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■ Challenges in the Design of PCB Winding Inductors

• Limited available copper

Can only be increased by increasing the winding with bw

(2D → poor power density) 

→ Efficient utilization of the available copper inevitable!

• High frequency conduction losses

→ Large copper planes are prone to 
eddy current induction

►Conventional PCB Winding Inductors

► Air Coil ► ELP Cores ► ELP+I Cores

𝒉𝐏𝐂𝐁
𝑏w + Δ𝑥

ℎw + Δ𝑥

► Wire Wound Winding ► PCB Winding

𝑯𝐞𝐱𝐭



►Conventional PCB Winding Inductors

■ Air Coil – PCB Winding without Core

Assumption: One turn per layer

• High frequency conduction losses

→ Magnetic skin and proximity fields push the current towards the      
edges of the PCB winding

→ AC to DC resistance ratio of ≈ 2.1 @ 500kHz

► Air Coil ► ELP Cores ► ELP+I Cores

► Magnetic Fields ► FEM Simulation

𝐽mag



►Conventional PCB Winding Inductors

► Air Coil ► ELP Cores ► ELP+I Cores■ Same PCB Winding with Two ELP Cores

Assumption: One turn per layer

• High frequency conduction losses

→ Magnetic skin and proximity fields push the current towards the 
edges of the PCB winding

→ Additionally, fringing field around the air gap exacerbates the 
current displacement  

→ AC to DC resistance ratio of ≈ 8.2 @ 500kHz

𝐽mag



►Conventional PCB Winding Inductors

► Air Coil ► ELP Cores ► ELP+I Cores■ Same PCB Winding with ELP+I Cores

Assumption: One turn per layer

• High frequency conduction losses

→ Magnetic skin and proximity fields push the current towards the 
edges of the PCB winding

→ Fringing field around the air gap still exacerbates the current 
displacement  

→ AC to DC resistance ratio of ≈ 5.1 @ 500kHz

𝐽mag



►Conventional PCB Winding Inductors

■ Special Challenges in the Design of PCB Winding Inductors

• Conventional Inductor Designs

→ Fringing field around the air gap is heading in the same 
direction as the skin and proximity fields 

• Possible Alternative ?

→ Relocate the air gap, such that the fringing field counteracts the 
parasitic skin and proximity fields

► Air Coil ► ELP Cores ► ELP+I Cores

► Customized Core with Perpendicular Air Gap



►Proposed PCB Winding Inductor Design

► Customized Core■ Same PCB Winding with a Customized Core

Assumption: One turn per layer

• High frequency conduction losses

→ Magnetic skin/proximity fields and the fringing fields around the 
air gaps are heading in opposite direction

→ Mutual partial compensation of the fields

→ AC to DC resistance ratio < 1.1 @ 500kHz

How does this work?

𝐽mag

Layer 1
Layer 2



Compensating Fringing 
Field Concept (CFFC)

 Simplified Analytical Derivation

 Power Density Improvement by 
Utilizing Multiple Air Gaps

 Effectivity of the CFFC for 
Multilayer PCB Windings



►Compensating Fringing Field Concept

► Customized Core■ Analytical Derivation of the Magnetic Fields

• Skin/Proximity Field

Skin/proximity field for a homogeneous current distribution 
within the conductor

• Fringing Field Around the Air Gap

Fringing field for different distances between the air 
gap and the conductor [1]

► Magnetic Fields ► Calculated Magnetic Fields (y-Components)

𝐻prox,y 𝑥 =
𝐼L

2𝜋𝑏w
ln

𝑏w − 2𝑥

−𝑏w − 2𝑥

𝐻fringe,y 𝑥, 𝑑ag =
𝐻g

2𝜋
ln

𝑥2 + 𝑑ag − 𝑙ag
2

𝑥2 + 𝑑ag + 𝑙ag
2

■ Effect of Vertical Magnetic Fields

• Increase of the conduction losses:

𝑃AC = 𝑅DC 2𝐹F𝐼RMS
2 + 2𝐺F𝐻vert,RMS

2

[1] “Fringing Field Formulas and Winding Loss Due to an Air Gap”, W. A. Roshen, IEEE Transactions on Magnetics, Vol. 43, No. 8 

𝐻vert,RMS = 𝐻prox,y + 𝐻fringe,y



►Compensating Fringing Field Concept

► Customized Core■ Analytical Derivation of the Magnetic Fields

• Skin/Proximity Field

Skin/proximity field for a homogeneous current distribution 
within the conductor

• Fringing Field Around the Air Gap

Fringing field for different distances between the air 
gap and the conductor [1]

► Magnetic Fields ► Calculated Total Magnetic Fields (y-Components)

𝐻prox,y 𝑥 =
𝐼L

2𝜋𝑏w
ln

𝑏w − 2𝑥

−𝑏w − 2𝑥

𝐻fringe,y 𝑥, 𝑑ag =
𝐻g

2𝜋
ln

𝑥2 + 𝑑ag − 𝑙ag
2

𝑥2 + 𝑑ag + 𝑙ag
2

[1] “Fringing Field Formulas and Winding Loss Due to an Air Gap”, W. A. Roshen, IEEE Transactions on Magnetics, Vol. 43, No. 8 

■ Partial Mutual Compensation of the Fields

• Quality of the compensation depends on the 
distance dag between the air gap and the 
conductor

𝐻tot,y(𝑥) = 𝐻fringe,y 𝑥, 𝑑ag + 𝐻prox,y(𝑥)



■ Optimal Distance Between the Air Gap and the Conductor

• Conduction Loss Estimation based on Htot,y

In a first approximation, the local AC conduction losses are 
proportional to H2

tot,y

• First Design Guideline

►Compensating Fringing Field Concept

► Customized Core

► Magnetic Fields ► FEM-Simulated Normalized Conduction Losses

𝑃cond 𝑑ag ∝ ∫𝐻tot,y
2 d𝑥

𝒅𝐚𝐠,𝐨𝐩𝐭 =
𝒃𝒘
𝟐

Far away from the air 
gap is not always ideal!

CFFC:
Use fringing field in a 

beneficial way!



■ Utilization of Multiple Air Gaps to Reduce dag,opt

• Magnetic Field Compensation of Multiple Air Gaps 

The quality of the field compensation improves with the number of 
air gaps 

►Compensating Fringing Field Concept

► Customized Core

► Magnetic Fields ► Calculated Magnetic Fields (y-Components)

𝑃cond 𝑑ag ∝ ∫𝐻tot,y
2 d𝑥



■ Utilization of Multiple Air Gaps to Reduce dag,opt

• Magnetic Field Compensation of Multiple Air Gaps 

The quality of the field compensation improves with the number of 
air gaps 

• Second Design Guideline

►Compensating Fringing Field Concept

► Customized Core

► Magnetic Fields ► FEM-Simulated Normalized Conduction Losses

𝒅𝐚𝐠,𝐨𝐩𝐭 =
𝒃𝒘

𝟐 ⋅ 𝑵𝐚𝐠

𝑃cond 𝑑ag ∝ ∫𝐻tot,y
2 d𝑥

𝑵𝐚𝐠 = 𝟐



■ Multilayer PCB Winding

• How effective is the CFFC for multilayer PCB windings?

• Quality of compensation only slightly decreases 
with increasing the number of layers 

►Compensating Fringing Field Concept

► FEM Simulated Current Densities
► Simulated Piece of PCB Winding

ℎcu = 35 μm

► Simulated Air Coil (RAC/DC = 2.54) ► Simulated with Single Air Gap (RAC/DC = 1.34) ► Simulated with Dual Air Gap (RAC/DC = 1.18)

1.55 mm

𝑑w,opt 𝑑w,opt

𝑑w,opt



Experimental Verification
 Design of the PCB Winding

 AC-Resistance Measurements

 Calorimetric Measurements



■ Design of the PCB Winding

• Circular shape to minimize winding length

• Use through-hole vias to minimize costs

• Vertically aligned termination to minimize losses

■ Design of the Ferrite Core

• Circular air gap above and beneath the winding

• Customized CNC-milled core shape

►Practical Implementation of the CFFC

► Design of a circular PCB inductor winding► Assembly of the PCB winding inductor (core diameter = 20mm)



■ AC-Resistance Measurements

• Measurements have been performed using an 
impedance analyzer

→ 45% less conduction losses at high frequencies

►Experimental Verification

► Experimentally measured AC-resistance of the PCB winding

−𝟒𝟓%

► Assembly of the PCB winding inductor (core diameter = 20mm)

B

A



■ AC-Resistance Measurements

• Measurements have been performed using an 
impedance analyzer

→ 45% less conduction losses at high frequencies

■ Calorimetric Measurements

• Even though the inductance of  B is 10x larger than 
the inductance of  A

→ 25% less losses

►Experimental Verification

► Calorimetric measurements of the total inductor losses 

Thermally limited to Irms < 7A (TPCB < 150°)
► Assembly of the PCB winding inductor (core diameter = 20mm)



Thermally Improved PCB 
Winding Inductor

 Derivation of the Thermal Model 
of a Circular PCB Winding

 Improving the Thermal 
Performance by Utilization of 
Additional Thermal Interfaces

 Experimental Verification



■ Thermal Modelling of PCB Windings

• Equivalent thermal conductivity of a PCB

• Thermal resistance of a rectangular piece of PCB

►Thermally Improved PCB Winding Inductor

► Thermal resistance of a sample piece of an 8 layer 70um PCB

► Simplified drawing of an 8 layer PCB

𝑟PCB =
𝑁layer ⋅ ℎCu

ℎPCB

𝜆eff = 𝑟PCB𝜆Cu + 1 − 𝑟PCB 𝜆FR4

𝑅th =
𝑙w

𝜆eff ⋅ 𝑏w ⋅ ℎPCB



■ Thermal Model of a Circular PCB Winding

• Thermal “per-length” resistance

• “Per-length” conduction losses 

► Simulated and calculated temperature distribution within the winding 
for PW = 6W and a heat sink temperature of TA = 25°C

► Thermal model of a circular PCB winding (Assumption: homogeneous 
loss distribution within the winding)

𝑟th,W =
1

2𝜋

2𝑟W𝜋

𝜆eff ⋅ 𝑏W ⋅ ℎPCB

𝑞W =
𝑃W
2𝜋

𝑇W 𝜑 = 𝑇A + 𝑅th,T ⋅ 𝑃W + 𝑞W ⋅ 𝑟th,W ⋅ 𝜑 ⋅ 𝜋 −
𝜑

2

►Thermally Improved PCB Winding Inductor

Thermal Bottleneck



𝑇W 𝜑 = 𝑇A + 𝑅th,T ⋅
𝑃W
4
+ 𝑞W ⋅

𝑟th,W
4

⋅ 𝜑 ⋅ 𝜋 − 2𝜑■ Thermally Improved PCB Winding

• Thermal “per-length” resistance

• “Per-length” conduction losses 

► Thermal model of a thermally improved PCB winding with four 
thermal interfaces

𝑟th,W =
1

2𝜋

2𝑟W𝜋

𝜆eff ⋅ 𝑏W ⋅ ℎPCB

𝑞W =
𝑃W
2𝜋

►Thermally Improved PCB Winding Inductor

► Simulated and calculated temperature distribution within the winding 
for PW = 6W and a heat sink temperature of TA = 25°C



■ Experimental Verification of the Thermal Model

• Measurement of the temperature distribution within 
two identical PCB windings with either 1 or 4 thermal 
interfaces 

• The rectangular aluminum heat sink was screwed on a 
water-cooled (TA = 25°C) base plate 

► Calculated and measured temperature distribution within the winding 
for a constant loss of 3.5W and TA = 25°C

► Experimental setup for the temperature measurement of two sample 
inductor windings

►Thermally Improved PCB Winding Inductor



■ Adapted Inductor Core Design

• Circular core → Rectangular core

• Homogeneous flux density in the inner and outer core 
limbs required [2]

►Thermally Improved PCB Winding Inductor

[2] “Highly Efficient/Compact Automotive PCB Winding Inductors Based on the Compensating Air-Gap Fringing Field Concept”, J. Schäfer, D. Bortis, 
J. W. Kolar IEEE Transactions on Power Electronics

Thermal Interface Material

Heat Flow

Aluminum Heat Sink 

of the Prototype

■ Core Holder for Improved Mechanical Stability

• 3D-printed core holder ensures homogeneous air gap 
and the ideal distance between air gap and winding

• Customized core can be used as conventional E cores



■ Series Resonant Inductor for 3kW DC/DC Converters

• Specifications:

• Lres = 6.8 µH
• Ipk = 25 A
• Irms = 16.2 A

► FEM-simulated resistance and current distribution of the 6.8µH inductor 
prototype (Measured AC to DC resistance ratio @ 300kHz: 1.49)

►Exemplary PCB-Winding Inductor 

► Simplified resonant converter topology for a 500V-12V DC/DC converter



■ Output Inductors of a Phase-Shifted Full-Bridge Converter

• Specifications:

• Lo = 250 nH
• Ipk = 210 A
• Irms = 118 A

►Exemplary PCB-Winding Inductor 

► 3.6kW 500V/12V three-port DC/DC converter for automotive applications



■ Conclusions

• Fringing field around air gaps can be used in a variety of applications for minimizing HF conduction 
losses

• CFFC can be used for shaping the current distribution in the conductor arbitrarily 

• Good thermal design → Very high current densities can be allowed

• Customized cores are necessary to fully utilize the benefits of the CFFC

►PCB-Winding Inductors Employing the CFFC 

It is possible to design highly efficient and 
compact PCB winding inductors

“Highly Efficient/Compact Automotive PCB Winding Inductors Based on the Compensating Air-Gap Fringing Field Concept”, J. Schäfer, D. Bortis, J. 
W. Kolar IEEE Transactions on Power Electronics



Thank You !


