A NOVEL SINGLE-SWITCH THREE-PHASE AC/DC BUCK-BOOST CONVERTER WITH HIGH-QUALITY INPUT CURRENT WAVEFORMS AND ISOLATED DC OUTPUT UN NOUVEAU CONVERTISSEUR AC/DC TRIPHASE BUCK-BOOST A UN SEUL COMMUTATEUR, AVEC FACTEUR DE FORME DU COURANT D'ENTREE ELEVE ET A SORTIE CONTINUE ISOLEE J.W. KOLAR, H. ERTL, F.C. ZACH Technical University Vienna, Power Electronics Section 359.5, Gusshausstrasse 27, Vienna A-1040, AUSTRIA #### Résumé Le présent exposé décrit un système convertisseur flyback AC-DC, à un interrupteur unique,triphasé. Le système opérant en mode discontinu est caractérisé par une structure simple des parties puissance et commande, par une faible distorsion du courant de réseau et par un comportement ohmique en mode fondamental du réseau et un potentiel de coupure de fréquence élevé de la tension de sortie régulée. Les relations entre la valeur de crète, de la valeur moyenne et de la valeur efficae, ainsi qu'entre la tension maximale de blocage des semi-conducteurs de puissance et les paramètres du circuit sont indiquèes en plus de l'analyse du comportement en régime permanent. L'analyse théorique est vérifiée et confirmée par simulation numérique. # 1 Introduction The topic of this paper is the development and analysis of a circuit concept for the realisation of the input unit of a unidirectional three-phase AC-DC converter. The converter s'all be applied as power supply for an electronic control unit and be fed from a 115V, 400Hs three-phase AC system. Due to safety and systems aspects it has to be realised as two-stage energy converter [1]. The controlled output voltage of the rectifier input stage is converted by a DC-DC converter into the load voltage levels. The basic development requirements which are relevant for the determination of the concept of the mains converter are defined as follows: - · high reliability (low complexity of the power and control units) - high power density - efficiency > 0.85 - wide input voltage range - · isolation of the AC and the DC sides - total harmonic distortion factor < 0.05 (with the assumption of a purely sinusoidal and symmetric mains voltage system) - fundamental displacement factor of the mains currents > 0.95 - current limited start-up, limitation of the input currents for transient mains overvoltages, limitation of the output current (overload protection) - · possibility of parallel operation of several converters. For universal applicability of the AC-DC converter the DC link voltage is defined as $U_O = 280$ V. This is approximately equal to the (ideal) mean output voltage for three-phase diode rectification of the 115V mains. Due to the high voltage level this can also be used for buffering of mains voltage outages with relatively low capacitances (minimisation of the sise). The maximum output power of the mains converter is given by 690W. In the following, in section 2 a new topology of a three-phase single-switch pulse rectifier system is developed via a three-phase extension of a DC-DC flyback converter. Section 3 treats the analysis of the operating principle of the system which forms the basis for the derivation of the equations for the stationary operation (section 4). With the assumption of high pulse frequency in section 5 analytic approximations of the current stresses (peak values, average values, rms values) on the system components are calculated and the blocking voltage stresses on the power electronic devices are given. The accuracy (or the limit of applicability) of the analytical approximations is derived via a comparison of the results of the calculation with the results of a digital simulation. Based on section 5, in section 6 the approach for dimensioning the converter is discussed. Parthermore, in this section the #### Abstract In this paper a new three-phase single-switch AC-DC flyback converter system is presented. The system operates in the discontinuous mode. The simple structure of its power and control circuit, low mains current distortion and resistive fundamental behavior as well as the high-frequency isolation of the controlled output voltage have to be pointed out. Besides the analysis of the stationary operating behavior the dependencies of the peak values, average values and rms values of the device currents and of the maximum blocking voltages across the power electronic devices on the circuit parameters are given as analytic approximations. The theoretical analysis is verified by digital simulation. values for the component stresses resulting for the initially given operating parameters are summarised. These component stresses form the basis for the selection of the power electronic devices and can be used for an assessment of the converter within a concept evaluation. Section 7 describes a simple extension of the converter structure which leads to an increase of the system efficiency and to a reduction of the blocking voltage stress of the power electronic devices. Finally, the advantages and disadvantages of the converter are compared and commented in section 8. # 2 Converter Topologies Due to requirements for low effects on the mains and for high power density, the mains converter has to be realised as pulse converter system. For high system pulse frequency the filtering effort is considerably reduced as compared to line-commutated systems [2]. Furthermore, the isolation can be included directly into the converter function and be achieved by a small sise high-frequency transformer. For the realisation of a three-phase pulse rectifier system one can apply (besides three-phase converter structures) also three single-phase AC-DC converters which are connected to a three-phase system [3]-[5]. The combination of three single-phase units makes possible the design of a fault-tolerant system due to the parallel operation on the output side of the three partial systems which are fed by the different mains phases. The dimensioning of the three converter modules has to be performed according to half of the output power of the overall system. This results in high reliability via the redundancy of one module. Purthermore, the modular design simplifies the system development and test. However, these advantages are paid for by a high device count for power and control circuits and by a reduction of the power density. A further disadvantage is the basically low utilisation of the phase modules which is due to the instantaneous phase power pulsating with twice the mains frequency. In the case at hand we want to prefer a direct three-phase realisation. Based on [6] in [7]-[10] three-phase unidirectional pulse rectifier systems with high-frequency isolation are introduced. They show a very simple structure of the power and control circuits and satisfy the initially mentioned requirement regarding low system complexity. The converter topologies can be thought to be formed via a three-phase extension of basic DC-DC converter structures [7]. They are characterised by discontinuous input phase currents (three-phase single-switch discontinuous inductor current mode boost-type rectifier) or by discontinuous input phase voltages (three-phase single-switch discontinuous capacitor voltage mode buck-type rectifier). The mains voltage proportional control of the peak values of the converter input currents/voltages Fig.1: Development of three-phase single-switch AC-DC flyback converter topologies (b), (c), (d) based on the basic structure of a DC-DC flyback converter (a); (c): three-phase single-switch discontinuous inductor current mode flyback rectifier (regarding the coupling of the partial windings of Fig.2). is achieved in analogy to the discontinuous operation of single-phase AC-DC pulse rectifiers having constant power transistor on-time directly by the mains voltages/currents (automatic current shaping, [11]). For series connection of a mains filter which suppresses input current harmonics with switching frequency, a considerable reduction of the effects on the mains is achieved, as compared to line-commutated rectification. As a more detailed analysis of the system behavior shows, the harmonics content of the mains currents remaining after filtering the discontinuous input quantities is essentially determined by the voltage or current transformation ratio of the converter, however [7], [10], [12]. E.g., in three-phase single-switch discontinuous inductor current mode boost rectifier systems high amplitudes of low frequency harmonics are present in the mains current spectrum [12] for output voltages being low as compared to the amplitude of the line-to-line mains voltage. This leads to a small distortion factor of the mains currents only for high output voltages or for low input voltages, respectively. Due to the required wide input voltage region one has to ask the question regarding the topologies of three-phase single-switch discontinuous-mode pulse rectifier systems with input voltage independent (ideal) sinusoidal input currents. Discontinuous-mode single-phase AC-DC flyback converters show a purely sinusoidal shape of the filtered input currents for constant pulse frequency and constant on-time [13]. In connection with the simple structure of the power circuit and the full controllability of the power flow (as given for this converter type) this motivates the development of three-phase pulse rectifier systems based on the basic structure of a DC-DC flyback converter as described in the following. Figure 1, (a) shows the power circuit of a DC-DC flyback converter which can be extended to a three-phase converter by connecting a three-phase diode bridge D_1 (cf. Fig.1, (b)) in series. However, low-frequency harmonics of high amplitude are present in the mains current of this system. This is the case because (due to the operating principle of the three-phase diode bridge) for transistor T_1 conducting only two phases conduct current. Therefore, the phase current shape shows $\pi/3$ wide intervals with zero current. If one splits up
$L_{U,1}$ to the valve branches (cf. Fig.1, (e)), the mains voltage system and the valve voltage system are decoupled and a simultaneous current flow in all phases is made possible. Due to splitting up the primary windings, the direction of the secondary current is not dependent on the direction of the primary phase currents. The basic secondary circuit structure of the DC-DC converter can therefore be maintained and the secondary circuits of the phases can be connected in parallel directly. An AC-side arrangement (and split-up) of $L_{U,1}$ results in the converter structure shown in Fig.1, (d) [14] which makes possible (contrary to (c)) a combination of the phase energy storage devices to a three-phase system. For rectification of the AC currents being present on the secondary one has to connect the output diodes D_2 in a three-phase bridge configuration, however. Therefore, the function of the converter as flyback converter is linked to a minimum output voltage value defined by mains voltage and turns ratio. For the case at hand, a closer analysis therefore can be limited to the circuit shown in Fig. 1, (c), which will be called in the following three-phase singleswitch discontinuous inductor current mode (DICM) flyback rectifier. Remark: If one moves the power transistor T_1 instead of $L_{U,1}$ to the input of the three-phase bridge D_1 , there follows a three-phase flyback converter structure which requires three turn-off power semiconductor devices. With regard to the desired minimum complexity, this variant (as analysed in [15]) and other variants of higher complexity (as given in the literature, e.g., in [16], [17]) will not be considered here. ## 3 Principle of Operation In analogy to the three-phase single-switch discontinuous-mode pulse rectifier systems as given in the literature, the control of the system shown in Fig.2 may be performed in the s'ationary case with a pulse frequency f_P and an on-time of the power transistor T_1 being constant within the mains period. A synchronisation of f_P and mains frequency f_N can be omitted for $f_P \gg f_N$. Due to the low-pass characteristic of the mains filter L_N , C_N the mains voltage can be assumed to lie directly at the filter output. For illustrating the operating principle Fig.3 shows the conducting states of the converter occurring during the pulse period $t_R \in [0,T_F]$. (t_R) denotes a local time running within the considered pulse period.) Concerning the mains phase voltages being approximately constant within the pulse period we assume $u_{N,R} > 0$, $u_{N,T} \le u_{N,S} \le 0$ (being valid in an interval of $\pi/6$ of Fig.2: Basic structure of the power and control circuits of a three-phase singleswitch DICM flyback rectifier; the feeding mains is replaced by a Y-connection of ideal voltage sources un,(RST); filtering of the high-frequency spectral components of the discontinuous converter input currents iv,1,(RST) by a mains filter LN, CN; Ro: load resistance (e.g., voltage dependent input impedance of a DC-DC converter connected to the output of the pulse rectifier); in the stationary case the control of the power transistor T_1 is performed by a constant pulse frequency fp and by a constant relative turn-on time op being set by an output voltage control circuit. Fig. 3: Sequence of the conduction states of a three-phase single-switch DICM flyback rectifier within a pulse period $t_{\mu} \in [0,T_{P}]$ for $u_{N,R} > 0$, $u_{N,T} \le u_{N,S} \le 0$; t_{μ} denotes a local time within the pulse period; $t_{\mu} = 0$: turn-on instant of the power transistor T_{1} ; $t_{\mu} = t_{\mu,1}$: turn-off instant of T_{1} ; the position of the pulse interval considered within the fundamental period is given by the global time t or by the phase angle $\varphi_{N} = \omega_{N} t$ ($\omega_{N} = \text{angular mains frequency}$). the mains fundamental period, (cf. Fig.5, (a))). Due to the phase-symmetric structure of the converter and due to the assumption of a purely sinusoidal voltage system the analysis of this angle interval determines the system behavior within the entire fundamental period. Figure 4 shows the local shape of the phase currents being related to Fig.3. Before turning on T_1 we have according to the operation of the system in discontinuous mode: $w_{J,I,RST} = i_{J,I,RST} = 0$. T_1 is turned on at $t_\mu = 0$. The DC side short-circuit of the bridge circuit consisting of $L_{U,I,RST,l,p} = L_{U,I,RST,l,n}$ (primary inductances of the phase transformers) and $D_{I,RST,l,p} = L_{U,I,RST,l,n}$ (diodes on the primary side) results in a rate of rise of the input currents being defined by the instantaneous values of the mains phase voltages. For constant turn-on time therefore in the turn-off instant $t_\mu = t_{\mu,1}$ of T_1 phase current values are obtained which vary sinusoidally over the mains period and which are proportional to the respective phase voltage. The demagnetisation of the transformers is performed via the secondary diodes $D_{2,(RST)}$. For discontinuous mode we have to guarantee $t_{\mu,4} \leq T_P$ according to Fig.4. A stress on T_1 caused by reverse recovery currents of the diodes $D_{2,(RST)}$ is avoided therefore Fig.4: Time characteristic of the converter input currents $i_{U,1,(RST)}$ and of the output currents $i_{U,2,(RST)}$ (dashed) within a pulse period for $t_{\mu} \in [0,T_{\mu}]$ for $u_{N,R} > 0$, $u_{N,T} \le w_{N,S} \le 0$ (cf. Fig.3); $t_{\mu,6} - t_{\mu,1}$: demagnetisation interval; parameter: $\frac{W}{M_{\pi}} = 1.2$. Because the demagnetisation interval does not influence the mains current shape there remain purely sinusoidal mains currents which are in phase with the mains voltages. This is due to the sinusoidal envelope of the converter input currents iv.1.(RST) (cf. Fig.5. (b)) for ideal filtering of the harmonics with pulse frequency (cf. section 4.2). The system shows therefore (contrary to, e.g., three-phase DICM boost-type rectifiers) low effects on the mains independently of the voltage transfer ratio as well as a high power factor and resistive mains behavior. Furthermore, independently of the output voltage level full controllability of the power flow is given. This makes a limitation of the start-up current or an overcurrent protection easily realisable. The advantages of the proposed concept mentioned so far have to be compared to the basic disadvantages being caused by the high current stresses on the devices due to the flyback converter principle and by a high filtering effort. In order to establish an evaluation basis concerning the applicability of the proposed converter system (going beyond the special application described here) and concerning a comparison with alternative concepts, we therefore want to determine in the following (after formulation of the basic equations # 4 System Analysis #### 4.1 Assumptions For the analysis of the stationary operating behavior the following assumptions are made in order to concentrate on the essential: - purely sinusoidal, symmetric mains voltage system un.(RST), - purely sinusoidal mains currents (fundamental; switching frequency components of $i_{U,1,(RST)}$ are suppressed ideal mains filter), - the voltage ripple of the filter capacitors CN may be neglected, - fundamental components of the voltage across L_N may be neglected as compared to the amplitude Û_N of the mains phase voltages; accordingly, the filter capacitor voltage is assumed impressed and set equal to the mains voltage. - ideal magnetic coupling of the two primary windings and of the secondary winding for each phase. - o constant output voltage uo. - constant load (output) current io, - f_P > 200 f_N or T_P ≪ T_N, respectively (mains phase voltages approximately constant within a pulse period), - ideal system components (especially: neglection of the system losses, switching times etc.). Of special importance is the assumption of a pulse frequency being sufficiently higher than the mains frequency. As described in section 5.1, this assumption makes possible a very exact approximation of the current stresses on othe system components being relevant for dimensioning. Therefore, one can omit a very time-consuming determination of the device stresses by digital simulation. Furthermore, the knowledge of analytical relationships has (as compared to a system analysis by digital simulation whose validity is limited to discrete parameter sets) the advantage of a deeper insight into the system behavior and allows therefore an immediate conclusion regarding the influence of parameter variations on the device stresses. # 4.2 Basic Equations The analysis of the basic equations of the stationary operating mode is performed for constant f_P and constant local on-time $t_{p,1}$ of T_1 . Parthermore, only discontinuous mode is assumed as well as a symmetric split-up of the primary windings of the transformers according to $$L_{U,1,(RST),p} = L_{U,1,(RST),n} = L_{U,1}$$ (1) For the relation of primary and secondary inductances we have $$\frac{L_{U,1}}{L_{U,2}} = \frac{N_1^2}{N_2^2} \tag{2}$$ according to the assumption of ideal coupling. Based on a symmetrical, purely sinusoidal mains voltage system there follows for the instantaneous input phase currents at turn-off instant $t_{\mu}=t_{\mu,1}$ of T_1 (cf. Fig.4): $$i_{U,1,k_B1,R} = \hat{U}_N \frac{t_{g,1}}{L_{U,1}} \cos(\varphi_N)$$ $i_{U,1,k_B1,S} = \hat{U}_N \frac{t_{g,1}}{L_{U,1}} \cos(\varphi_N - \frac{2\pi}{3})$ $i_{U,1,k_B1,T} = \hat{U}_N \frac{t_{g,1}}{L_{U,1}} \cos(\varphi_N + \frac{2\pi}{3})$. (3) There, the position of the considered pulse interval within the fundamental period T_N is defined by the angle $$\varphi_N = \omega_N t$$. (4) The mains currents remaining after (ideal) filtering of the spectral components with pulse frequency (cf. L_N , C_N in Fig.2) of the discontinuous input currents $i_{U,1,(RST)}$ now follow directly via averaging related to the pulse
period as: $$i_{N,R} = \frac{1}{2} \hat{U}_N \frac{T_P}{L_{U,1}} \delta_P^2 \cos(\varphi_N)$$ $$i_{N,S} = \frac{1}{2} \hat{U}_N \frac{T_P}{L_{U,1}} \delta_P^2 \cos(\varphi_N - \frac{2\pi}{3})$$ $$i_{N,T} = \frac{1}{2} \hat{U}_N \frac{T_P}{L_{U,2}} \delta_P^2 \cos(\varphi_N + \frac{2\pi}{3}), \qquad (5)$$ where $$\delta_P = \frac{1}{T_p} t_{\mu,1} \tag{6}$$ denotes the relative turn-on time or the duty cycle of the power transistor T_1 . As already described in section 3, no low-frequency effects of the system on the mains occur. The amplitude of the (ideally) purely sinusoidal mains currents being in phase with the mains phase voltages is given with Eq.(5) as: $$\hat{I}_{N} = \frac{1}{2} \hat{U}_{N} \frac{T_{P}}{L_{U,1}} \delta_{P}^{2} . \tag{7}$$ Regarding the loading of the mains the converter therefore can be assumed to be replaced by equivalent resistances $$R_N = 2 \; \frac{L_{U,1}}{T_P} \delta_P^{-2} \tag{8}$$ (for Y-connection) which can be set by the relative turn-on time δ_P of T_1 . Remark: This defining equation of an input equivalent resistance is also given in an identical form for DICM DC-DC (cf. [18], Eq.(13)) and for single-phase AC-DC flyback converters (cf. [11], Eq.(13.28)) and is valid approximately also for three-phase single-switch DICM boost-type input rectifiers (cf. [7], Eq.(16) or [12], Eq.(38)). Considering the equality of input and output power (because the system has been assumed loss-free) we have for the converter output power: $$P_O = \frac{3}{4} \hat{U}_N^2 \frac{T_P}{L_{U,1}} \delta_P^2 \ . \tag{9}$$ For ideal magnetic coupling and for discontinuous operation the entire magnetic energy being stored at instant $t_{\mu}=t_{\mu,1}$ in the primary inductances is transferred into the secondary within each pulse period. The power flow as averaged over one pulse period therefore is not influenced by the value of the output voltage u_{O} and has the time-constant value $$p_{O,avg} = P_O \tag{10}$$ for the stationary case. The system shows a constant-power behavior on the output side being also characteristic for single-phase AC-DC Syback converters operating in discontinuous mode [19]. One has to point out, however, that in the case at hand (contrary to single-phase systems) also for highly dynamic output voltage control no low-frequency distortion of the input current shape occurs. This is due to the time-constant (average) power flow for constant turn-on time. As shown in the following section, besides the output current $$I_O = \frac{P_O}{U_O} \tag{11}$$ and the duty ratio δ_P of T_1 the global maximum value of the transistor current $$I_{T1,\text{max}} = \hat{U}_N \frac{T_P}{L_{U,1}} \delta_P \tag{12}$$ and the global maximum value of the output diode current $$I_{D2,max} = I_{T1,max} \frac{N_1}{M_2}$$ (13) are of paramout importance regarding the current stress on the system components. Remark: In this paper, a global maximum value denotes the maximum of a signal characteristic within the fundamental period. This maximum value has to be distinguished from a local maximum value being present within a pulse interval. E.g., the current values $i_{U,1,0,0},i_{RST}$; given in Eq.(3) represent local maximum values of the input current shape. For the relation of the amplitude of the mains current fundamental and the maximum transistor current there follows with Eqs. (7, 12): $$\frac{I_{T1,\text{max}}}{\hat{I}_H} = 2\delta_P^{-1} \ . \tag{14}$$ Therefore, there results, e.g., for $\delta_P=0.5$ a current stress on T_1 being four times the peak value of the mains current fundamental. This clearly points out the high current stress on the devices characterizing the discontinuous mode of a flyback converter. For the (global) maximum duration of the current flow within a pulse interval there follows: $$T = t_{\mu,4,\text{max}} = t_{\mu,1} + \Delta t_{\mu,41,\text{max}} = t_{\mu,1} \left(1 + \frac{\dot{U}_N}{U_O} \frac{N_2}{N_1}\right)$$ (15) where $$\Delta t_{\mu,41,max} = \frac{\hat{U}_N}{U_O} \frac{N_2}{N_1} t_{\mu,1}$$ (16) denotes the maximum duration of the demagnetisation phase. For discontinuous mode we have to guarantee therefore: $$T_P \ge T$$. (17) # 5 Component Ratings For dimensioning and determination of the application region of the system especially the current and voltage stresses on the power electronic devices as well as of the passive components are of interest. The current and voltage characteristics to be analysed for the calculation of the component stresses are shown in Fig. 5 (c), (d), (e), (f) with the exception of the mains filter and the output capacitor currents. The calculation of the dependencies of device stresses being relevant for dimensioning (current and blocking voltage peak values, current average and rms values) on the system parameters (input voltage, output voltage, output power, turns ratio, pulse frequency etc.) as simple analytic approximations is the topic of the following sections. ## 5.1 Analysis Method The basis of the calculation method is a quasi-continuous analytical approximation of the discontinuous system behavior [20], [21], being defined by averaging the quantities over a pulse period. The knowledge of the characteristic of a time function $i_k(t_p)$ within one pulse period $t_p \in [0,t_p]$ is replaced there by the (discrete) quantities which can be denoted as local mean value $$i_{i,x,y} = \frac{1}{T_P} \int_0^{T_P} i_i(t_p) dt_p$$ (18) and local rms value: $$i_{.,rms}^2 = \frac{1}{T_P} \int_0^{T_P} i_i^2(t_\mu) dt_\mu$$ (19) (Remark: the local rms value corresponds to a discrete time function having equal loss.) If these local mean values now are related to the position φ_N (or to the global time $t = \omega_N^{-1} \varphi_N$) of the pulse interval within the fundamental period T_N , then there is defined a continuous (global) time characteristic of the local mean value and of the local rms value. By a second averaging related to the fundamental period $$I_{i,avg} = \frac{1}{2\pi} \int_{a}^{2\pi} i_{i,avg}(\varphi_N) d\varphi_N \qquad (20)$$ $$I_{i,rms}^2 = \frac{1}{2\pi} \int_0^{2\pi} i_{i,rms}^2(\varphi_N) d\varphi_N$$ (21) there follow accordingly directly the characteristic quantities global mean value and global rms value which characterise the component stresses. In connection with a minimisation of component size and weight of the magnetic devices one has to aim in a practical realisation, by all means, for $f_P \gg f_N$. Because in the discontinuous mode a transistor stress by reverse recovery currents of the output diodes D_2 is avoided, $f_p \geq 200f_N$ seems to be obtainable in the case at hand. As a digital simulation based on the assumptions made in section 4.1 shows, the derivations of the analytical expressions from exact results remain below 2% there. Therefore, the calculation results given in the following can be used as basis for dimensioning. ### 5.2 Characteristic Current Values of the Devices Mains filter capacitance Cn: $$I_{CN,rms}^2 = \frac{1}{6}(1 - \frac{3}{4}\delta_P)\delta_P I_{T1,max}^2$$ (22) $$I_{CN,max} = I_{T1,max} - \hat{I}_N \qquad (23)$$ Transformer $L_{U,1,p}, L_{U,1,n}, L_{U,2}$ primary: $$I_{U,1,p,max} = I_{U,1,n,max} = I_{D1,max}$$ (24) $$I_{U,1,p,rms} = I_{U,1,p,rms} = I_{D1,rms}$$ (25) Fig. 5: Digital simulation of a three-phase single-switch DICM flyback rectifier operating with constant switching frequency f_P without mains filter L_N , C_N connected in series based on the assumptions made in section 4.1; turn-on time $t_{p,1}$ of T_1 constant within the fundamental period; representation of one fundamental period T_N ; the angle interval $\varphi_N \in [0, \frac{\pi}{6}]$ considered for the analysis of the system behavior (cf. section 3 is marked in (a) by the dotted area; (a): mains phase voltages $u_{N,(RST)}$ (150V/div); (b): converter input currents $i_{U,1,(RST)}$ (10A/div); (c): transistor current $i_{T,1}$ (10A/div) and transistor blocking voltage $u_{T,1}$ (400V/div); (d): primary diode current $i_{D,1,R,n}$ (10A/div) and diode blocking voltage uD1,R,n (300V/div); (e): secondary diode current iD2,R (5A/div) and diode blocking voltage uD3,R (400V/div); (f): current i feeding the output capacitor and transistor current i_{T1} , (10A/div); parameters: $P_O = 800$ W, $U_{N,rms} = 115$ V, $f_N = 400$ Hs, $U_O=280 \text{V}, \frac{N_1}{N_3}=0.57, L_{U,1}=0.36 \text{mH}, L_{U,2}=1.12 \text{mH}, f_P=1/T_P=15.6 \text{kHs}, t_{\mu,1}=30.8 \mu \text{s}.$ secondary: $$I_{U,2,max} = I_{D2,max} \tag{26}$$ $$I_{U,2,rms} = I_{D2,rms} \tag{27}$$ Diodes D_1 : $$I_{D1,max} = I_{T1,max} \tag{28}$$ $$I_{D1,eeg} = \frac{1}{3}I_{T1,eeg}$$ (29) $$I_{D1,rm,}^2 = \frac{1}{12} \delta_P I_{T1,max}^2$$ (30) Power Transistor T1: $$I_{T1,\text{max}} = \hat{U}_N \frac{T_P}{L_{U_A}} \delta_P \tag{31}$$ $$I_{T1,avg} = \frac{3}{2\pi} \delta_P I_{T1,max}$$ (32) $$I_{T1,\text{rms}}^2 = \frac{1}{6} (1 + \frac{3\sqrt{3}}{2\pi}) \delta_P I_{T1,\text{max}}^2$$ (33) Diodes D2: $$I_{D2,max} = I_{T1,max} \frac{N_1}{N_2}$$ (34) $$I_{D2,avg} = \frac{1}{3}I_O \tag{35}$$ $$I_{D2,rms}^2 = \frac{16}{27\pi} I_O I_{D2,max}$$ (36) Total current of the secondary diode branches: $$I_{max} = 2 I_{D2,max} \tag{37}$$ Output capacitance C: $$I_{C,rms}^2 = \frac{8}{3\pi} (\sqrt{3} - \frac{1}{3}) I_O I_{D2,max} - I_O^2$$ (38) $I_{C,max} = I_{max} - I_O$ (39) $$I_{C,\max} = I_{\max} - I_O \tag{39}$$ # 5.3 Blocking Vo.tage Stress Power Transistor To: $$U_{T1,\text{max},i} = \sqrt{3}\hat{U}_N + 2\frac{N_1}{N_2}U_O \tag{40}$$ The voltage value given here is related to ideal magnetic coupling (k=1) of the primary and secondary, according to the assumptions made in section For non-ideal magnetic coupling $$k = \sqrt{1-\sigma}$$ of the primary and the secondary (the coupling of the two primary windings $L_{U,1,(RST),p}$ and $L_{U,1,(RST),n}$ is still assumed to be ideal) there occurs contrary to ideal coupling no immediate current commutation from $L_{U,1,(RST),p}$ or $L_{U,1,(RST),n}$ to
$L_{U,2,(RST)}$ when turning off T_1 . For limiting the blocking voltage one has to provide a circuit U_L in parallel to T_1 . Its function is illustrated by an avalanche-diode in Fig.6. Then a maximum blocking voltage stress on T1 is fixed by $$U_{T1,\max} = U_L , \qquad (41)$$ replacing Eq. (40). The length of the current commutation interval and, therefore, the power dissipated in U_L are substantially influenced by the maximum blocking voltage stress. For maximising the system efficiency one has to aim for values of U_L as high as possible, where the maximum transistor voltage has to be observed. Diodes D1: The maximum blocking voltage stress can only be given as a worst-case esti- $$U_{D1,\max} \le \max \left(\begin{array}{c} \frac{3}{4} \tilde{U}_N + \frac{1}{3} U_L \\ \sqrt{3} \tilde{U}_N + \frac{1}{3} U_L - \frac{2}{3} k \frac{N_1}{N_2} U_O \\ \sqrt{3} \tilde{U}_N + k \frac{N_1}{N_3} U_O \end{array} \right) \tag{42}$$ This is due to the relatively complex blocking voltage characteristic for nonideal coupling and limitation of the voltage accross T_1 (cf. Fig.5 (d), valid only for ideal coupling). Fig. 8: Reduction of the losses in the blocking voltage limitation circuit U_L connected in parallel to T_1 (the losses occur due to non-ideal magnetic coupling of primary and secondary); (a): T_2 turned on in interval $t_\mu \in [t_{\mu,1}, t_{\mu,c} > t_{\mu,b}]$ (cf. Fig.7, (c)), diode D prevents the shorting of the output voltage; (b): as (a), but avoidance of an increase of the conduction losses caused by diode D (representation limited to the secondary systems part). ### Diodes D2: For neglection of a small reduction of the blocking voltage stress for non-ideal coupling there follows: $$U_{D2,max} = U_O + \frac{N_2}{N_1} \hat{U}_N . {43}$$ # 6 Converter Design In the following the procedure for dimensioning of the converter is outlined and an overview over the component stresses is given using a numerical example. #### 6.1 Procedure Setting the turns ratio and the inductance of the primary of the transformer has to be done under consideration of the following: (1) blocking voltage stresses on the semiconductors occurring for maximum input voltage $\hat{U}_{N,\text{max}}$. (2) maintaining the discontinuous mode for minimum input voltage $\hat{U}_{N,\text{min}}$ and maximum output power $P_{O,\text{max}}$. Regarding the blocking voltage stress one has to keep in mind especially the power transistor T_1 . As outlined in connection with $E_{\mathbf{q}}.(41)$, one has to set the maximum blocking voltage $U_{T1,\max,i}$ (occurring for ideal coupling) sufficiently below the maximum blocking voltage for non-ideal coupling (as defined by U_L). Therefore, there follows by transformation of Eq.(40) for the terms ratio: $$\frac{N_1}{N_2} \le (U_{T1,max,i} - \sqrt{3}\hat{U}_{N,max}) \frac{1}{2U_O} . \tag{44}$$ One has to point out that a reduction of $U_{T1,max,i}$ leads to an increase of the blocking voltage stress on the diodes D_2 according to $$U_{D2,mas} \ge U_O \left(1 + \frac{2\hat{U}_{N,mas}}{U_{T1,mas,i} - \sqrt{3}\hat{U}_{N,mas}}\right)$$, (45) (cf. Eq.(43)). Using Eq.(15) and Eq.(17) there follows for guaranteeing the discontinuous mode for minimum input voltage: $$\delta_{P,\text{max}} \le \left(1 + \frac{\hat{U}_{N,\text{min}}}{U_O} \frac{N_1}{\hat{N}_1}\right)^{-1}.$$ (46) Then, the inductance of the primary windings of the transformer results in (cf. Eq.(9)): $$L_{U,1} = \frac{3}{4} \hat{U}_{H,\min}^2 \frac{T_P}{P_{O,\max}} \delta_{P,\max}^2 . \tag{47}$$ The inductance of the secondary windings is given by the relation $$L_{U,2} = L_{U,1} \frac{N_2^2}{N_1^2} \tag{48}$$ (cf. Eq.(2)). After determination of the basic system parameters one can now (as shown in the following by using a numerical example) calculate the remaining dimensioning parameters by applying the relations compiled in sections 5.2 and 5.1 ### 6.2 Design Example We assume (cf. aection 1): $$U_{N,rms}$$ 50 V ... 165 V = 400 Hs U_O = 280 V $P_{O,max}$ = 690 W $(P_{O,exy}$ = 640 W) f_P = 100 kHs $(T_P = 10 \ \mu s)$. The system efficiency to be expected is estimated as $\eta \approx 0.85$ in order to provide a sufficient safety margin. Therefore, $P_O = 810$ W is the basis for dimensioning. For calculation of the maximum duty cycle the inclusion of a control margin can be omitted, therefore. For the threshold level of the blocking voltage limitation circuit (defining the maximum voltage stress of T_1) we choose $$U_L = 800 \text{V}$$. $$U_{T1,mex.}$$ = 600V , respectively. There, the realisation of T₁ by direct paralleling of a power MOSFET and of an IGBT (minimisation of the switching losses and the onstate losses with minimum control effort, [22]) is considered. The leakage of the transformer is estimated as $$\sigma = 0.025$$ According to sections 6.1 and 5.3 there follows then: $$\frac{N_{\star}}{N_{\star}}$$ = 0.35 $U_{D2,max}$ = 945 V $U_{D1,max}$ = 606 V $\bar{U}_{N,max}$ = 71 V : $\delta_{P,max}$ = 0.58 $\dot{U}_{N,max}$ = 233 V : $\delta_{P,max}$ = 0.176 $L_{U.1}$ = 15.5 μ H $L_{U.2}$ = 126.5 μ H . As mentioned already in section 4.2, the component current stress is essentially determined by the maximum values of the transistor current and the output diode current and by the duty ratio δ_F . For the determination of the maximum stress on the AC-side components one has to consider the case of minimum input voltage (or maximum δ_F , respectively), therefore. Remark: Because the output power is determined directly by the maximum value of the transistor current according to $$P_O = \frac{3}{4} \frac{L_{U,1}}{T_P} I_{T_1,\text{max}}^2 \tag{49}$$ (cf. Eqs.(9, 12)), for constant output power I_{T1,max} and, therefore, the secondary currents are not influenced by the input voltage value. The current characteristic values of the DC-side devices are only dependent on the output power and not on the input voltage, therefore. Via evaluating the relations given in section 4.2 and section 5.2 there follows for the current ratings: Amplitude of the mains current fundamental: Mains filter capacitor C_N: $$I_{CN,rms} = 6.2 \text{ A}$$ $I_{CN,rms} = 19.0 \text{ A}$ Transformer inductances $L_{U,1,p}$, $L_{U,1,n}$, $L_{U,2}$: Primary: $$I_{U,1,p,max} = I_{U,1,n,max} = 26.6 \text{ A}$$ $I_{U,1,p,rms} = I_{U,1,n,rms} = 5.9 \text{ A}$ Secondary: $$I_{U,2,mas} = 9.3 \text{ A}$$ $I_{U,2,rms} = 2.3 \text{ A}$ Diodes D1: $$I_{D1,max} = 26.6 \text{ A}$$ $I_{D1,max} = 2.5 \text{ A}$ $I_{D1,rms} = 5.9 \text{ A}$ Fig. 7: Digital simulation of the shapes of the input and output currents of the converter $(i_{U,1,(RST)})$ and $i_{U,2,(RST)})$ within a pulse period (cf. (a)); non-ideal magnetic coupling of $L_{U,1}$ and $L_{U,2}$; s_{T1} : switching function or control signal of T_1 , respectively; $t_{\mu,1}$: turn-off instant of T_1 ; parameters: as Fig. 5, but $\sigma = 0.0975$; $u_{N,R} > 0$, $u_{N,R} \le 0$. Power transistor T: $$I_{T1,mex} = 26.6 \text{ A}$$ $I_{T1,evg} = 7.4 \text{ A}$ $I_{T1,rms} = 11.2 \text{ A}$ Diodes Da $$\begin{array}{lll} I_{D2,max} & = & 9.3 \text{ A} \\ I_{D2,avg} & = & 0.96 \text{ A} \\ I_{D2,rms} & = & 2.3 \text{ A} \end{array}$$ Total current through diodes Da: Output capacitor C: $$I_{C,rms} = 4.9 \text{ A}$$ $I_{C,max} = 15.7 \text{ A}$ Output current Io: $$I_O = 2.9 \text{ A}$$. ### 7 Efficiency Improvement As mentioned in section 5.3 and as easily verifyable by digital simulation, the obtainable efficiency is influenced substantially by the difference $U_L - U_{T1,\max,x}$, besides by the loss contributions of the semiconductors and the passive components. A high efficiency is inevitably linked to a high blocking voltage stress on T_1 (defined by U_L) and to low transformer leakage (connected with a high manufacturing effort). A ficticious increase of U_L (while avoiding an increase of the blocking voltage stress on T_1) can now be achieved by applying a second power transistor T_2 (on the secondary) and of an output diode D (cf. Fig.6, left side). T_2 is turned on at turn-off instant of T_1 (cf. Fig.7, (c)). By shorting the secondary winding the transformatory coupling of a voltage into the primary (which would slow down the current commutation) is suppressed. Due to this, the current commutation interval is shortened and the losses in U_L are reduced accordingly. After turning off T_2 the magnetisation energy (stored in $L_{U, 2, (RST)}$) is fed into to the output via diode D which prevents shorting of the output voltage when T_2 is turned on. Due to its very short on-time one has to dimension T_2 only regarding the pulse current stress and a transistor with low average carrent carrying capability can be applied. The control of T_2 which is directly linked to the turn-off of T_1 furthermore allows a simple realisation of the control stage. Therefore, with a small increase of system complexity a significant converter efficiency improvement (or a reduction of the blocking voltage stress in T_1 , respectively) is made possible. - (b): Current commutation from $L_{U,1,R,p}, L_{U,1,S,n}, L_{U,1,T,n}$ to $L_{U,2,\{RST\}}$ for $U_L=800 \, \rm V$; - (c): as (b), but with power transistor T_2 on the secondary; ρ_{T_2} : switching function of T_2 , ρ_{T_2} marked by the dotted area; current commutation interval $t_\mu \in [t_{\mu,1}, t_{\mu,b}]$ significantly reduced as compared to (b), reduction of the limitation losses. # 8 Conclusions Based on the topology of a DC-DC flyback converter a new three-phase singleswitch DICM rectifier system has been developed in this paper. - + Ideally, complete avoidance of low-frequency effects on the mains (purely sinusoidal mains currents being in phase with the mains voltages), - + simple structure of the power circuit and of the control circuit (constant pulse frequency and - for the stationary case - constant turn-on time of the power transistor allow the
application of standard SMPS control ICs), possibility of sensing the output voltage to be controlled by a third transformer winding which also can be used for the internal supply of the system. - high-frequency potential separation between AC and DC sides (possibility of matching the input and output voltage levels and reduction of the component stress by proper choice of the turns ratio), - + simple control behavior (corresponds to a DCIM DC-DC flyback system [23], [24] due to the time-constant average power flow (cf. Eq.(10))), - full controllability of the power flow (inrush-current limitation (start-up or transient overvoltages of the mains), output current limitation (load faults)), - low circuit effort when various potential separated output voltages are to be realised, - + possibility of direct parallel operation of several converters - High peak current stress on the components (high conduction losses, especially if a MOSFET power transistor is used, high requirements regarding the LSR (equivalent series resistance) of the passive components (filtering and smoothing capacitors etc.)), - high blocking voltage stress on the power semiconductors, - unidirectional magnetisation of the transformers (low utilisation of the - high filtering effort for avoiding conducted EMI (electromagnetic interference) reduction of the power density of the system. The advantages and drawbacks mentioned here correspond to a large extent to these of a DICM DC-DC flyback converter; an application of the system is especially of interest for low output power (<1kW) and low rated mains voltage. Finally, there shall be pointed out that one can basically avoid low-frequency effects on the mains only for discontinuous mode of the system (when three-phase energy is transformed into DC energy and only a single controlled power electronic device is used). The simple system structure being paid for high current stress therefore (contrary to DC-DC converters) cannot be reduced by choosing the continuous mode. # List of Symbols | C | output capacitor | |----------------|---| | C _N | mains filter capacitor | | D | output diode | | D_1 | diodes on the primary side | | D_2 | diodes on the secondary side | | fn. fp | mains frequency, pulse frequency | | i | total current of the three secondary branches | | ic | output capacitor current | | icn | current through the capacitors of | | | the mains filter | | ip1 | current through D_1 (primary side) | | ipı | current through D ₂ (secondary side) | | 1 ₇₁ | current through transistor T1 | |---------------------------------|--| | \$U,1,R, \$U,1,S, \$U,1,T | input phase currents | | \$U,1,R,p, \$U,1,5,p, \$U,1,T,p | primary currents of the transformers | | | (positive branches) | | \$U,1.R,a, \$U,1.5.a, \$U,1.T,a | | | | (negative branches) | | iU,2,R, iU,2,5, iU,2,T | transformer secondary currents | | k | coupling factor between primary and | | | secondary windings | | LN | mains filter inductances | | $L_{U,1}$ | inductance of a primary winding | | | (positive or negative branch) | | $L_{U,2}$ | inductance of a secondary winding | | N_1 | number of turns of a primary winding | | N ₂ | number of turns of a secondary winding | | Po | output power | | R_N | power-equivalent input resistance of the | | | converter (Y-connection) | | t | (global) time (within a fundamental period) | | T | global maximum value of the sum of turn-on | | | time of T1 and duration of the | | | demagnetisation phase | | T_1 | main power transistor | | T ₂ | auxiliary power transistor for reduction | | • | of the losses in U_L | | T_N , T_P | mains fundamental period, pulse period | | t. | microscopic (local) time counted within | | - | a pulse interval | | U_L | threshold voltage of the voltage limitation | | - | circuit of T ₁ | | UN.R. UN.S. UN.T | mains phase voltages | | 40 | DC output voltage | | WT1,mes | maximum blocking voltage stress on T_1 | | | for non-ideal magnetic coupling | | WT1,mas,i | maximum blocking voltage stress on T_1 | | | for ideal magnetic coupling | | δp | relative turn-on time of T1, duty cycle | | VN | phase assigned to time $t (\varphi_N = \omega_N t)$ | | , | within the fundamental period | | ₩ _N | mains angular frequency | | σ | transformer leakage coefficient | | - | (according to coupling k) | | | , -6 -7 0 / | | 1 1-44 | abanastarising (loss) or alabat) | | lower case letters: | characterising (local or global) time-dependent quantities | | | ame openion demonstra | upper case letters: characterising time-independent global mean or rms values ### Indices: | AVE | linear mean value | |-------|---| | i | common counting subscript, ideal magnetic couplin | | max | global maximum value | | min | global minimum value | | | components between the phase inputs and the | | | negative bus bar of the primary bridge | | P | components between the phase inputs and the | | | positive bus bar of the primary bridge | | (RST) | phase R or phase S or phase T | | PERS | quadratic mean value | | tμi | time assignment of a local current value | | μ | local time (within a pulse period) | | 1 | primary side | | , | secondary side | # References - [1] Carpenter, B., Lewis, R., Choi, B., Cho, B., and Lee, F.C.: A Distributed Power System for Military VLSI Applications. Proceedings of the High Frequency Power Conversion Conference, San Diego, May - 1-5, pp. 430-441 (1988). [2] Kamm, E.: New Military EMI Specifications Affecting the Input Circuit Architecture of AC to DC Converters. Proceedings of the 8th International Solid-State Power Electronics Conference, April 27-30, pp. C-3 1-11 (1981) - [3] Kocher, M.J., and Steigerwald, R.L.: An AC-to-DC Converter with High-Quality Input Waveforms. IEEE Transactions on Industry Ap- - plications, Vol.1A-19, No.4, pp. 586-599 (1983). [4] Langley, R.A., Van Wyk, J.D., and Schoeman, J.J.: A High-Technology Battery Charging System for Railway Signalling Applications. Proceedings of the 3rd European Conference on Power Electronics and Applications, Aachen, Oct. 9-12, Vol.3, pp.1433-1437 (1989). - [5] Lee, F.C., Borojević, D., and Vlatković, V.: Three-Phase Power Factor Correction Circuits - Topologies and Control. Proceedings of the 10th Annual Power Electronics Seminar, Tutorial I-2, Blacksburg, Sept. 20-22, pp. 75-123 (1992). - [6] Prasad, A.R., Ziogas, P.D., and Manias, S.: An Active Power Factor Correction Technique for Three-Phase Diode Rectifiers. IEEE Transactions on PE, Vol.6, No.1, pp. 83-92 (1991). - [7] Ismail, E., and Erickson, R.W.: A Single Transistor Three-Phase Resonant Switch for High-Quality Rectification. Record of the 23rd Power Electronics Specialists Conference, Madrid, June 29-July 3, Vol.II, pp. 1341-1351 (1992). - [8] Pforr, J., and Hobson, L.: A Novel Power Factor-Corrected Single-Ended Resonant Converter with Three-Phase Supply. Record of the 23rd Power Electronics Specialists Conference, Madrid, June 29-July 3, Vol.II, pp. 1368-1375 (1992). - L., Rossetto, L., Spiassi, G., Tenti, P., Toigo, I., and Dal Lago, F .: Single-Switch Three-Phase AC-DC Converter with High Power Factor and Wide Regulation Capability. Proceedings of the 14th International Telecommunications Energy Conference, Washington, D.C., Oct. 4-8, pp. 279-285 (1992). - [10] Kolar, J.W., Ertl, H., and Zach, F.C.: Power Quality Improvement of Three-Phase AC-DC Power Conversion by Discontinuous Mode 'Dither'-Rectifiers. Proceedings of 6th Power Quality Conference, Munich, Oct. 14-15, pp. 62-78 (1992). - [11] Freeland, S.D.: Input Current Shaping for Single-Phase AC-DC Power Converters. Ph.D. Thesis, Part II, California Institute of Technology, Pasadena (1988). - [12] Kolar, J.W., Ertl, H., and Zach, F.C.: Space Vector-Based Analytical Analysis of the Output Current Distortion of a Three-Phase Discontinuous-Mode Boost Rectifier System. Record of the 24th IEEE Power Electronics Specialists Conference, Seattle, June 20-24 (1993). - [13] Chambers, D., and Wang, D.: Dynamic Power Factor Correction in Capacitor Input Off-Line Converters. Proceedings of the 6th National Solid-State Power Conversion Conference, Miami Beach, May 2-4, pp. B-3 1-6, (1979). - [14] Kolar, J.W., Ertl, H., and Zach, F.C.: Analysis and Design of a Non Three Phase Powe: Conditioner Providing Sinusoidal Input Currents and Multiple Isolated DC Outputs. Proceedings of 26th International Power Conversion Conference, Nürnberg, Germany, June 21-24 - [15] Itoh, R., Ishisuka, K.: Three-Phase Flyback AC-DC Converter with Sinusoidal Supply Currents. IEE Proceedings-B, Vol.138, No.3, pp. 143-151 (1991). - [16] Manias, S., Prasad, A.R., and Ziogas, P.D.: A 3-Phase Inductor Fed SMR Converter with High Prequency Isolation, High Power Density and Improved Power Factor. Conference Record of the IEEE Industry Applications Annual Meeting, Atlanta, Oct. 18-23, Pt.I, pp. 253-263 - [17] Aoki, T., Muroyama, S., and Igarashi, M.: A New Switched-Mode Rectifier with Sinusoidal Input Current Waveforms. Proceedings of the International Power Electronics Conference, Tokyo, April 2-6, Vol.2, pp. 755-760 (1990) - [18] Singer, S., and Erickson, R.W.: Canonical Modelling of Power Pr cessing Circuits Based on the POPI Concept. IEEE Transactions on PE, Vol.7, No.1, pp.37-43 (1992). - [19] Erickson, R., Madigan, M., and Singer, S.: Design of a Simple High-Power-Factor Rectifier Based on the Flyback Converter. Conference Record of the 5th Applied Power Electronics Conference, Los Angeles, March 11-16, 792-801 (1990). - [20] Kolar, J.W., Ertl, H., and Zach, F.C.: Calculation of the Passive and Active Component Stress of Three-Phase PWM Converter Systems with High Pulse Rate. Proceedings of the 3rd European Conference on Power Electronics and Applications, Aachen, Oct. 9-12, Vol.3, pp.1303-1311 (1989). - [21] Redl, R., and Balogh, L.: RMS, DC, Peak, and High-Prequency
Power-Factor Correctors with Capacitive Energy Storage. Proceeding of the 7th Applied Power Electronics Conference, Boston, MA, Feb. 23-27, 533-540 (1992). - [22] Jiang, Y.M., Hua, G.C., Yang, E.X., and Lee, F.C.: Soft-Switching of IGBTs with the Help of MOSPETs. Proceedings of the 10th Annual VPEC Power Electronics Seminar, Blacksburg, VA, Sept. 20-22, pp. 77-84 (1992). - [23] Cuk, S., and Middlebrook, R.D.: A General Unified Approach to Modelling Switching DC-to-DC Converters in Discontinuous Conduction Mode. Record of the IEEE Power Electronics Specialists Conference, Palo Alto, June 14-16, pp. 36-57 (1977). - [24] Kislovski, A.S., Redl, R., and Solml, N.O.: Dynamic Analysis of Switching-Mode DC-DC Converters. New York: Van Nostrand Reinhold (1991).