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Abstract — This paper proposes a method for the efficiency opti-
mization of ultra-high-speed permanent-magnet machines. Ana-
lytical methods are applied for the modeling of the machine that 
is equipped with a diametrically magnetized rotor and a slotless 
stator. The outer dimensions of the machine are design con-
straints, and the internal dimensioning is optimized for minimum 
losses. The air friction losses are taken into account in addition to 
the usual iron losses, copper losses, and eddy current losses. 
Laminated silicon iron or laminated amorphous iron is used as 
the stator core material. The results show that air friction losses 
influence the optimum design considerably, leading to a small 
rotor diameter at high speeds. The loss minimization and the 
amorphous iron core make it possible to reduce the calculated 
losses by 63% as compared to a machine design not considering 
air friction losses. The resulting efficiency is 95% for a 100-W, 
500 000-rpm machine excluding bearing losses. 

I. INTRODUCTION

Development of ultra-high-speed electrical drive systems is 
needed for new emerging applications, such as generators/start-
ers for micro gas turbines, turbo-compressor systems, drills for 
medical applications, and spindles for machining. Typically, 
the power ratings of these applications range from a few watts 
to a few kilowatts, and the speeds from a few tens of thousands 
rpm up to a million rpm [1]. Recently, a 100-W, 500 000-rpm 
permanent-magnet (PM) machine has been designed and in-
vestigated experimentally [2], [3]. For such high speeds, the 
mechanical rotor construction and the minimization of high-
frequency losses are the main challenges. This machine has a 
diametrically magnetized cylindrical Sm2Co17 permanent mag-
net encased in a titanium sleeve for sufficiently low mechanical 
stresses on the magnet. The slotless stator core consists of 168-
μm silicon-iron laminations, and the three-phase air-gap wind-
ing is made of litz wire with 0.071 mm strands for low copper 
losses. The cross-section of the machine is illustrated in Fig. 1. 

In designing an ultra-high-speed machine, it is important to 
optimize the efficiency—i.e. minimize the losses—when the 
outer dimensions of the machine are design constraints. Previ-
ously, such optimizations have been based on resistive losses in 
the stator winding and iron losses in the stator core [4] and, in 
addition, eddy current losses in the rotor [5]. However, air 
friction losses are an important part of the total losses in an  
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Figure 1. Machine cross-section and symbol definitions: diametrically 
magnetized cylindrical permanent magnet rotor inside a slotless stator. 

ultra-high-speed machine [2]. Therefore, these losses should 
also be taken into account in the optimization. 

This paper proposes a method for the loss minimization of 
ultra-high-speed PM machines including air friction losses. 
Analytical methods are applied for the modelling. In the fol-
lowing, models are first presented for the magnetic field and 
the loss components. Then, the optimization procedure is 
briefly described and, finally, results of the loss minimization 
are shown. 

II. MAGNETIC FIELD AND TORQUE

A solution of the magnetic field is needed for analyzing the 
operating point, resistive losses, eddy current losses, and iron 
losses. Today, numerical analysis based on the finite-element 
(FE) method is the standard methodology for such calculations. 
However, analytical models can give more insight into the 
problem, they are in many cases computationally efficient, and 
result in smooth solutions, which is favourable in optimization. 
Analytical solutions of the magnetic field have been derived for 
permanent-magnet machines with radially magnetized magnets 
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in the rotor, e.g., [6], [7]. Solutions for machines with diametri-
cally magnetized rotors have been presented in [8], [9]. 

Usually, the permeability of the stator iron core has been 
assumed infinite when the magnetic field of a permanent-
magnet machine is solved analytically, and the solution is re-
stricted to the air gap and the rotor. However, an analytical 
model of the magnetic field in the stator core can be used for 
the evaluation of the iron loss distribution [10]. In the follow-
ing, a solution of the magnetic field is derived for the entire 
cross-section of the machine, including the cylindrical stator 
core.  

A. Problem Formulation 
The cross section of the two-pole machine is illustrated in 

Fig. 1. The symbols for the radial dimensions are: radius of the 
permanent magnet 1R ; outer radius of the rotor sleeve 2R ;
inner radius of the stator winding 3R ; and inner and outer radii 
of the stator core 4R  and 5R , respectively. The length of the 
stator core is denoted by L , and the air gap is 3 2R Rδ = − .

A two-dimensional boundary value problem is formulated 
for the magnetic field, and the effects of the third dimension 
are ignored. The polar r θ−  coordinate system fixed to the 
rotor cross-section is illustrated in Fig. 1. The diametrically 
magnetized permanent magnet has a uniformly distributed 
remanence flux density remB  in the direction of 0θ = . The 
magnetic flux density is given by 

0 0p rμ μ μ= +B M H  (1) 

where pM  is the permanent magnetization, H  is the magnetic 
field strength, and rμ  is the relative recoil permeability. 

The problem region is divided into three subregions. In the 
permanent magnet region ( 10 r R≤ ≤ ), 0/p rem μ=M B  and 

1r rμ μ= . The uniform permanent magnetization is given by 
cos sinp r p pM Mθθ θ= −u uM  (2) 

where ru  and θu  are the radial and azimuthal unit vectors, 
respectively. In the non-ferromagnetic region between the 
permanent magnet and the stator core ( 1 4R r R< < ), 0p =M
and 1rμ = . In the stator core ( 4 5R r R< < ), 0p =M  and 

rμ = 5rμ .
The magnetic field is modelled by means of the magnetic 

scalar potential φ  defined by φ= −∇H . Inserting this defini-
tion with (1) into the governing equation 0∇ ⋅ =B  yields the 
Laplace equation 2 0φ∇ =  for the scalar potential. It is to be 
noted that 0p∇ ⋅ =M  for uniform permanent magnetization. 

In the polar coordinate system, the partial differential equa-
tion of the scalar potential is 

2 2

2 2 2
1 1 0
r rr r

φ φ φ
θ

∂ ∂ ∂+ + =
∂∂ ∂

. (3) 

In addition to the partial differential equation, interface and 
boundary conditions are needed. The continuity of the tangen-
tial component of the magnetic field strength requires that φ  is 
continuous over the interfaces at 1R  and 4R . The continuity of 
the normal component of the magnetic flux density requires 
that rcos /pM rθ μ φ− ∂ ∂  is continuous over the interfaces at 

1R  and 4R . The normal component of the magnetic flux den-
sity vanishes at the outer boundary of the machine, which gives 
the boundary condition r / 0rμ φ− ∂ ∂ =  at 5R .

B. Magnetic Field Solution 
Expressions for the magnetic field are obtained in the 

whole machine by solving the problem consisting of the partial 
differential equation (3) and the interface and boundary condi-
tions. The solution can be obtained by separation of variables. 
In the permanent magnet ( 10 r R≤ ≤ ), the radial and azimuthal 
components of the magnetic flux density are 

1 cosr BB K θ= ; 1 sinBB Kθ θ= −  (4) 

respectively, where the flux density coefficient is 
2 2 2 2

rem 4 1 4 1
1 2 2 2 2

r35 4 5 4

11 1 1 1B
B R R R RK

N R R R Rμ
= − + + + −  (5) 

with the definition 
2 2

4 1
1 1

5 4

2 2
4 1

1 1
r5 5 4

1 ( 1) ( 1)

1 1 ( 1) ( 1) .

r r

r r

R RN
R R

R R
R R

μ μ

μ μ
μ

= − + − −

+ + + + −

 (6) 

In the non-ferromagnetic region ( 1 4R r R≤ ≤ ), the radial 
and azimuthal components of the magnetic flux density are 

2
4

2 1 cosr B
RB K
r

θ= + ;
2

4
2 1 sinB

RB K
rθ θ= − −  (7) 

respectively, where the flux density coefficient is 
2 2 2

4 4 1
2

5 r5 5 2

11 1rem
B

B R R RK
N R R Rμ

= − − + . (8) 

In the stator core ( 4 5R r R≤ ≤ ), the components of the mag-
netic flux density are 

2
5

3 1 cosr B
RB K
r

θ= − + ;
2

5
3 1 sinB

RB K
rθ θ= − +  (9) 

respectively, where the flux density coefficient is 
2

1
3

5

2 rem
B

B R
K

N R
= . (10) 

The magnetic field component caused by the stator current 
can also be included in the analytical model in a fashion similar 
to [11]. However, the magnetic field of a machine with an air-
gap winding is mainly produced by the permanent magnet, and 
the influence of the stator winding is small [3]. Hence the 
efficiency optimization can be carried out without modelling 
the magnetic field component caused by the stator current. 

C. Comparison with Finite Element Solution 
Fig. 2 shows a comparison between the flux densities ob-

tained using the analytical model and a FE method, respec-
tively. The results agree well with each other. FE analysis is 
needed only if magnetic saturation occurs. However, it is typi-
cal of ultra-high-speed PM machines with a slotless design that 
the magnetic flux density does not reach values causing mag-
netic saturation in the iron core. 
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Figure 2. Comparison between analytical and FE solutions. Radial flux 
density components are plotted as solid lines, azimuthal components as 

dashed lines. 1.1 TremB = , 1 1.05rμ = , 5 1000rμ = , 5 8 mmR = ,
4 5.6 mmR = , and 1 1.68 mmR = .

D. Torque Calculation 
The density of the azimuthal force component caused by 

the spatial fundamental wave 1J  of the current density in the 
stator winding is 1 rJ B . The electromagnetic torque is obtained 
as the integral 

4

3

2
e 1

R

r
R

T L r J B drdθ
π

−π

= . (11) 

The stator current component in the direction of the permanent-
magnet flux is controlled to zero. Using (7), the integration in 
(11) results in 

3
3 3 3

e 2 4 3
4 4

4 12
3 3w Cu B

R RT k k JK LR
R R

π= − −  (12) 

where wk  is the fundamental-wave winding factor, Cuk  is the 
winding fill factor and J  the rms current density in the con-
ductors.  

The current density J  can be solved from (12) if the elec-
tromagnetic torque is known for an operating point. The wind-
ing factor for the distributed three-phase air-gap winding 
shown in Fig. 1 is 

6 sin
6wk π

π
= . (13) 

III. LOSS MODELS

A. Copper Losses 
The frequency of the stator current is high (8.3 kHz in the 

500 000 rpm machine). Therefore, eddy currents increase the 
copper losses of the stator winding. In addition to the stator 

current, the air-gap flux causes considerable eddy-current 
losses in the winding due to the slotless design of the stator. In 
order to reduce the losses, the winding is made of litz wire. 

The copper losses consist of the current dependent resistive 
losses ,Cu sP  in the stator winding, which include the influence 
of the skin effect, and of the proximity effect losses ,Cu pP ,
which are mainly due to the eddy currents induced by the mag-
netic field of the permanent magnet. The copper losses are 

2
2

, ,
ˆ

Cu Cu s Cu p
HP P P I F G
σ

= + = +  (14) 

where I  is the rms stator current, Ĥ is the peak magnetic field 
strength in the winding, and σ  is the conductivity of the con-
ductors. The coefficients F  and G  include the effects of the 
eddy currents, and are calculated based on the frequency, the 
conductivity, and the geometry of the winding arrangement. 

There are various commonly used methods for calculating 
the coefficients in (14). The Ferreira method [12] was chosen 
for the analysis. At significantly higher frequencies or larger 
strand diameters, the accuracy could be increased by using a 
method based on function fitting for the calculation of the 
proximity effect losses [13].  

B. Iron Losses 
The iron losses are calculated as an integral over the iron 

volume FeV  using the Steinmetz equation, 
ˆ

Fe

Fe m
V

P C f B dVα β= ⋅ ⋅  (15) 

where f  is the frequency and B̂  the peak magnetic flux den-
sity. The coefficients Cm,  and  are taken from manufac-
turer’s data sheets.  

C. Air Friction Losses 
For simple geometries, such as cylinders and disks, air fric-

tion losses can be calculated analytically with friction coeffi-
cients based on empirical data [14]. In the following, only the 
air gap is taken into account in the calculation of the air friction 
losses, and the losses at the end caps are omitted.  

The air friction losses of a long rotating cylinder encased in 
a stationary hollow cylinder are 

3 4
, 2f air f airP c R Lπ ρ ω=  (16) 

where airρ  is the density of the air, ω  the angular speed, 2R
the radius, and L  the length of the cylinder. The friction 
coefficient fc  depends on the radius of the cylinder, the air 
gap δ , and the Reynolds number and the Taylor number, 
which are defined as 

2
2 2

2
;R RRe Ta

R
ω ω δ δ

ν ν
= =  (17) 

where ν  is the kinematic viscosity of air. The flow stability de-
pends on the Taylor number; the flow can be divided into lami-
nar Couette flow (Ta < 41.3), laminar flow with Taylor vor-
tices (41.3 < Ta < 400), and turbulent flow (Ta > 400). 

For laminar Couette flow, the friction coefficient can be 
determined analytically, but measurements show discrepancies 
with the theoretical values. Therefore, empirical data is usually 
used, and correction factors are applied to adapt for different 
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geometries [14]. For the air gap of the machine under investi-
gation, the friction coefficient 

0.25 2
3

2 2
2 3 2

1.8
f

R
c

Re R R R
δ

−

=
−

 (18) 

can be used. Beyond the transition point from laminar flow to 
flow with Taylor vortices, measurements show a friction coef-
ficient 

0.2
fc Ta−∝ . (19) 

This model for air friction losses was experimentally validated 
in [2].  

D. Other Losses and Shaft Torque 
The eddy-current losses in the rotor of a slotless PM ma-

chine are generally very low as shown in [5]. Therefore, the 
rotor losses are ignored in the following. Furthermore, it is to 
be noted that the bearing losses are not considered in the 
efficiency optimization of the machine since they are usually 
more dependent on the application than on the inner dimen-
sions of the motor. 

The machine is to be optimized for a given mechanical 
shaft torque mT . When the proximity effect losses, iron losses, 
and air friction losses are taken into account, the electromag-
netic torque can be calculated by 

, ,Cu p Fe f air
e m

P P P
T T

ω
+ +

= + . (20) 

IV. MECHANICAL MODEL

A two-dimensional mechanical model is used for the rotor.  
The stresses of the rotor construction with the permanent-
magnet shrink-fitted into a titanium sleeve have been analyzed 
in [3]. The following specifications have to be fulfilled in the 
entire operation region: 

• The torque transfer and low eccentricity are guaranteed 
by allowing no lift-off of the sleeve. Thus the radial 
stress at the interface between the permanent magnet 
and the sleeve has to be negative, which is most critical 
at the maximum speed. 

• Stresses in the entire permanent magnet have a safety 
margin of 30% to the tensile strength of Sm2Co17 (120 
MPa). The most critical stress occurs at the maximum 
speed in the centre of the magnet. 

• Stresses in the entire sleeve have a safety margin of 50% 
to the tensile strength of titanium (900 MPa). The most 
critical stress occurs at the maximum speed on the inner 
side of the sleeve. 

• The sleeve has a minimum thickness (0.25 mm) for 
manufacturability reasons. 

V. OPTIMIZATION

A. Loss Minimization 
The goal is to minimize the total losses obtained from (14)–

(16), i.e. the objective function is 

,d Cu Fe f airP P P P= + + . (21) 
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Figure 3. Strand packing factor ,Cu sk  as function of strand diameter: 
manufacturer’s data (markers) and fitted curve (line). 

The losses are minimized for a given rotational speed n  and 
shaft torque mT . The outer radius 5R  and length L  of the 
stator core are kept constant, and the independent variables are 
the magnet radius 1R , the air gap δ , and the inner radius of the 
stator core 4R .

The loss minimization is constrained in order to obtain a 
geometrically, mechanically, and magnetically feasible design. 
The sleeve thickness 2 1R R−  is kept at the minimum value 
given by the mechanical analysis. The minimum value for the 
air gap δ  is 0.2 mm, and the minimum value for the thickness 
of the stator core ( 5 4R R− ) is 1 mm. In addition, the flux den-
sity in the iron core is limited to a maximum value (1.3 T for a 
silicon iron stack and 1.1 T for an amorphous iron stack). In the 
results presented in this paper, a constant temperature of 120ºC 
is assumed for the stator winding. 

Many different methods can be used for solving the mini-
mization problem. A straightforward choice is the Nelder-
Mead simplex method included in the MATLAB software as the 
function fminsearch. The constraints can be included in this 
derivative-free minimization method by giving the objective 
function a high value if the design is not feasible. 

B. Litz Wire Optimization 
The strand diameter of the litz wire influences only the 

copper losses. During the loss minimization, the strand diame-
ter giving the lowest copper losses is selected for every feasible 
design. Making the strands thinner decreases the eddy currents, 
but increases the resistive losses if the winding fill factor de-
creases. 

The winding fill factor is given by 

, ,Cu Cu t Cu sk k k= . (22) 

Here, the turn fill factor Cuk  is defined as the ratio of the area 
occupied by the litz wires to the total cross-sectional area of the 
winding. The strand packing factor ,Cu sk  is the ratio of the 
copper area of the strands in the wire to the area of the wire. 
The turn fill factor is assumed to be constant, whereas the 
strand packing factor is a function of the strand diameter. Fig. 3 
shows the strand packing factors ,Cu sk  for various strand 
diameters obtained from manufacturer’s data [15]. 
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Figure 4. Results of mechanical analysis as function of rotor radius at 
500 000 rpm. The first subfigure shows the sleeve thickness 2 1R R− , the 

second subfigure shows the shrink fit, and the third subfigure shows the radial 
stress in the center of the permanent magnet (solid), the  radial stress at the 

interface 1( )R  (dashed), the tangential stress in the sleeve at 1R  (dash-dotted), 
and stress limits in the magnet and sleeve (dotted). 

VI. RESULTS

A. Mechanical Rotor Model 
The thickness of the rotor sleeve and the interference fit 

needed were calculated using the mechanical model. The re-
sults are shown in Fig. 4 for a rotor with a maximum speed of 
500 000 rpm. For small rotor radii, the sleeve thickness is at the 
minimum value defined by the manufacturability; the shrink fit 
ensures that the sleeve does not lift off. At 3 mm magnet ra-
dius, the stress in the magnet reaches its limit, and the shrink fit 
has to be enforced to guarantee the safety margin to the tensile 
strength of Sm2Co17. At 3.3 mm, the stress in the titanium 
sleeve reaches its limit, and the sleeve thickness has to be in-
creased in order to guarantee the safety margin to the tensile 
strength of titanium. 

B. Fixed Outer Dimensions 
The parameters used in the efficiency optimization are 

given in Table I. Figs. 5 and 6 illustrate the dependence of the 
losses on the internal radial dimensions of the machine. The 
outer dimensions of the existing machine were used 
( 5 8 mmR =  and 15 mmL = ), and the stator core material was 
laminated silicon iron. The sleeve thickness was fixed to the  

TABLE I
PARAMETERS

Symbol Quantity Value 

Permanent magnet 
remB Remanence flux density 1.1 T 

1rμ Relative recoil permeability 1.05 
Silicon-iron laminations (168 μm) 

5rμ Relative permeability 1860 

mC Steinmetz coefficient 21.8 W/m3

α Steinmetz coefficient 1.42 
β Steinmetz coefficient 1.50 

Amorphous iron (Metglas magnetic alloy 2605SA1)

5rμ Relative permeability 35100 

mC Steinmetz coefficient 0.94 W/m3

α Steinmetz coefficient 1.53 
β Steinmetz coefficient 1.72 

Air

airρ Density 1.29 kg/m3

ν Kinematic viscosity 0.000014  m2/s 

original value (0.5 mm), and so was the air gap (0.5 mm) and 
the strand diameter of the litz wire (0.071 mm). In Fig. 5, the 
total losses are plotted as a function of the magnet radius 1R
for various values of  the inner radius 4R  of the stator core. 
The individual loss components are shown in Fig. 6 for the 
original value 4 5.5 mmR = . It can be seen that the total losses 
depend strongly on the radius of the permanent magnet, 
whereas the sensitivity to the inner diameter of the core is low 
if the radius of the permanent magnet is appropriately chosen. 

The minimum of the losses is about 9 W, and it is obtained 
at 4 5.3 mmR =  and 1 1.7 mmR = . The original machine de-
sign is based on the values 4 5.5 mmR = and 1 2.5 mmR =  [3], 
and it has 14.2 W of losses. Thus a reduction of losses by 5.2 
W can be obtained by changing the internal radial dimensions 
of the machine. 

It can be seen that the copper losses of the optimized ma-
chine are higher than those of the existing machine, but the air 
friction and iron losses are reduced. A smaller magnet radius 
leads to a lower air-gap flux density and thus increases the 
copper losses. However, a larger amount of air friction and iron 
losses can be avoided by decreasing the magnet radius. 

The losses of the existing machine obtained with the loss 
models presented in this paper are shown by circular markers 
in Figs. 5 and 6. There are small differences between the values 
shown here and the ones obtained in [2] by means of measure-
ments and separation of losses; these differences originate from 
the less accurate model used earlier for iron losses and from a 
small difference in the winding geometry and temperature. 

C. Variable Outer Dimensions and Strand Diameter 
For an improved loss minimization, the sleeve thickness 

was reduced to the minimum value given by the mechanical 
analysis ( 2 1 0.25 mmR R− = ), and the optimization was based 
on the three independent variables ( 1R , δ , and 4R ). In addi-
tion, the strand diameter giving lowest copper losses was de-
termined for the litz wire. In all the following examples, the  
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loss minimization resulted in an air gap value of 0.2 mmδ = ,
i.e. the minimum value. The optimum strand diameter of the 
litz wire varied between 0.03 and 0.05 mm, but the influence of 
small changes in the strand diameter is insignificant since the 
proximity effect losses are much lower than the other loss 
components. 

Fig. 7 shows the magnet radius 1R  and inner radius 4R  of 
the stator core for the laminated silicon iron core material. The 
results are shown for variable outer radius 5R  of the stator core 
and various values of the core length L . The corresponding 
total losses are shown in Fig. 8. For the original outer dimen-
sions ( 5 8 mmR =  and 15 mmL = ), the losses can be reduced 
to about 7 W by choosing 4 5.1 mmR =  and 1 1.8 mmR = .
Thus the reduction of the air gap and sleeve thickness allows a 
loss reduction by 2 W from the result shown in Fig. 5. The 
losses can be further reduced by increasing the outer dimen-
sions of the machine. 
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stator core and various values of the core length L . The shaft power is 100 W 
and the rotational speed 500 000 rpm. 
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Figure 8. Optimization results for the silicon iron core: total losses dP  for 
variable outer radius 5R  of the stator core and various values of the core 

length L . The shaft power is 100 W and the rotational speed 500 000 rpm. 

D. Influence of Stator Core Material 
Figs. 9 and 10 show the loss minimization results when the 

stator core material was laminated amorphous iron (Metglas 
magnetic alloy 2605SA1). In this case, the iron losses are lower 
than 10% of the total losses. If the original outer dimensions of 
the machine are used, a loss reduction to about 5.2 W is 
possible by choosing 4 4.5 mmR =  and 1 1.9 mmR = . The 
losses of the existing machine (14.2 W) can thus be reduced by 
63% without changing the outer dimensions. 

It is obvious that for constant L , the results in Figs. 9 and 
10 do not depend much on the outer radius 5R  if 5 6 mmR ≈
or larger. Thus the outer diameter of the stator can be reduced 
from the original value with almost no influence on the losses. 
The losses are higher at the lowest values of 5R . The loss in-
crease is caused by two constraints used in the optimization: 
the minimum thickness of the stator core (1 mm) and the 
maximum flux density allowed in the stator core (1.1 T). The 
geometry and the magnetic field plot of the loss-minimizing 
design are shown in Fig. 11. 
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Figure 9. Optimization results for the amorphous iron core: magnet radius 
1R  and inner radius 4R  of the stator core for variable outer radius 5R  of the 

stator core and various values of the core length L . The shaft power is 100 W 
and the rotational speed 500 000 rpm. 
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Figure 10. Optimization results for the amorphous iron core: total losses dP
for variable outer radius 5R  of the stator core and various values of the core 
length L . The shaft power is 100 W and the rotational speed 500 000 rpm. 

E. Influence of Air Friction Losses 
The air friction losses (16) are approximately proportional 

to 4
2R . At high speeds, the inclusion of this loss component in 

the loss minimization leads to a smaller rotor radius than the 
one obtained without this loss component. This fact is illus-
trated in Figs. 12 and 13 showing the loss minimization results 
when the air friction losses are omitted.  

F. Influence of Speed 
In order to investigate the influence of the rotational speed 

on the results, the losses of 100-W motors were minimized in 
the speed range between 100 000 and 1 000 000 rpm. The core 
length was fixed to 15 mmL = , and the outer radius 5R  of the 
core was adjusted in such a way that the flux density was 1.1 T 
(if possible without contradicting the minimum core thickness 
constraint). The results are shown in Figs. 14 and 15. It is obvi-
ous that the inclusion of the air friction losses in the loss mini-
mization leads to very small rotor diameters at the highest 
speeds. For the power rating considered, the analysis of rotor  

Figure 11. Geometry and field plot of the optimized machine. 
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Figure 12. Optimization results when air friction losses are omitted. 
Explanations of curves are as in Fig. 9. 
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Figure 13. Optimization results when air friction losses are omitted. 
Explanations of curves are as in Fig. 10. 

dynamics would have to be included in the optimization for 
speeds higher than 500 000 rpm, which finally restricts the 
reduction of the rotor radius with increasing speed. 
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the stator core as functions of the rotational speed n  used in the optimization. 

The shaft power is 100 W and the core length 15 mmL = .
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Figure 15. Total losses dP  and air friction losses ,f airP  as functions of the 
rotational speed n  used in the optimization. The shaft power is 100 W and 

the core length 15 mmL = .

VII. CONCLUSION

Analytical models can be used for the optimization of high-
speed permanent-magnet machines that are equipped with a 
diametrically magnetized rotor and a slotless stator. In the effi-
ciency optimization of an ultra-high-speed machine, the air 
friction losses have to be taken into account in addition to the 
usual iron losses, copper losses, and eddy current losses. In this 
paper, general analytical models are presented for the field 
calculation and loss components, and an existing machine 
design is optimized for efficiency. 

The calculated losses of the existing 100-W, 500 000-rpm 
machine, designed without considering air friction, are 14.2 W. 
The optimization of the magnet radius and the inner radius of 
the stator core results in a reduction of the losses by 5.2 W. The 
minimization of the sleeve thickness and air gap further re-
duces the losses by 2 W, whereas the improvement by opti-
mizing the already thin litz wire strand diameter is negligible. 
Changing the core material from silicon iron to amorphous iron 
laminations decreases the losses by another 1.8 W. The final 
machine design has 5.2 W total losses, which is 63% lower 
than those of the existing machine. 

It can be concluded that for a loss-minimizing design, the 
proximity effect losses and the air friction losses have to be 
taken into account on an ultra-high-speed machine with a slot-
less stator. The proximity effect loss calculation leads to a litz 
wire winding with a small strand diameter, and including the 
air friction losses results in a small magnet radius. In addition 
to low losses, the use of a high-frequency stator core mate-
rial—such as amorphous iron—allows for a smaller outer di-
ameter of the stator with an insignificant increase in the total 
losses.  

Going towards 1 000 000 rpm results in machines with de-
creasing magnet and shaft radii. For designing machines to be 
integrated into various applications, the efficiency optimization 
will be coupled with the rotor dynamic and thermal analyses. 
Results of research in this direction will be published in a fu-
ture paper. 
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