

Part 4 1st Gen. 600 V GaN MBDSs in AC-AC CSCs and 3-Level T-Type VSCs

Jonas Huber, Neha Nain, Franz Vollmaier, Johann W. Kolar

Power Electronic Systems Laboratory ETH Zürich

March 20, 2022

The Switch: 600 V, 140 mΩ GaN MBDS 1. Gen. Samples (infineon

■ BDS realization from unipolar devices: 4 x Single switch for same R_{on}!

Same chip region used for blocking both voltage polarities:

True MBDS!

■ GaN MBDS based on Infineon's 600 V CoolGaNTM technology

• Normally-off gate injection transistor (GIT) | Two gates (one per blocking direction) | Int. common-drain conf.

The Topologies

GaN/SiC 3-Level T-Type AC-DC PFC Rect. / DC-AC Inv.

All-GaN AC-AC Current-Source Converter (CSC)

GaN MBDS Gate Drive Considerations

GaN Gate Injection Transistor (GIT) Gate Behavior

Simplified MOSFET Gate Turn-On

Simplified Gate Injection Transistor (GIT) Gate Turn-On

 $G = \begin{array}{c} R_{g,int} & I_{Dgs} \end{array}$

S

Further Reading: Infineon Technologies, "Gate drive solutions for CoolGaN 600V HEMTs," White Paper, Dec. 2020.

Ohmic gate contact results

 $_{\rm s} = I_{\rm Dgs} = (V - V_{\rm Dgs})/(R_{\rm g} + R_{\rm g,int})$

Losses in D_{ac}!

in diode-like behavior of GIT

- Requirements for GIT gate drive:
- Small R_{p} for fast transients (charging/discharging of C_{ps})
- Large R_g during steady-state (small I_{Dgs} of a few 10 mÅ)

APEC 2+22

Standard RRC Gate Drive Operating Principle

Key idea: Capacitor *C*_s to decouple transient low-impedance paths

Note: unipolar supply possible; bipolar supply for better robustness against parasitic turn-on in current-source converter commutation cells (see later).

6

Advanced RRC Gate Drive Operating Principle

- **Key idea:** Eliminate the duty-cycle dependence of dynamics
- Straightforward realization with standard HB driver IC and a few Schottky diodes

Advanced RRC Gate Drive for MBDS: Realization

- **Two** gates per M-BDS | **Two** isolated power supplies | **Two** control signals
- Mostly vertical gate loop (ca. 8...10 nH incl. package) | Adv. RRC network on TOP | HB driver sup. dec. on BOT

■ Remark: Integration of gate drive → Significant reduction of PCB area!

Advanced RRC Gate Drive for MBDS: Layout / Meas.

- **Two** gates per M-BDS | **Two** isolated power supplies | **Two** control signals
- Mostly vertical gate loop (ca. 8...10 nH incl. package) | Adv. RRC network on TOP | HB driver sup. dec. on BOT

■ Remark: Integration of gate drive → Significant reduction of PCB area!

3-Level T-Type Inverters/Rectifiers with GaN MBDSs

3-Level T-Type (TT) Main Converter Stage

- Bidirectional voltage-source AC-DC or DC-AC conv. | Basic building block for PFC rect. or motor drive inv.
- Phase-modular DC-link-referenced first LC-filter stage: DM and CM filtering

■ Three-level bridge-leg via connection to DC-link midpoint: bidirectional cond. & bipolar block. → MBDS ■ 800 V DC / $S_{x,H}$, $S_{x,L}$: 1200 V, 140 m Ω SiC MOSFET / $S_{x,M}$: 600 V, 140 m Ω GaN M-BDS

3-Level TT Bridge-Leg Commutation Cells

→ High-side commutation cell active

Negative Output Voltage

 \rightarrow Low-side commutation cell active

3-Level TT Bridge-Leg Evaluation Board

- 800 V DC | S_{x,H}, S_{x,L}: 1200 V, 140 mΩ SiC MOSFET (IMBG120R140M1H) | S_{x,M}: 600 V, 140 mΩ GaN MBDS
- Two commutation loops: High-side & Low-side | Commutation inductance ca. 15 nH (incl. package)
- Advanced RRC gate drive with HB driver (2EDS8265HXUMA1) for M-BDS

• Cooling through PCB (thermal vias) | Top-side cooled packages would facilitate improved layouts!

Continuous MBDS Operation at ± 400 V in CCM

¹ Filter capacitor current not shown for better visibility

Remark: CCM and TCM Operation of TT Bridge-Leg

CCM: Hard switching & fixed switching frequency | **TCM:** Soft switching & variable switching frequency

Cont. MBDS Operation at ± 400 V with TCM (Soft-Switching)

APEC 2*22

Transient Calorimetric Loss Measurement: Principle (1)

Constant power dissipation into metal block

Step 1: Calibration with Known DC Power

- Record $\Delta T(\Delta t)$ for several (at least two) known powers
- Fit model and extract model parameters C_{th} and R_{th}

$$\Delta T(\Delta t) = PR_{\rm th} \cdot \left(1 - e^{-\frac{\Delta t}{R_{\rm th}C_{\rm th}}}\right)$$

Step 2: Measurement of Unknown Power Dissipation

- Measure time Δt to reach temperature difference ΔT
- Use calibrated model to calculate power dissipation

$$\Rightarrow P(\Delta T, \Delta t) = \frac{\Delta T}{R_{\rm th} \cdot \left(1 - e^{-\frac{\Delta t}{R_{\rm th}C_{\rm th}}}\right)}$$

Alternative for Step 2

- Record $\Delta T(\Delta t)$ for <u>unknown</u> power dissipation *P*'
- Fit model with known $R_{\rm th}$ and $C_{\rm th}$ to identify P'

Transient Calorimetric Loss Measurement: Principle (2)

Half-bridge with identical switches

- Switching loss extraction
- Calorimetric loss meas. gives total losses
- Conduction losses can be calculated:

 $P_{\text{cond}} = R_{\text{ds(on)}}(P_{\text{total}}) \cdot I_{\text{rms}}^2$

• Switching energies follow from switching frequency

$$P_{sw} = P_{total} - P_{cond}$$

$$E_{sw} = E_{on} + E_{off} = \frac{P_{sw}}{f_s} \text{ (for CCM)}$$
Half-bridge switching energy dissipation per switching period

- Soft-switching losses
- $E_{sw} = 2E_{off}$ for TCM
- Direct & accurate meas. of residual soft-switching losses!

• Heat sink size (C_{th}) follows from desired temp. rise (resolution), meas. time, and power dissipation

TT Bridge-Leg Switching Losses: Method (1)

■ Different device types (SiC, M-BDS) | Loss separation: Meas. individual case temp. (T_{S1,H}, T_{S1,M}, T_{S1,L}) and T_{HS}

- Thermal network with 11 parameters
- Calibration with DC power injection & particle swarm fit (MATLAB)

TT Bridge-Leg Switching Losses: Method (2)

■ Different device types (SiC, M-BDS) | Loss separation: Meas. individual case temp. (T_{S1,H}, T_{S1,M}, T_{S1,L}) and T_{HS}

TT Bridge-Leg Switching Losses: Results

Calibration Data / Accuracy

Injected DC power vs. calorimetric measurement

Measured Hard- and Soft-Switching Losses

TT Main Converter Stage Performance Evaluation

Further Reading: F. Vollmaier, N. Nain, J. Huber, J. W. Kolar, K. K. Leong, and B. Pandya, "Performance evaluation of future T-Type PFC rectifier and inverter systems with monolithic bidirectional 600V GaN switches," in *Proc. IEEE Energy Conv. Congr. Expo. (ECCE)*, Vancouver, Canada, Oct. 2021, pp. 5297–5304. doi: 10.1109/ECCE47101.2021.9595422.

AC-AC Current-Source Converters with MBDSs

MBDS Commutation Cell for AC-AC CSC and DMC

AC-AC Current-Source Converter (CSC)

AC-AC Direct Matrix Converter (DMC)

• 4 x Basic commutation cell

• 3 x basic commutation cell

MBDS Commutation Cell Test PCB: Commutation Loops

Commutation voltages: Line-to-line AC voltages | Commutation capacitors: Two AC-side filter capacitors

• Bottom-cooled package: Mostly lateral commutation loops (approximate loops shown)

MBDS Comm. Cell Test PCB: Half-Bridge Configuration

- **DUT** operation in all four quadrants by reconfiguring voltage source / load
- DC supply between B-C or C-B (voltage polarity, ± 400 V) | Load between p-C or p-B (current direction)

[•] Impact of S₁ presence discussed later!

Remark: 4-Step Commutation (Positive Current)

Ensure current path & avoid DC voltage short-circuit | Current-direction-dependent gating seq (pos. cur. shown)

• Note: voltage-polarity-dependent commutation sequences possible, too

Remark: 4-Step Commutation (Negative Current)

Ensure current path & avoid DC voltage short-circuit | Current-direction-dependent gating seq (neg. cur. shown)

• Note: voltage-polarity-dependent commutation sequences possible, too

Continuous MBDS Half-Bridge Operation at ± 400 V

MBDS Half-Bridge Switching Loss Characterization

■ Transient calorimetric method w. loss separation (see TT above) | 4-Step current-based commutation seq.

Remark: Passive Toggling of Comm. Cell's 3rd Switch (1)

- Three switches connected to common switch node
- Example: Commutation from S₁ to S₂ => Charging/discharging of C_{oss}(S₃) creates additional losses¹

• Risk of parasitic turn-on (dv/dt-induced): Ensure neg. gate. volt.!

¹ Note: similar effect also in TT bridge-legs

Remark: Passive Toggling of Comm. Cell's 3rd Switch (2)

- Transient calorimetric method w. loss separation (see TT above) | 4-Step current-based commutation seq.
- **3**rd switch loss contribution estimation w. datasheet parameters | *E*_{passive} dissipated in active switches!

$$E_{\text{passive}}(v_x, v_y) = \left[Q_{\text{oss}}(v_y) - Q_{\text{oss}}(v_x)\right] \cdot v_y - \left[E_{\text{oss}}(v_y) - E_{\text{oss}}(v_x)\right] \quad \begin{array}{l} v_x = v_{\text{passive}} \text{ before sw. transient} \\ v_y = v_{\text{passive}} \text{ after sw. transient} \end{array}$$

- Datasheet-based estimation of E_{passive} with error < 10 %
- Note: Minor impact (loss increase) in actual CSC operation (modulation, varying switched voltage)

Further Reading: N. Nain, D. Zhang, J. Huber, J. W. Kolar, K. K. Leong, and B. Pandya, "Synergetic control of three-phase AC-AC current-source converter employing monolithic bidirectional 600 V GaN transistors," *Proc. 22nd IEEE Control and Modeling for Power Electron. Workshop (COMPEL)*, Cartagena, Colombia, Nov. 2021. doi: 10.1109/COMPEL52922.2021.9646006.

Three-Phase AC-AC Converter Topologies (1)

- Current-Source Converter
- Application of **MBDSs** | **12 Switches**
- Multi-step commutation
- Low filter volume
- Buck-boost functionality

- Direct Matrix Converter
- Application of MBDSs | 9 Switches
- Multi-step commutation
- Complex space-vector modulation
- Limited to buck operation (!)

• Challenging overvoltage protection

• Challenging overvoltage protection

Three-Phase AC-AC Converter Topologies (2)

- Current-Source Converter (CSC)
- Application of **MBDSs**
- Complex multi-step commutation
- Fewer magnetic components

- Challenging overvoltage protection
- Pot. limited control dynamics

- Voltage-Source Converter (VSC)
- Standard bridge legs
- Low-complexity commutation
- Defined semiconductor voltage stress
- Facilitates DC-link energy storage

• Higher no. of magnetic components

Comparative Evaluation of VSC/CSC AC-AC Motor Drives

■ AC-AC Voltage-Source Converter

Remark: Upcoming EMI Limits for 9...150 kHz

• Next-generation, future-proof designs | Proactively consider upcoming rules | Full EMC in 9 kHz...30 MHz

APEC 2+22

Comparative Evaluation of VSC/CSC AC-AC Motor Drives

• Semiconductor Efficiency $\eta_{sc} = 1 - P_{loss,sc} / P$ Relative Semiconductor Losses
\$\mu_{loss,sc} = P_{loss,sc} / P_{nom}\$

- 200 V grid voltage | 4 A nominal motor RMS current | 72 kHz switching frequency
- Roughly equal chip area for VSC and CSC | Similar performance at nominal OP | Same EMI behavior
- Outlook: EMI filter comp. modeling | Comparison of volume, weight, control dynamics, ... | IPEC 2@22 ECCE ASIA

: freepik.com

Remark: Self-Reverse-Blocking MBDS – Concept

- **CSI/CSR** often operate with unidirectional DC-link current
- HV Switch + HV Diode: HV diode characteristic / high cond. losses
- MBDS: Ohmic cond. char. but 2 external gate signals / 2 gate drives
- "Self-Switching": Ohmic cond. char. but high local complexity (sensing)
- **SRB-MBDS:**

Quasi-ohmic cond. char. (cascode with LV Si Schottky diode) and 1 external gate

Remark: Self-Reverse-Blocking MBDS – Verification

- Proof-of-concept exp. verification with discrete components
- 190 mΩ, 600 V GaN MBDS and 40 A, 10 A Si Schottky diode
- Integration / co-packaging of MBDS and LV diode for improved performance

Details in upcoming TPEL letter!

Power Electronic Systems Laboratory

Conclusion & Outlook

Conclusion

- **Novel 600 V, 140 mΩ** *true* monolithic bidirectional GaN switches from (infineon)
- Removes structural disadvantages of current-source topologies
- Interesting for 800 V DC-link 3-Level T-Type voltage-source topologies

- Next-generation motor drives: AC-AC Current-Source Converters vs. AC-AC Voltage-Source Converters
- Availability of true MBDSs shifts trade-offs | Full comparative re-evaluation required/ongoing
- GaN M-BDS technology takes flight and promises straightforward designs and superior performance

APEC 2*22

ETH zürich

Thank You!

