption that the
radial forces acting upon the rotor are known. Any unknown
disturbance force will lead to an angle estimation error ∆θ̂δ as
shown in Fig. 6. The maximum acceptable, undetectable angle

Fig. 6: Undetectable angle estimation error due to disturbance force.

estimation error ∆θ̂δ can be calculated utilizing the magnitude
of the known radial force |~Fr,e| and the magnitude of the
disturbance force |~Fr,δ| as

∆θ̂δ = arctan

(
|~Fδ|
|~Fr,e|

)
. (14)

VI. CONCLUSION

The angle observer structure proposed in this paper allows
the estimation of the rotor angle for zero and low speeds. It is
based on the assumptions that the initial rotor angle is known
and external radial forces are constant or small and utilizes
the behaviour of the radial bearing to calculate a rotor angle
estimation. Two different simulation cases show the observer
performance for different modes of operation.
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