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Abstract-In this work a compact-model-based 
inductor design procedure is presented. The losses, 
temperatures, and the total cost of ownership 
(TeO ) of an inductor are expressed analytically. 
All geometric dependencies are summarized in a 
set of parameters which are calculated using fi­
nite element analysis (FEA). Therefore the model 
does not depend on the actual inductor geometry, 
instead it only relies on a generalized set of pa­
rameters which contain all geometric information. 
Different inductor geometries only result in differ­
ent values of parameters. The dynamic thermal 
model is verified using time dependent FEA, the 
high frequency winding loss model is verified by 
measurements. The inductor model is then used to 
study the effect of changes in inductor geometry on 
the performance of the device. It is shown that for 
applications requiring high peak but low average 
load substantial cost reductions are achieved if the 
inductor's geometry is optimized and the right 
inductor topology is selected. 
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I. INTRODUCTION 

The intended application of this work requires 
high peak power for several seconds which is supplied 
by a three-level PFC rectifier system. However, the 
average power demand is only about 1 % of the peak 
power. This load profile allows to make use of the 
thermal time constants of the passive components of 
the system. Savings in terms of inductor volume can 
be achieved since the inductor thermal time constants 
are in the range of several 10 s. The thermal time 
constants of semiconductor devices are in the range 
of 100 ms, so no savings are expected here. However, 
since the semiconductor losses of the rectifier are 
usually dominated by the switching losses one is able 
to reduce the chip area by reducing the switching 
frequency. Of course this comes at the price of high 
values of inductance. 

It becomes obvious that the inductor is a key 
component in such a design and should be subject 
to optimization. However, also in continuous load 
scenarios an optimized inductor design is essential 
since it has been shown that inductors have a major 
impact on overall system cost [1]. Core element of such 
an optimization is a model that renders thermal and 
electromagnetic effects accurately but fast enough to 
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be called iteratively. Resolving geometric dependen­
cies precisely requires complex thermal and magnetic 
equivalent networks as in [2] and [3]. Using finite ele­
ment analysis (FEA) based models, one achieves high­
est accuracy but the computational effort increases 
dramatically. To reach high accuracy and at the same 
time low computational effort, a compact model-based 
approach is proposed. The structure of the model 
is shown in Fig. 1. All geometry dependencies are 
described using a few parameters which are calculated 
from FEA simulations. The actual thermal and loss 
models are expressed as analytic equations. This way 
the actual inductor model and the optimization rou­
tine only depend on a generalized set of parameters, 
which makes it possible to investigate a wide range 
of different inductor topologies and to compare their 
performance in a fair way. 

In Section II the compared inductor topologies 
are described and the range of proportions which 
are considered in this investigation are given. In Sec­
tion III the applied loss models are described and in 
Section IV the dynamic thermal model is presented. In 
order to be able to compare different core and wind­
ing materials and to find the right relation between 
efficiency and material cost a cost model is needed 
which is presented in Section V. Finally in Section VI 
the optimization results are shown and discussed. 

II. INDUCTOR TOPOLOGIES 

The inductor topologies which have been com­
pared in this work are shown in Fig. 2a-d. The scope of 
the analysis is limited to axisymmetric geometries to 
allow fast FEA simulation. However, the investigation 
could be easily extended by additional 3D simulations 
of inductors having arbitrary shape. 

A. Geometric Proportions 

The key idea is to describe the dimensions of the 
inductors using a set of proportions and one additional 
value as scaling quantity. In this case the volume V 
of the cylinder that encloses the inductor assembly is 
specified together with 2 or 3 proportions. All dimen­
sions are derived from such a set of proportions and 
the cylinder volume V as scaling quantity. Describing 
the geometry using proportions allows to run the FEM 
simulation only once for each set of proportions and to 
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Figure 1. The proposed compact modeling approach uses 
analytic expressions to calculate fiux densities, losses, tempera­
tures and inductor cost. All geometric dependencies, except the 
volume of the inductor are concentrated in a set of parameters 
which are calculated using a FEM simulation. 

scale the obtained parameters for the required volume. 
The geometric proportions Pi are defined in Fig. 2. 

B. Permeability and Ratio of Thermal Conductivity 

For each inductor geometry two different FEA 
studies have to be calculated. First the magneto-static 
field distribution is solved. The result will be used 
to calculate the necessary number of turns and the 
proximity losses in the winding. The field distribution 
depends on the core's permeability fLr, therefore the 
magneto-static simulation is solved for a paramet­
ric sweep of the relative permeability in the range 
1 s: fLr s: 106. The solutions are be interpolated for 
permeabilities not on the sweep grid. 
Second a static thermal study has to be solved in 
order to determine the average thermal resistances of 
winding to surface and core to surface. The thermal 
resistances depend on the ratio of the thermal conduc­
tivity of the winding to thermal conductivity of the 
core. This ratio Pwe = �: is swept through the range 
10-3 s: Pwe s: 10. 

C. Scaling Laws 

For a given set of proportions one can derive two 
scaling laws for all magnetic fields and thermal resis­
tances obtained from a FEA simulation. Assuming the 
simulation was performed on a geometry with volume 
Vo, current density Jo, and core thermal conductivity 
AeO. All magnetic field quantities HiO and thermal 
resistances Rth,iO obtained at volume Vo from the 
simulation can be scaled for a volume V using the 
following expressions: 

900 

Rth i = kRth i V-� Ac-1 , . , 
1 

kRth,i = Rth,iO Vo" AeO 

The scaling law for magnetic field quantities relies 
on the fact that if a current density J is specified the 
magnetic field is always expressed by an expression 
such as H = J:: with specific area A and distance 
d. If no proportion of the geometry is changed, the 

2. 
magnetic field therefore scales with 4 = V�. 

v" 
The scaling law for thermal resistances within a 
particular volume can be derived from Rth = )..�. 
For a particular value of A, the thermal resistance 

l. 
scales with 4 = V-� if no geometric proportions 

V" 
are changed. 

III. Loss MODELS 

A. Winding Loss Model 

In order to simplify the calculation of the winding 
losses the scope of the investigation is limited to 
windings made of round conductors or high frequency 
litz wire. In the case of a winding made from solid 
conductors it is further assumed that the conductors 
are evenly spaced within the winding region. In case 
of litz wire it is assumed that the strands are evenly 
spaced throughout the winding region. (see Fig. 2e) 
These assumptions are true for closely packed wind­
ings of round conductors or for a winding made from 
rectangular profile litz wire. The inner proximity effect 
which is observed on solitary litz wires, vanishes with 
this assumption, since no unique partitioning of the 
array of strands into bundles of strands is possible. 
The loss per unit length of a single strand or round 
conductor could be expressed using Ferreira's solution 
for a cylindrical conductor exposed to an external 
magnetic field ([4], [5]). However, if Ferreira's solution 
is applied the proximity effect could be overestimated 
by over 80 % if the conductors of the winding are 
closely stacked. For windings having high filling fac­
tor Dowell's solution gives better results, however it 
underestimates the losses if the filling factor is low [6]. 
A modified version of Dowell's proximity loss factor is 
proposed in [7] which also takes into account horizon­
tal and vertical distances between the conductors. For 
the investigation at hand it is assumed that horizontal 
and vertical distance are equal and therefore deter­
mined by the filling factor keu. Using the improved 
proximity loss factor and Ferreira's factor for the skin 
effect, the losses per unit length in a single strand with 
diameter ds are expressed as 

(1) 
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Figure 2. Inductor topologies that are compared in this work (a-d) . The geometries are simulated within the given ranges of 
proportions. The dashed lines indicate cross sectional areas that are equal. The winding is assumed to be a matrix of evenly spaced 
conductors, defined by filling factor ken and strand diameter ds (e) . 

With skin and proximity factors F(�) and G(X, di) 

F = _�_ (bero(Obeh(O - bero(�)berl(�) 
4y2 berl(�)2 + bei1(02 

-beio(Oberl(O - beio(Obeh(O ) + berl(�)2 + bei1(02 

G = � (3(1 _ w)k-3 X 
sinh(kX) - sin(kX) 

16 cosh(kX) + cos(kX) 

+� X-:+ b3
) 

ds � = y25 
ds X ="5 

5 = 1 
"lIT jO"fL 

the constants k, band w are given in [7]. One can 
now derive the average loss density in the winding. 
Since the magnetic field usually varies throughout 
the winding volume Vw, the spatial root mean square 
(SRMS) of the magnetic field Hw in the winding 

Hwsrms = (2) 

has to be used to obtain the average loss density in the 
winding region. The filling factor kcu of the winding 
is defined as ratio of total copper cross section per 
winding cross section. Also the current density J is 
defined as total winding current (N 1) per winding 
cross section. Then the occupied cross section of a 
single strand is given as 

A _ d;7r 
s - 4kcu' 

(3) 

and the current per strand is 

(4) 
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U sing the strand resistance per unit length 

R' = 1 
s O"kcuAs 

(5) 

the average winding loss density is obtained as 

P: 1 A2 kcu G A 2 Pw = -
A 

= -
k
-(F J + -

A Hwsrms)' (6) s a ell S 

Neglecting external fields, the magnetic field in all 
regions of the inductor is proportional to the current 
density, with a factor kHwsrms which is calculated 
using FEA, 

Hwsrms(t) = kHwsrms V� J(t). (7) 

The time dependent shape function kJ(t) of the cur­
rent density is defined by unifying the current density 
to its peak value Jmax, 

(8) 

The Fourier coefficients of the current density shape 
function are expressed as 

'" 2 . 2nn t iT kJ(n) = T 0 kJ(t)e-J--cor dt. 

By inserting (9), (8) and (7) in (6) one obtains 

1 
Pw =-­

O"kcu 
( ( kJ(O) ) 2 

+ � FP 
2 � J(n) 

n=l 

2 d � kcu G A 2 ) 2 +kHwsrmsV" � �kJ(n) Jmax' 

This result can be expressed as 

- ( . k2 V� ) J2 Pw - Cskm + Hwsrms Cprox max 

(9) 

(10) 
with the constants Cskin and cprox, which are not 
depending on any core dimension, but only on current 
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Figure 3. Filling factor, thermal conductivity and mass specific 
material cost of a winding as function of the strand diameter 

shape and winding properties such as filling factor and 
strand diameter, 

1 
(C

J(
O
)
), f " ) (11) Cskin 

IJ"kcu 
-2- + FkJ(n) 

n=l 
CXl 

1 
L 

AA2 
(12) Cprox A GkJ(n)' IJ" s n=l 

1) Winding Properties: In case of litz wire windings 
the filling factor itself is a function of the strand 
diameter. Moreover the thermal conductivity of the 
winding is a function of the filling factor and therefore 
depends on the strand diameter. Also the weight spe­
cific material cost depends on the strand diameter. All 
these dependencies are illustrated in Fig. 3. The filling 
factor kcu for strand diameters smaller than 1 mm 
has been calculated by using averaged manufacturer's 
data [8]' further a factor of � for stacking of the 
wires is assumed and an additional factor of 50 % 
accounts for space taken up by tolerances, bobbin 
and layer isolation. Therefore, the maximum filling 
factor is 0.5 ·  �. The thermal conductivity of litz wire 
has been determined using a 2D FEM simulation for 
different values of filling factor. The weight specific 
cost is calculated using the function given in [1]. 

2) Experimental Verification: The accuracy of the 
described method that uses the spatial root mean 
square of the magnetic field together with the as­
sumption of evenly distributed conductors is studied 
on a set of test inductors. The test devices resemble 
the topologies toroidal, hollow and, pot with air gap. 
A picture of the inductors is shown in Fig. 4. All 
inductors use a winding made of round magnet wire 
with a diameter of 1.7 mm. The resistance of the 
winding has been measured for frequencies starting 
at 100 Hz up to 1%, with the resonance frequency of 
the inductor 10. The measurements are compared to 
the AC resistance calculated with the winding loss 
model (Fig. 5). It is shown that the relative error of 
the model is less than 15 % for all three topologies. 

902 

hollow 

pot with air gap 

Figure 4. Picture of the inductors used to verify the winding 
loss model. Instead of a cylindrical hollow core, four C-shaped 
ferrite cores are used to resemble the same magnetic field 
distribution in the winding as it would occur in a real cylindrical 
core. 
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Figure 5. Measured and calculated winding resistance of the 
test inductors as function of the frequency as well as relative 
error between measured and calculated values. 

B. Core Loss Model 

Manufacturers of magnetic materials usually pro­
vide loss density data for a specific frequency and 
flux density range. The loss measurements are carried 
out using sinusoidal waveforms and a common fitting 
equation, referred to as the original Steinmetz equa­
tion (OSE), with the parameters k, Q, (3, the frequency 
1 and the flux density amplitude B, which provides 
an expression for the core loss density 

(13) 

Additionally effective core area Ae and effective core 
volume v;, are often specified. To relate effective and 
geometric dimensions, we introduce the core area 
filling factor kfea = �: and the core volume filling 
factor kfev = �. Both are determined for each core 
material by averaging their values determined from 
multiple core data sheets as provided by the manufac­
turer [9, 10, 11, 12, 13, 14]. Especially for laminated 
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Table 1. 

k p (�) (5,) 
kIev !J, 

% (I.:��n) 
11.70 1.32 2.32 4800 97 98 .3 .. 30 

0.08 1.78 2.84 48t)0 97 98 .3 .. 30 

0.01 1.78 2.08 7:\<)0 G5 75 2:1.00 

1.38 LSI 1.74 7180 82 

11.25 1.29 2.11 4800 97 

1.24 1.50 2.64 4800 97 

0.30 1.G8 2.98 4800 97 
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CORE MATERIAL PROPERTIES 

cores the effective quantities deviate significantly from 
their geometric counterparts. For ferrite and powder 
cores however, the difference is small. The Steinmetz 
parameters, filling factors and weight specific prices of 
the core materials used in the optimization are listed 
in Tab. 1. 

All field quantities are usually given as geometric 
quantities, i.e. the flux density is defined as magnetic 
flux per cross sectional area. However the quanti­
ties that have to be used in the OSE are effective 
quantities. Therefore, the filling factors have to be 
considered in the OSE if geometric quantities are used 
and (13) is rewritten as 

= kfev kfD! fJ(3 Pc (3 . 
kfea 

(14) 

The improved generalized Steinmetz equation (iGSE) 
[15] extends the OSE to allow loss calculation for non­
sinusoidal flux density waveforms. If the waveform is 
purely sinusoidal it gives the same result as the OSE. 
Using the core filling factors the iGSE is given as 

\Vith the approximation for the constant 

If we assume constant permeability, the magnetic flux 
density is proportional to the current density and 
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FEM parameterized thermal resistance network 

\. Tc Rth,c Rth,w 

Figure 6. General thermal network for average core and 
winding termperatures Tc and Tw. 

according to the scaling law for magnetic fields it is 
given as 

B (t) = !Lr!LOkHcavg V� kJ( t) Jmax. 

By inserting (17) into (15) and by introducing 

= kfevki rT I dkJ ID! 
(Ilk )(3-D!d Ccore (3 io dt J t, 

kfeaT 0 
the loss density in the core is expressed as 

(3 ij- (3 Pc = (!Lr!LokHcavg) V ccoreJrnax' 

(17) 

(18) 

(19) 

Similar to the expression for the winding loss density, 
all material dependency together with the shape func­
tion of the current density is summarized in the con­
stant Ccore. All geometry dependency is summarized 
in the parameter kHcavg which expresses the average 
magnetic field in the core by using the scaling law 
from II-C. 

IV. THERMAL MODEL 

The aim of a compact dynamic thermal model for 
the conductor is to calculate the time dependent tem­
peratures in core and winding for any load scenario. 
This way one is able to determine the exact volume 
of the inductor which is necessary in order to not 
exceed the material specific maximum temperatures. 
The problem is split into two parts, one that models 
the conductive heat transfer from core and winding to 
the surface, the conductive heat transfer between core 
and winding, and the thermal capacitances of core and 
winding. The surface of the inductor is assumed to be 
isothermal and the second part of the model therefore 
describes the surface temperature rise, considering 
radiation as well as natural and forced convection. 

A. Dynamic Thermal Network 

The equivalent thermal network of a core-winding 
arrangement is shown in Fig. 6. It consists of two heat 
sources Pc, Pw representing core and winding losses. 
Since the thermal capacitances Cth,c and Cth,w of core 
and winding are spread within the same volume as the 
according heat source, each of them is represented 
by a single capacitance in parallel to the according 
heat source. The temperature rise that occurs from 
the inside of core and winding to the surface is 
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Figure 7. Average temperatures of core and winding of a 
toroidal inductor with 1'1 = 10 mm, 1'2 = 30 mm, 1'3 = 

60 mm and hi = 20 mm subject to a periodic 5 s loss pulse of 
200 W applied to the core (a) and applied to the winding (b) . 
Solid: temperature response calculated using equivalent circuit. 
Dashed: direct FEM simulation. 

modelled by the thermal resistances Rth,e, Rth,w and 
Rth,s' The actual temperatures in core and winding 
could be calculated using a circuit simulation tool 
or simply by decomposing the loss waveforms Pe (t) 
and Pw (t) into their Fourier series and evaluating 
the transfer functions that result from the circuit. 
In order to verify the use of the equivalent circuit, 
the temperature response to a loss power pulse of 5 s 
duration and 1000 s period time is calculated using 
the equivalent circuit and compared to the output of 
a time dependent FEM simulation. The results are 
shown in Fig. 7. In particular for scenarios with high 
peak and low average load the results obtained by 
using the equivalent circuit show good agreement with 
the temperature waveforms simulated directly using 
FEA. 

The thermal resistances Rth,e, Rth,w and Rth,s are 
calculated from two steady state FEM simulations. 
The first simulates the average temperatures Teeo and 
Tweo of core and winding with Pc = PeO and Pw = 0 \V, 
the second the temperatures Tewo and Twwo with 
Pc = 0 \V and P w = P wO, assuming isothermal surface 
temperature of Ts = 0 K. Using these results one can 
calculate the average core and winding temperature 
rise to surface temperature for any values of core and 
winding loss Pc and P w' 

Te = Teeo Pc + 
Tewo 

Pw _ R P n .th,eeOPe + Rth,ewOPw 
cO FwO 

(20) 

(21) 

The thermal resistances of the equivalent network at 
volume Vo of the simulated inductor geometry are 
therefore given as 

Rth,eO =Rth,eeO - Rth,ewO 
Rth,wO =Rth,wwO - Rth,weO 
Rth,sO =Rth,ewO = Rth,weO 

(22) 

(23) 

(24) 

and subject to the scaling law for thermal resistances 
as stated in II-C. E.g. the thermal resistance Rth,e for 

904 

an inductor of volume V and thermal conductivity 
of the core Ae is calculated as Rth e = kllih.c with 

1 
' v�� 

kRth,e = Rth,eO Vo� AeO. Of course with all proportions 
unchanged and the ratio between the thermal conduc­
tivities of core and winding of the inductor being equal 
to the ratio that was used in the FEM simulation ( .Aw = .AwO ) Ac Aco ' 

The values of the thermal capacitances in the 
equivalent circuit equal the actual heat capacitances 
of core and winding and are simply calculated using 
the volume specific heat capacities. 

The resistance Rth,a represents the thermal resis­
tance from the surface Asur of the inductor to ambient 
air. It is given as 

1 
Rth a = (25) , . Asur (hrad + hnat + hfor) 

with the heat transfer coefficients hrad, hnat and 
hfor for radiation, natural and forced convection. If 
laminar flow is assumed and the inductor surface is 
simplified to a cylinder of height h and radius r they 
are calculated as [16] 

h 5 -s W 
( 2 2 rad = ·10 

K
4
m2 Ts + Ta ) (Ts + Ta) (26) 

0. 82 ;V 1 h� + 0.68 �r� 
h = K 4 m 4 K 4 m 4: (T _ T ).1 nat h + r s a 4 

V. COST MODEL 

(27) 

(28) 

·When designing a cost optimized inductor the 
trade-off between power density and efficiency is im­
portant. A compact design offers low material cost, 
but throughout the operational life of the device high 
additional costs for the cumulated loss energy occur. A 
large device on the other side offers high efficiency and 
therefore low energy cost at the price of higher mate­
rial cost. The optimum volume of a device is found if 
the total cost of ownership �(V) = �e(V) + �m(V), 
i. e. the sum of material cost �m and energy cost �e, 
is minimized. 

A model to estimate the material cost of inductive 
components can be found in [1]. It includes weight 
depending parts with the core and winding weights 
me, mw, the weight specific material costs (Je and (Jw, 
the weight specific labour cost (Jlab and a fix cost share 
(Jf, 

The cumulated loss energy is calculated by defin­
ing a certain load scenario P (t), assuming a lifetime 
Tl and the price of energy (Je, which is assumed to be 
0. 15 EUR/kWh. With the load dependent efficiency 
rJ (P) the energy cost is expressed as 

tTl 
�e = (Je Jo 

(1 - rJ (P (t)) . P (t)dt. (30) 
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Figure 8. Core fiux density, maximum temperatures and TCO 
of an inductor as function of volume. The volume should be 
optimized to reach a minimum of TCO while matching the 
constraints V> VTmax and V > VBmax· 

VI. RESULT OF GEOMETRY OPTIMIZATION 

The benefit of geometry optimization of inductors 
is demonstrated on a three phase Vienna rectifier as 
shown in Fig. 9. The rectifier is assumed to operate 
in one of two load scenarios, also defined in Fig. 9. 
The boost inductors of the system are optimized for 
minimum TCO. The proportions of each inductor 
topology are swept within the ranges given in Fig. 2, 
resulting in 900 different geometry samples for each 
topology. For each sample the volume is adjusted 
such that all temperatures and fiux densities are in 
valid range and that the TCO is minimized (Fig. 8). 
The volume optimization is performed for all core 
materials given in Tab. I and for strand diameters in 
the range of 50 Mm to 3 mm. The material combination 
with minimum cost is finally selected for the geometry 
sample. The TCO of all optimized inductor samples 
is illustrated in Fig. 10 and Fig. 1l. It is observed 
that the TCO of a boost inductor which is optimized 
for the pulse load scenario is less than 15 % of the 
one optimized for continuous load. Further if one 
would build an inductor with volume optimized for the 
continuous load profile but with the same proportions 
as the best sample in the pulse load scenario the 
TCO would rise by more than 100 % compared to 
the geometry with the optimum proportions for the 
continuous load profile. Also, vice versa, if the best 
geometry for continuous load is used in the pulse load 
scenario TCO increase of more than 100 % occurs. 
The differences are substantial for the topology pot 
with air gap but the effect is also observed with all 
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pulse load profile 

65kWLJL. 
2s 200s 

continuous load profile 

65kW r+-----. 
Figure 9. The boost inductors of a three-phase, three-level 
rectifier are optimized for a pulse and a continuous load scenario. 
The allowed range of grid voltages is 290 V to 530 V, the DC-link 
voltage 800 V. Using 50 tLH boost inductance value at 28 kHz 
switching frequency results in a worst case peak-peak current 
ripple of less than 20 %. The peak current, the inductor has to 
be designed for is 200 A. For the TCO optimization a life time 
of 7 years is assumed with energy price of 0.15 EUR/kWh. 

200 i pot 

i 
150 I 2' 

;:J ! � 
..... 100 rn 
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.8 50 
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% of samples 

Figure 10. TCO of all optimized inductor samples for the 
pulse load scenario. The best sample is a pot with air gap 
type inductor, closely followed by hollow inductors. The best 
sample of each topology is marked with circle. Squares mark 
the performance of the inductor samples which are best for 
the continuous load scenario. For all topologies a considerable 
difference in the performance of the continuous load optimized 
and the pulse load optimized inductors is observed. 

other topologies. Details of the best samples for each 
load scenario, as well as a scaled drawing of the cross 
section are shown in Fig. 12. 

VII. CONCLUSIONS 

A generalized compact model for different induc­
tor topologies, featuring a dynamic thermal model 
and high frequency loss models for core and winding 
has been demonstrated. Summarizing all geometric 
dependencies and analytically expressing all relevant 
quantities as function of the inductor volume allows 
fast calculation of the cost function and therefore 
fast optimization of a high number of samples. The 
winding loss model has been verified by measurements 
for three different inductor topologies. The dynamic 
thermal model fits well with time discrete FEM sim­
ulation. The model has been used to optimize the 
TCO of the boost inductors of a Vienna rectifier for 
different load scenarios. It is shown that substantial 
cost savings are possible if all geometric degrees of 
freedom are included in the optimization. 
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Figure 11. TCO of all optimized inductor samples for the 
continuous load scenario. The TCO is less sensitive to changes 
in the proportions, however the samples that provide best 
performance in pulse load scenarios (circles) show considerably 
higher TCO than the samples with optimum proportions. 

core material 
strand diameter 
efficiency 
material cost 
energy cost 

pulse scenario 

EPCOS N27 
50flm 
98.8 % 

23EUR 
22EUR 

continuous scenario 

�llO+OI I 
244mm 

EPCOS N27 
50flm 
99. 9 %  

200EUR 
96EUR 

Figure 12. Details of the optimum inductors for pulse- and 
continuous load scenarios 

For applications that require high peak load, but 
only low average load inductor geometries having big 
air gaps provide minimum TCO. Contrary to contin­
uous load scenarios in which inductors with rather 
small air gap perform best. TCO optimization allows 
to find the optimum volume of an inductor, i. e. to find 
the best compromise between high power density and 
high efficiency. 
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