

INCIDE

Introduction of the CFFC-Compensating Fringing Field Concept and its Application in PCB Winding Inductors

Jannik Schäfer, Dominik Bortis & J. W. Kolar

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Brief Outline

- Challenges in Conventional PCB Winding Inductor Designs
- Derivation of the CFFC
- Experimental Verification
- Thermally Improved Inductor Design

ETH zürich

- Challenges in the Design of PCB Winding Inductors
 - Limited available copper

Can only be increased by increasing the winding with $b_{\rm w}$ (2D \rightarrow poor power density)

Wire Wound Winding

- \rightarrow Efficient utilization of the available copper inevitable!
- High frequency conduction losses
 - \rightarrow Large copper planes are prone to eddy current induction

3/29 -

Air Coil – PCB Winding without Core

- High frequency conduction losses
- \rightarrow Magnetic skin and proximity fields push the current towards the edges of the PCB winding
- \rightarrow AC to DC resistance ratio of \approx **2.1** @ 500kHz

Same PCB Winding with Two ELP Cores

- High frequency conduction losses
- \rightarrow Magnetic skin and proximity fields push the current towards the edges of the PCB winding
- \rightarrow Additionally, fringing field around the air gap exacerbates the current displacement
- \rightarrow AC to DC resistance ratio of ≈ 8.2 @ 500kHz

Conventional PCB Winding Inductors

Same PCB Winding with ELP+I Cores

- High frequency conduction losses
- \rightarrow Magnetic skin and proximity fields push the current towards the edges of the PCB winding
- \rightarrow Fringing field around the air gap still exacerbates the current displacement
- \rightarrow AC to DC resistance ratio of \approx **5.1** @ 500kHz

- Special Challenges in the Design of PCB Winding Inductors
 - Conventional Inductor Designs
 - \rightarrow Fringing field around the air gap is heading in the same direction as the skin and proximity fields
 - Possible Alternative ?
 - \rightarrow Relocate the air gap, such that the fringing field counteracts the parasitic skin and proximity fields

Customized Core with Perpendicular Air Gap

Proposed PCB Winding Inductor Design

Same PCB Winding with a Customized Core

- High frequency conduction losses
- \rightarrow Magnetic skin/proximity fields and the fringing fields around the air gaps are heading in opposite direction
- \rightarrow Mutual partial compensation of the fields

Compensating Fringing Field Concept (CFFC)

- Simplified Analytical Derivation
- Power Density Improvement by Utilizing Multiple Air Gaps
- Effectivity of the CFFC for Multilayer PCB Windings

ETH zürich

Compensating Fringing Field Concept

- Analytical Derivation of the Magnetic Fields
 - Skin/Proximity Field

Skin/proximity field for a homogeneous current distribution within the conductor

$$H_{\text{prox},y}(x) = \frac{I_{\text{L}}}{2\pi b_{\text{w}}} \ln\left(\frac{b_{\text{w}} - 2x}{-b_{\text{w}} - 2x}\right)$$

- Fringing Field Around the Air Gap
 - Fringing field for different distances between the air gap and the conductor [1]

$$H_{\rm fringe,y}(x, d_{\rm ag}) = \frac{H_{\rm g}}{2\pi} \ln\left(\frac{x^2 + (d_{\rm ag} - l_{\rm ag})^2}{x^2 + (d_{\rm ag} + l_{\rm ag})^2}\right)$$

Effect of Vertical Magnetic Fields

Increase of the conduction losses:

$$P_{\rm AC} = R_{\rm DC} \left(2F_{\rm F} I_{\rm RMS}^2 + 2G_{\rm F} H_{\rm vert, RMS}^2 \right)$$
$$\rightarrow H_{\rm vert, RMS} = H_{\rm prox, v} + H_{\rm fringe, v}$$

Magnetic Fields

Calculated Magnetic Fields (y-Components)

[1] "Fringing Field Formulas and Winding Loss Due to an Air Gap", W. A. Roshen, IEEE Transactions on Magnetics, Vol. 43, No. 8

Compensating Fringing Field Concept

- Analytical Derivation of the Magnetic Fields
 - Skin/Proximity Field
 - Skin/proximity field for a homogeneous current distribution within the conductor

$$H_{\text{prox},y}(x) = \frac{I_{\text{L}}}{2\pi b_{\text{w}}} \ln\left(\frac{b_{\text{w}} - 2x}{-b_{\text{w}} - 2x}\right)$$

- Fringing Field Around the Air Gap
 - Fringing field for different distances between the air gap and the conductor [1]

$$H_{\text{fringe},y}(x, d_{\text{ag}}) = \frac{H_{\text{g}}}{2\pi} \ln \left(\frac{x^2 + (d_{\text{ag}} - l_{\text{ag}})^2}{x^2 + (d_{\text{ag}} + l_{\text{ag}})^2} \right)$$

- Partial Mutual Compensation of the Fields
 - Quality of the compensation depends on the distance d_{ag} between the air gap and the conductor

$$H_{\text{tot,y}}(x) = H_{\text{fringe,y}}(x, d_{\text{ag}}) + H_{\text{prox,y}}(x)$$

Magnetic Fields

Calculated Total Magnetic Fields (y-Components)

Compensating Fringing Field Concept

- Optimal Distance Between the Air Gap and the Conductor
 - Conduction Loss Estimation based on H_{tot,y}
 - In a first approximation, the local AC conduction losses are proportional to $H^2_{tot,y}$
 - $P_{\rm cond}(d_{\rm ag}) \propto \int H_{\rm tot,y}^2 dx$
 - First Design Guideline
 - $d_{\rm ag,opt} = \frac{b_w}{2}$

CFFC:

Use fringing field in a

beneficial way!

ETH zürich

Compensating Fringing Field Concept

- Utilization of Multiple Air Gaps to Reduce d_{ag,opt}
 - Magnetic Field Compensation of Multiple Air Gaps
 - The quality of the field compensation improves with the number of air gaps
 - $P_{\rm cond}(d_{\rm ag}) \propto \int H_{\rm tot,y}^2 dx$

Calculated Magnetic Fields (y-Components)

Magnetic Fields

Compensating Fringing Field Concept

- Utilization of Multiple Air Gaps to Reduce d_{ag,opt}
 - Magnetic Field Compensation of Multiple Air Gaps
 - The quality of the field compensation improves with the number of air gaps
 - $P_{\rm cond}(d_{\rm ag}) \propto \int H_{\rm tot,y}^2 dx$
 - Second Design Guideline

$$d_{\rm ag,opt} = \frac{b_w}{2 \cdot N_{\rm ag}}$$

Compensating Fringing Field Concept

Multilayer PCB Winding

- How effective is the CFFC for multilayer PCB windings?
- Quality of compensation only slightly decreases with increasing the number of layers

Simulated Piece of PCB Winding

FEM Simulated Current Densities

Experimental Verification

- Design of the PCB Winding
- AC-Resistance Measurements
- Calorimetric Measurements

16/29

Practical Implementation of the CFFC

Design of the PCB Winding

- Circular shape to minimize winding length
- Use through-hole vias to minimize costs
- Vertically aligned termination to minimize losses

Design of the Ferrite Core

- Circular air gap above and beneath the winding
- Customized CNC-milled core shape

Assembly of the PCB winding inductor (core diameter = 20mm)

Experimental Verification

AC-Resistance Measurements

- Measurements have been performed using an impedance analyzer
 - $\rightarrow \textbf{45\%}$ less conduction losses at high frequencies

Assembly of the PCB winding inductor (core diameter = 20mm)

Experimental Verification

AC-Resistance Measurements

- Measurements have been performed using an impedance analyzer
 - $\rightarrow \textbf{45\%}$ less conduction losses at high frequencies
- Calorimetric Measurements
 - Even though the inductance of B is 10x larger than the inductance of A
 - \rightarrow **25%** less losses

ETH zürich

Assembly of the PCB winding inductor (core diameter = 20mm)

Thermally limited to $I_{\rm rms}$ < 7A ($T_{\rm PCB}$ < 150°)

Thermally Improved PCB Winding Inductor

- Derivation of the Thermal Model of a Circular PCB Winding
- Improving the Thermal Performance by Utilization of Additional Thermal Interfaces
- Experimental Verification

► Thermally Improved PCB Winding Inductor

Thermal Modelling of PCB Windings

• Equivalent thermal conductivity of a PCB

• Thermal resistance of a rectangular piece of PCB

ETH zürich

▶ Thermal resistance of a sample piece of an 8 layer 70um PCB

► Thermally Improved PCB Winding Inductor

Thermal Model of a Circular PCB Winding

• Thermal "per-length" resistance

$$r_{\rm th,W} = \frac{1}{2\pi} \left(\frac{2r_{\rm W}\pi}{\lambda_{\rm eff} \cdot b_{\rm W} \cdot h_{\rm PCB}} \right)$$

• "Per-length" conduction losses

 $q_{\rm W} = \frac{P_{\rm W}}{2\pi}$

ETH zürich

Thermal model of a circular PCB winding (Assumption: homogeneous loss distribution within the winding)

$$T_{\rm W}(\varphi) = T_{\rm A} + \boxed{R_{\rm th,T} \cdot P_{\rm W}} + q_{\rm W} \cdot r_{\rm th,W} \cdot \varphi \cdot \left(\pi - \frac{\varphi}{2}\right)$$

Simulated and calculated temperature distribution within the winding for P_w = 6W and a heat sink temperature of T_A = 25°C

► Thermally Improved PCB Winding Inductor

Thermally Improved PCB Winding

• Thermal "per-length" resistance

$$r_{\rm th,W} = \frac{1}{2\pi} \left(\frac{2r_{\rm W}\pi}{\lambda_{\rm eff} \cdot b_{\rm W} \cdot h_{\rm PCB}} \right)$$

• "Per-length" conduction losses

Thermal model of a thermally improved PCB winding with four thermal interfaces

$$T_{\rm W}(\varphi) = T_{\rm A} + R_{\rm th,T} \cdot \frac{P_{\rm W}}{4} + q_{\rm W} \cdot \frac{r_{\rm th,W}}{4} \cdot \varphi \cdot (\pi - 2\varphi)$$

Simulated and calculated temperature distribution within the winding for P_w = 6W and a heat sink temperature of T_A = 25°C

Thermally Improved PCB Winding Inductor

Experimental Verification of the Thermal Model

- Measurement of the temperature distribution within two identical PCB windings with either 1 or 4 thermal interfaces
- The rectangular aluminum heat sink was screwed on a water-cooled (T_A = 25°C) base plate

Experimental setup for the temperature measurement of two sample inductor windings

• Calculated and measured temperature distribution within the winding for a constant loss of 3.5W and $T_A = 25^{\circ}C$

Thermally Improved PCB Winding Inductor

Adapted Inductor Core Design

- Circular core \rightarrow Rectangular core
- Homogeneous flux density in the inner and outer core limbs required [2]

Core Holder for Improved Mechanical Stability

- 3D-printed core holder ensures homogeneous air gap and the ideal distance between air gap and winding
- Customized core can be used as conventional E cores

ETH zürich

Core Holder

Assembled Core Half

[2] "Highly Efficient/Compact Automotive PCB Winding Inductors Based on the Compensating Air-Gap Fringing Field Concept", J. Schäfer, D. Bortis, J. W. Kolar IEEE Transactions on Power Electronics

Exemplary PCB-Winding Inductor

- Series Resonant Inductor for 3kW DC/DC Converters
 - Specifications:
 - $L_{\rm res} = 6.8 \,\mu{\rm H}$ • $I_{\rm pk} = 25 \,{\rm A}$

ETH zürich

Simplified resonant converter topology for a 500V-12V DC/DC converter

► FEM-simulated resistance and current distribution of the 6.8µH inductor prototype (Measured AC to DC resistance ratio @ 300kHz: 1.49)

26/29

Exemplary PCB-Winding Inductor

Output Inductors of a Phase-Shifted Full-Bridge Converter

- Specifications:
- = 250 nH
- *I*_{pk} = 210 A
 *I*_{rms} = 118 A

▶ 3.6kW 500V/12V three-port DC/DC converter for automotive applications

27/29

PCB-Winding Inductors Employing the CFFC

Conclusions

ETH zürich

- Fringing field around air gaps can be used in a variety of applications for minimizing HF conduction losses
- CFFC can be used for shaping the current distribution in the conductor arbitrarily
- * Good thermal design \rightarrow Very high current densities can be allowed
- Customized cores are necessary to fully utilize the benefits of the CFFC

It is possible to design highly efficient and compact PCB winding inductors

"Highly Efficient/Compact Automotive PCB Winding Inductors Based on the Compensating Air-Gap Fringing Field Concept", J. Schäfer, D. Bortis, J. W. Kolar IEEE Transactions on Power Electronics

Thank You !

