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Variable Speed Motor Drive (VSD) Systems 
■ Industry Automation / Robotics
■ Material Machining / Processing – Drilling, Milling, etc. 
■ Compressors / Pumps / Fans  
■ Transportation
■ etc., etc.                                    …. Everywhere !

● 60…70 % of All Electric Energy Used in Industry Consumed by VSDs   

Source:
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Variable Speed Drive Concepts
■ DC-Link Based AC/DC/AC  OR  Matrix-Type AC/AC Converters
■ Battery OR Fuel-Cell Supply OR Common DC-Bus Concepts

Source:

Source:

● 45% of World’s Electricity Used for Motors in Buildings & Industrial Applications 

2
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State-of-the-Art VSD System  
■ Standard 2-Level Inverter — Large Motor Inductance Allows Low Sw. Frequency   
■ Shielded Motor Cables / Cable Length Limited / Insulated Bearings / Acoustic Noise

● Line-to-Line Voltage   | Motor Surge Voltage |       CM Leakage Current |        Bearing Current

Source:
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Surge Voltage Reflections
■ “Long Motor” Cable lc ≥ ½ tr v
■ Short Rise Time of Inverter Output Voltage   
■ Impedance Mismatch of Cable & Motor  → Reflect. @ Motor Terminals / High Insul. Stress

Source:  Bakran / ECPE 2019

→ dv/dt-Filtering  OR  Full-Sinewave Filtering / Termination & Matching Networks etc. 
→

SiC
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■ Switching Frequency CM Inverter Output Voltage → Motor Shaft Voltage
■ Electrical Discharge in the Bearing (“EDM”)

→ Cond. Grease / Ceram. Bearings / Shaft Grndg Brushes / dv/dt-Filter OR  Full-Sinewave Filters

Source: 
BOSCH

Motor Bearing Currents

Source: www.est-aegis.com

Source: 
Switchcraft
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SiC vs. Si
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■ Higher Critical E-Field of SiC → Thinner Drift Layer
■ Higher Maximum Junction Temperature Tj,max

● Massive Reduction of Relative On-Resistance → High Blocking Voltage Unipolar (!) Devices 


=



For 1kV:

→

Low RDS(on) High-Voltage Devices  
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Si vs. SiC
■ Si-IGBT / Diode   → Const. On-State Voltage, Turn-Off Tail Current  &  Diode Reverse Recovery Current  
■ SiC-MOSFET   → Loss Reduction @ Part Load  BUT  Higher Rth

1200V  100A
Die Size:  25.6mm2

1200V  100A
Die Size: 98.8mm2 + 39.4mm2

6x Si-IGBT 
6x Si-Diode 

Source:  CreeSource:  Infineon

6x SiC-MOSFET 

● Space Saving of  >30% on Module Level (!)

Source:  
ATZ elektronik
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Si vs. SiC Conduction Behavior  

● SiC MOSFETS Facilitate Higher Part Load Efficiency  

■ Si-IGBT          → Const. On-State Voltage Drop / Rel. Low Switching Speed  
■ SiC-MOSFETs  → Resistive On-State Behavior / Factor 10 Higher Sw. Speed

1200V  100A
Die Size:  25.6mm2

1200V  100A
Die Size: 98.8mm2 + 39.4mm2

Source:  CreeSource:  Infineon

Source: Fuji Electric

Forward Reverse
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● High  di/dt & dv/dt → Challenges in Packaging / EMI / Motor Insulation / Bearing Currents   

1200V  100A
Die Size:  25.6mm2

1200V  100A
Die Size: 98.8mm2 + 39.4mm2

Source:  CreeSource:  Infineon

Source: Fuji Electric

■ Si-IGBT          → Const. On-State Voltage Drop / Rel. Low Switching Speed  
■ SiC-MOSFETs  → Resistive On-State Behavior / Factor 10 Higher Sw. Speed

Si vs. SiC Switching Behavior 

9
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Challenges



/    54

■ High  di/dt
■ Commutation Loop Inductance Ls
■ Allowed Ls Directly Related to Switching Time ts →  =




● Advanced Packaging  & Parallel Interleaving for Partitioning of Large Currents (Z-Matching)

Circuit Parasitics

→

=

Parallel
Connection
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Si vs. SiC EMI Emissions 
■ Higher dv/dt → Factor 10
■ Higher Switching Frequencies    → Factor 10 
■ EMI  Envelope Shifted to Higher Frequencies

● Higher Influence of Filter Component Parasitics & Couplings  → Advanced Design

fS= 10 kHz    &    5 kV/us for (Si IGBT)
fS= 100 kHz  &  50 kV/us for (SiC MOSFET)

VDC = 800V
DC/DC @ D= 50%

Si
SiC

11
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dv/dt-Filters
Full-Sinewave Filters

Inverter Output Filters
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dv/dt-Limitation
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■ Passive – Damped LC-Filter fC > fS
■ Hybrid  – Undamped LC-Filter  &  Multi-Step Sw. Transition
■ Active  – Gate-Drive Based Shaping of Sw. Transients

Passive | Hybrid | Active  dv/dt-Limitation 

fsw = 16 kHz
tR = tF = 130ns
fC = 2.4 MHz 

● Connection to DC-Minus  &  CM Inductor  → Limit CM Curr. Spikes / EMI / Bearing Currents

!

12
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■ Output Voltage Waveforms  — VDC = 800V, Pout = 10kW, 6kV/us 

■ Active Concept  ■ Passive Concept ■ Hybrid Concept (3fsw ) 
1.  Miller Capacitor
2.  Gate Current Control

1.  LCR-Filter
2.  Clamped LC-Filter

1.  LC-Filter
2.  Multi-Step Switching

1200V SiC / 16 mΩ
CM = 120 pF

L = 3.8 uH
C = 2.7 nF
R = 19Ω

L = 4.1 uH
C = 1.3 nF

Comparison of dv/dt-Filtering Techniques   

13
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Multi-Bridge-Leg dv/dt-Limitation

● Adv. for High Power / High Output Curr. Syst. Employing Parallel Bridge-Legs & Local Comm. Caps  

■ Staggered Sw. Parallel Bridge-Legs → Non-Resonant Multi-Step Transition 

Source: J. Ertl et al.
PCIM Europe 2017

■ 2-Step Switching / Resonant Transition (cf. Active dv/dt-Filter)

Source: J. Ertl et al.
PCIM Europe 2018

►

14
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Aux. Resonant Commutated Pole

■ dv/dt-Limitation & Sw. Loss Red. w/ Snubber Cap. & Aux. Switches → 1 … 1.5kV/us
■ Opt. Timing of Aux. & Main Switches → Pre-FlexTM Self-Learning AI Algorithm
■ Concept Proposed for BJTs by M. Lockwood & A. Fox @ IPEC 1983 (!)

● Complicated Implementation  / Critical Timing for fsw > 100kHz 
● 99.5% Half-Load | 99.35% Full-Load Eff. @ 100kW, 800VDC , fsw= 50kHz (1200V/12mΩ SiC MOSFETs)

15
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Inverter Systems w/
Sinusoidal Output Voltages 
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■ Measures  Ensuring Longevity of Motor Insulation & Bearings / EMI Compliance   
■ DM-Sinus Filter OR DM & CM Full-Sinewave Filter  

● SiC|GaN High Sw. Frequ. →
Small Filter Size

Source:

Source:

Inverter Sinewave Output Filter 

→

16
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Triangular Current Mode (TCM)
ZVS Operation
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● Only 33% Increase of Transistor Conduction Losses Compared to CCM (!)
● Very Wide Switching Frequency Variation  

■ Purely Sinusoidal Output Voltage (DM & CM Filtering)
■ High Sw. Frequency & TCM → Low Filter Inductor Volume
■ ZVS of Inverter Bridge-Legs 

Full-Sinewave Filter & ZVS Operation

17
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■ Very Wide Switching Frequency Variation of TCM → B-TCM 

● TCM → B-TCM — 10% Further Increase of Transistor Conduction Losses   

Frequency-Bounded TCM → B-TCM

18
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Continuous Current Mode (CCM) Operation
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3-Φ 650V GaN Inverter System (1) 

→ Comparison to Si-IGBT Drive Systems 

■ Transphorm 650V Normally-On GaN HEMT/30V Si-MOSFET Cascode 6-in-1 Power Module
■ Sinewave LC Output Filter — Corner Frequency  fC= 34kHz (fsw= 100kHz)
■ No Freewheeling Diodes 

600V/14A  

19

Source: 
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→ 2% Higher Efficiency of GaN System Despite LC-Filter (Saving in Motor Losses) !  

■ Comparison of GaN Inverter w/ LC-Filter to Si-IGBT System (No Filter, fsw=15kHz)
■ Measurement of Inverter Stage &  Overall Drive Losses @ 60Hz

80% →

98% →

3-Φ 650V GaN Inverter System (2) 

20

Source: 
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Multi-Level / Multi-Cell 
Converters & Modularity
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■ Higher Number of Bridge-Leg Output Voltage Levels / Lower DM & CM Voltage Steps
■ Neutral Point Clamped | Flying Capacitor | T-Type Bridge-Leg Topologies  

2-Level Bridge-Leg                  3-Level Bridge-Leg 

Line-to-Line Voltage 

● More Complicated Bridge-Leg Structure
● On-State-Losses of Series-Connected Switches  

3-Level T-Type Inverter (1)  

21
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3-Level T-Type Inverter (2)  

● Full-Sinewave DC-Link Referenced LC-Filter — Elimination of DM & CM Sw. Frequ. Voltage Harmonics 
● T-Type Topology Ensures Low Conduction Losses — Adv. Application of  M-BDSs (!) 

■ 3-Level T-Type Inverter  — 3-Level Phase Voltage / 5-Level Line-to-Line Voltage
■ Lower DM & CM Voltage Steps Compared to 2-Level Converter 

22

Source:

→
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!

3-Level T-Type Inverter (3)  

● Full-Sinewave DC-Link Referenced LC-Filter — Elimination of DM & CM Sw. Frequ. Voltage Harmonics 
● T-Type Topology Ensures Low Conduction Losses — Adv. Application of  M-BDSs (!) 

23

■ 3-Level T-Type Inverter  — 3-Level Phase Voltage / 5-Level Line-to-Line Voltage
■ Lower DM & CM Voltage Steps Compared to 2-Level Converter 
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SiC/GaN Figure-of-Merit 

● Advantage of  LV over HV Power Semiconductors →
● Advantage of  Multi-Level over 2-Level Converter Topologies 

■ Figure-of-Merit (FOM) Quantifies Conduction & Switching Properties 
■ FOM Identifies Max. Achievable Efficiency @ Given Sw. Frequ. 

ds,on oss

1
FOM

R Q
=

24
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● FC Voltage Balancing Possible also for DC Output 

3-Level Flying Capacitor (FC) Converter 
■ 3-Level Flying Cap. (FC) Converter  → No Connection to DC-Midpoint
■ Involves All Switches in Voltage Generation → Eff. Doubles Device Sw. Frequency 

25
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● Operation @ fout= 100kHz / fsw,eff = 4.8MHz, 10kW, Udc= 800V 

■ Combination of Series & Parallel Interleaving

— 600V GaN Power Semiconductors, fsw= 800kHz
— Volume of ≈180cm3 (incl. Control etc.)
— H2O Cooling Through Baseplate

25 kW/dm3

4.8MHz GaN Half-Bridge Phase Module  

26
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Motor-Integrated 
Inverter Systems
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Stacked-Multi-Cell (SMC) Inverter
■ Fault-Tolerant VSD
■ Low-Voltage Inverter Modules
■ Very-High Efficiency / Power Density  
■ Automated Manufacturing

■ Rated Power         45kW  / fout= 2kHz
■ DC-Link Voltage   1 kV 

● Smart Motor / All-in-One / Plug & Play  | Connected / Intelligent VSD 4.0 

27
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Motor-Integrated SMC-Inverter

● Main Challenge  — Thermal Coupling  OR Thermal Decoupling of Motor & Inverter 

■ Rated Power         9kW @ 3700rpm
■ DC-Link Voltage   650…720V
■ 3-Φ Power Cells   5+1
■ Outer Diameter    220mm

— Axial Stator Mount
— 200V GaN e-FETs
— Low-Capacitance DC-Links
— 45mm x 58mm / Cell

28
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Buck-Boost 
Functionality
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■ General / Wide Applicability 

● Full-Sinewave Filtered Motor Supply Voltage 
● LC Output Filter Inductor Advantageously Utilized as Buck-Boost-Inductor 

Motivation

— Adaption to Load-Dependent Battery | Fuel Cell Supply Voltage
— Operation in Wide Output Voltage / Wide Motor Speed Range

Source: magazine.fev.com Source: www.chegg.com

29
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Buck-Boost «Y–Inverter»

● Switch-Mode Operation of Buck OR Boost Stage → Quasi Single-Stage Energy Conversion (!)
● 3-Φ Continuous Sinusoidal Output / Low EMI     → No Shielded Cables / No Motor Insul. Stress

■ Generation of  AC-Voltages Using Unipolar Bridge-Legs 

→

“Y-Inverter”

30
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3-Φ Current Source Inverter (CSI) Topology
■ Y-Inverter → Phase Modules  w/ Buck-Stage | Current Link | Boost-Stage   
■ 3-Φ CSI     → Buck-Stage V→I Converter | Current DC-Link DC/AC-Stage

● Single Inductive Component  
● Positive DC-Side Voltage for Both Directions of Power Flow → Future Utilization of M-BDSs

→

→

31



/    54

● Conventional Control of  Inverter Stage  → Switching of All 3 Phase Legs (3/3) 

■ Monolithic Bidir. Bipolar GaN Switches Featuring 2 Gates → Full Controllability 
■ Buck-Stage for Impressing Const. DC Current / PWM of CSI for Output Voltage Control

3-Φ Buck-Boost CSI (1)  

→

32
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→

→

● Conventional Control of  Inverter Stage  → Rel. High CSI-Stage Sw. Losses 

■ Monolithic Bidir. Bipolar GaN Switches Featuring 2 Gates → Full Controllability  
■ Buck-Stage for Impressing Const. DC Current / PWM of CSI for Output Voltage Control

33

3-Φ Buck-Boost CSI (2)  
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■ “Synergetic” Control of Buck-Stage & CSI Stage 
■ 6-Pulse-Shaping of DC Current by Buck-Stage  → Allows Clamping of One CSI-Phase 

→

● Switching of Only 2 of 3 Phase Legs (2/3 Mode) → Significant Reduction of Sw. Losses

34

3-Φ Buck-Boost CSI (3)  
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→

→

● Switching of Only 2 of 3 Phase Legs → Significant Red. of Sw. Losses (≈ -86% for R-Load) 

■ “Synergetic” Control of Buck-Stage & CSI Stage 
■ 6-Pulse-Shaping of DC Current by Buck-Stage  → Allows Clamping of One CSI-Phase 

35

3-Φ Buck-Boost CSI (4)  
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3-Φ AC/AC Conversion
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Current Source Buck-Boost Rectifier
■ Derivation Based on Bidir. Buck-Boost Current Source Inverter (CSI) → Buck-Boost PFC Rectifier 
■ Lower # of Ind. Components Compared to Boost-Buck Rectifier Approach 

● AC/DC Buck Stage Distributes DC-Link Current to Mains Phases — Sinusoidal Inp. Current 
● Synergetic Control/Modulation of Rectifier Stage & DC/DC Stage for Min. Sw. Losses

36
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■ DC-Side Coupling of  Buck-Boost Current DC-Link PFC Rectifier & Inverter — AC/DC/AC
■ Full-Sinewave Filtering @ Input & Output w/ Single Magnetic Component 

● Bipolar Blocking / Unidir. Switches | Unidir. DC-Link Current Sufficient for Bidir. Power Conversion 
● Modulation-Based Inversion of DC-Link Voltage Polarity → Inv. of Power Flow Direction 

3-Φ Current DC-Link AC/AC Converter  

37
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!

■ Sinusoidal Motor Voltage Achieved w/ Single Ind. Component
■ Unidir. Valves Sufficient for Bidir. Power Conversion
■ M-BDSs — Synchronous Rectification  

● Relation to High-Power Thyristor-Based Medium-Voltage Synchr. Machine Variable Speed Drives

Source:  www.mb-drive-services.com

38

3-Φ Current DC-Link AC/AC Converter  
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Self Reverse-Blocking M-BDS-Concept (1)

■ Bidir. Curr. DC-Link Converters  — Unidir. Idc & Bipolar Udc OR   Bidir. Idc & Unipolar Udc

•   HV Switch + HV Diode       HV Diode Characteristic / High Cond. Losses
•   M-BDS  Ohmic Cond. Char. BUT 2 External Gate Signals / 2 Gate Drivers
• “Self-Switching” Ohmic Cond. Char. BUT High Local Complexity (Sensing)

● SRB-MBDS    Quasi-Ohmic Cond. Char. (Cascode w/ LV Si Schottky Diode) & 1 External Gate

HV

39
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■ Bidir. Curr. DC-Link Converters  — Unidir. Idc & Bipolar Udc OR   Bidir. Idc & Unipolar Udc

•   HV Switch + HV Diode       HV Diode Characteristic / High Cond. Losses
•   M-BDS  Ohmic Cond. Char. BUT 2 External Gate Signals / 2 Gate Drivers
• “Self-Switching” Ohmic Cond. Char. BUT High Local Complexity (Sensing)

● SRB-MBDS    Quasi-Ohmic Cond. Char. (Cascode w/ LV Si Schottky Diode) & 1 External Gate

600 V 190 mΩ GaN M-BDS 
40V/10A Si Schottky Diode

40

Self Reverse-Blocking M-BDS-Concept (2)

HV
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Buck-

Boost
Boost-
Buck

Source: www.reuts.com
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■ Voltage DC-Link Topology ■ Current DC-Link Topology

● Standard Bridge-Legs
● Low-Complexity Commutation
● Defined Semiconductor Voltage Stress
● Facilitates DC-Link Energy Storage

● High Input / Output Filter Volume  

● Application of M-BDSs
● Complex 4-Step Commutation OR SRB-MBDSs 
● Low Filter Volume

● Challenging Overvoltage Protection
● Limited Control Dynamics 

!

DUA ITY

41
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DUA ITY

■ All-600 V-GaN AC-AC VSDs / 1.4 kW, 200 V L-L / Full EMI Filter (Grid & Motor) / 97% Nominal Eff.

42

1.7kW/dm31.8kW/dm3

■ Voltage DC-Link Topology ■ Current DC-Link Topology

● Standard Bridge-Legs
● Low-Complexity Commutation
● Defined Semiconductor Voltage Stress
● Facilitates DC-Link Energy Storage

● Application of M-BDSs
● Complex 4-Step Commutation
● Low Filter Volume
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3-Φ AC/AC 
Matrix Converter
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Indirect & Direct 3-Φ AC/AC Matrix Converter  

■ Constant 3-Φ Instantaneous Power Flow → No Low-Frequ. DC-Link Power Pulsation Buffer Requirement (!) 
■ Indirect AC/DC—DC/AC  OR  Direct AC/AC Power Conversion → IMC OR DMC
■ DMC → Switch Matrix w/ Bipolar Voltage Blocking & Current Carrying Devices  

● Input-Side Cap. / Output-Side Motor Ind. → Operation Limited to Buck-Type (Step-Down) Conversion 

Mains 

Motor 
Mains Motor 

dc

43
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■ Input Filter Capacitors | Sw. Stage | Motor Inductance 
■ Buck-Type Power Conversion Topology

● IMC Relies on Strictly Pos. DC-Link Voltage / i=0 Input Stage Commutation 
● M-BDS-Based Realization of DMC Features Lower # of Switches  / 4-Step Commutation  

Indirect & Direct 3-Φ AC/AC Matrix Converter

44
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4-Step Commutation of DMC   

■ Example        i-Dependent Commutation
aA → bA @ i > 0

Assumption uab < 0 
● No Mains Short Circuit 
● No Load Current Interruption  

45
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4-Step Commutation of DMC (1) 

1st  Step: Off

■ Example        i-Dependent Commutation
aA → bA @ i > 0

Assumption uab < 0 
● No Mains Short Circuit 
● No Load Current Interruption  

46
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4-Step Commutation of DMC (2) 

1st  Step: Off
2nd Step: On

■ Example        i-Dependent Commutation
aA → bA @ i > 0

Assumption uab < 0 
● No Mains Short Circuit 
● No Load Current Interruption  

47
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4-Step Commutation of DMC (3) 

1st  Step: Off
2nd Step: On
3rd  Step: Off

■ Example        i-Dependent Commutation
aA → bA @ i > 0

Assumption uab < 0 
● No Mains Short Circuit 
● No Load Current Interruption  

48
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4-Step Commutation of DMC (4) 

1st  Step: Off
2nd Step: On
3rd  Step: Off
4th Step: On

■ Example        i-Dependent Commutation
aA → bA @ i > 0

Assumption uab < 0 
● No Mains Short Circuit 
● No Load Current Interruption  

49
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Industry Application of 3-Φ Matrix Converter
■ Fully Regenerative → e.g. Downhill Conveyor etc. 
■ Higher Power Density Compared to Voltage DC-Link System / No Front-End Boost Inductors 
■ Quasi Three-Level Output Characteristic 
■ No-Switching / Eco Operation for f2 = fMains
■ Close to Unity Power Factor 

● Challenging Overvoltage Protection
● Limited Output Voltage Range (!) 

Source:

50
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3-Φ AC/AC Matrix Converter Comparison
■ Indirect Matrix Converter (IMC) ■ Direct Matrix Converter (CMC)
● GaN M-BDS AC/DC Front-End 
● ZCS Commutation of AC/DC Stage @ iDC=0  
● No 4-Step Commutation

● Higher # of Switches Compared to DMC
● Lower Cond. Losses @ Low Output Voltage
● Thermally Critical @ fout → 0

● 4-Step Commutation 
● Exclusive Use of GaN M-BDSs 

● Thermally Critical @ fout ≈ fin

51
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3-Φ Current DC-Link vs. Matrix AC/AC Converter
■ Current DC-Link Topology

● Application of M-BDSs | 12 Switches
● 4-Step Commutation
● Buck-Boost Functionality
● Low Filter Volume

● Challenging Overvoltage Protection

!

■ Direct Matrix Converter

● Application of M-BDSs | 9 Switches
● 4-Step Commutation
● Complex Space Vector Modulation
● Limited to Buck-Operation (!)

● Challenging Overvoltage Protection

52
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Outlook
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Monolithic 3D-Integration 
■ M-BDS GaN 3x3 Matrix Converter with Drive-By-Microwave (DBM) Technology 

– 9 Dual-Gate GaN AC-Switches / 4-Step Commutation
– DBM Gate Drive Transmitter Chip  & Isolating Couplers
– Ultra Compact → 25 x 18mm2 (600V, 10A – 5kW Motor)

Source:                               ISSCC 2014

5.0GHz Isolated (5kVDC) Dividing Coupler

● Massive Space Saving Compared to Discrete Realization (!)   

Top Bottom 

Isolated 
HB Driver  Gate A

Gate B

Power Supply 
Transformer

53
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Future uP Chip-Stack Packaging 
■ Slowing Transistor Node Scaling → Vertical & Heterogeneous Integr. of ICs for Performance Gains 
■ Extreme 3D-Integrated Cube-Sized Compute Nodes 
■ Dual Side & Interlayer Microchannel Cooling   

● Interposer Supporting Optical Signaling / Volumetric Heat Removal / Power Conversion 
EU FP7 Project

54
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