
© 2012 IEEE

Proceedings of the 38th Annual Conference of the IEEE Industrial Electronics Society (IECON 2012), Montreal, Canada,
October 25-28, 2012

Analysis and Design of an Ultra-High-Speed Slotless Self-Bearing Permanent-Magnet Motor

T. Baumgartner,
R. Burkart,
J. W. Kolar

This material is published in order to provide access to research results of the Power Electronic Systems Laboratory / D-ITET / 
ETH Zurich. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for 
advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from 
the copyright holder. By choosing to view this document, you agree to all provisions of the copyright laws protecting it. 



Analysis and Design of an Ultra-High-Speed
Slotless Self-Bearing Permanent-Magnet Motor

T. Baumgartner, R. Burkart and J.W. Kolar
Power Electronic Systems Laboratory

ETH Zurich

CH-8092 Zurich, Switzerland

baumgartner@lem.ee.ethz.ch

Abstract—Active magnetic bearings (AMB) enable contactless
operation and can therefore be used for supporting rotors spin-
ning at high speeds. However, the rotational speed in conventional
reluctance-force-based AMB topologies is limited which is mainly
due to high rotor losses and achievable force control bandwidths.
In this paper, a prototype of a self-bearing motor designed
for rotational speeds of up to 500 000 revolutions per minute
(rpm) is presented. Due to the employed AMB, the motor
can be operated in high-purity or vacuum environments. An
analytical mechanical and electrical bearing model is introduced
and verified by measurements. Furthermore, a bearing inverter
system is designed and its controller performance is shown.
Closed-loop system measurements of a spinning levitated rotor
at 400 000 rpm verify the functionality of the overall system.
To the authors knowledge, this is the world record speed for
magnetically-levitated electrical drive systems.

I. INTRODUCTION

Ultra-high-speed electrical drive systems are developed for

new emerging applications, such as turbo compressor systems,

ultracentrifuges, rotating mirrors in optical applications and

milling spindles. Typically, the power ratings of these appli-

cations range from a few watts to a few kilowatts and the

speeds from a few tens of thousands revolutions per minute

(rpm) up to a million rpm, which results in machine rotor

diameters in the millimeter range [1], [2]. Several applications

require the operation in vacuum which excludes the use of

conventional bearings, such as ball bearings or gas bearings.

On the other hand, active magnetic bearings (AMB) enable

contactless operation and thus low friction losses and no

wear. Furthermore, rotor dynamics can be actively controlled

allowing for cancellation or damping of instabilities.

There are several AMB designs proposed in literature

for speeds beyond 100 000 rpm. However, there are only

few publications with experimental results. Reluctance-force-

based homopolar bearings are presented in [3] and [4]. In

[3] a magnetically-levitated milling spindle is presented that

achieved a speed of 125 000 rpm. In [4] a 2kW machine was

operated up to a speed of 120 000 rpm. In [5] a combined

radial-axial reluctance-force-based bearing is presented that

was tested up to 120 000 rpm. A slotless Lorentz-force-based

self-bearing slice motor that achieved a speed of 115 000 rpm

is presented in [6].

In 1946, a rotational speed of 23 million rpm was achieved

by a small magnetically-levitated steal ball [7]. The highest

rotational speed of any macroscopic object was achieved in

[8] by spinning graphene flakes at rotational speeds of up

to 60 million rpm. In this paper, the physical experiments

presented in [7] and [8] will not be considered electric drive

systems as they have no possibility of driving an application.

The concept of slotless and thus Lorentz-force-based self-

bearing motors has been presented in [9] and [10] for posi-

tioning applications and in [11] for heart pumps and flywheel

energy storage applications. [12] is the first to mention the

high-speed potential of slotless self-bearing motors.

In this paper, a novel self-bearing motor designed for

rotational speeds of up to 500 000 rpm and a rated motor

power of 300 W is presented and measurement results are

shown. The motor is designed for driving optical components,

such as mirrors in scanning applications. In order to increase

scanning speed, the rotational frequency of the motor has to

be increased. Due to the magnetic bearing, the motor can be

operated in high-purity or vacuum environments.

In Sec. II, the concept of the realized prototype is described.

An analysis of the generated radial bearing forces including

reluctance forces and the electrical model of a bearing winding

is presented in Sec. III. In Sec. IV, a bearing inverter system

prototype is presented. Finally, measurement results are shown

in Sec. V which verify the bearing force calculations, the

power electronics controller performance and the closed-loop

performance of the motor prototype in operation.

II. SELF-BEARING MOTOR DESIGN

The machine concept of the implemented prototype is based

on a permanent-magnet synchronous motor (PMSM) using

diametrically-magnetized permanent magnets with pole-pair

number ppm = 1 as described in [13]. The machine cross-

section is shown in Fig. 1. The dimensions and properties

of the implemented prototype are given in Tab. I. A CAD

sectional view of the machine is depicted in Fig. 2 and a

picture of the implemented test bench is shown in Fig. 3.

The maximal speed of the motor is limited by the frequency

of the rotor bending modes shown in Fig. 4 and the stresses in

the rotor. The maximal tolerable rotor temperature is limited

by the temperature rating of the employed permanent magnets

of 300 ◦C.

The magnetic bearing concept is based on [14]. Bearing

forces and motor torque are generated primarily based on
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Fig. 1: Machine cross-section and symbol definitions: cylindrical
permanent-magnet rotor inside a slotless stator.
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Fig. 2: Sectional view of the high-speed self-bearing motor prototype.

Lorentz forces in slotless litz-wire windings. Small resulting

winding inductances and the fact that no magnetization of a

ferromagnetic material is necessary to generate a bearing force

allow to control currents and thus bearing forces up to very

high frequncies; this is necessary for high-speed operation.

Furthermore, linear current-to-bearing force relations result

simplifying the system modeling considerably. Separate motor

and bearing windings result in low induced voltages in the

bearing windings, giving the possibility to realize compact

bearing inverters using a switching frequency of up to 1 MHz.

The design of the stator consists of an axial, a motor and

two heteropolar radial bearing windings. Both the motor and

the radial bearing windings are implemented as skewed air-gap

Fig. 3: Implemented self-bearing motor test bench with bearing and
motor inverters.

Tab. I: Properties of the implemented motor prototype.

Symbol Quantity Value

R6 Stator-core inner radius 12 mm

R2 Rotor outer radius 3.5 mm

R1 Permanent-magnet radius 3 mm

Lrotor Total rotor length 63 mm

mrotor Rotor mass 11 · 10−3 kg

Brem Remanent flux density 1.07 T

ψpm,M Motor flux linkage 0.40 · 10−3 Vs

Prated Rated motor power 300 W

χpm Radial bearing constant 71.6 · 10−3 Vs/m

Fmax Maximal radial bearing force 0.86 N

windings as defined in [15] and shown in Fig. 5. Although a

small transverse torque will be generated by the motor winding

[15], the lack of end windings makes the skewed windings

the preferred choice for this application. The homopolar axial

winding is placed between the two radial windings. The

axial bearing force is generated using an additional axially-

magnetized magnet on the rotor.

A grooved tube of thermally-conductive but electrically-

isolating polymer is inserted between the bearing and the

motor winding, allowing to cool the windings with pressurized

air during operation. The rotor is encapsulated from the stator

by a sealed PEEK casing to operate the rotor in vacuum.

The radial rotor position is measured based on eddy-current

sensors presented in [16], whereas the axial and the angular

positions are obtained by Hall-effect-based stray-field mea-

surements.

A cascaded control scheme as shown in Fig. 6 is proposed.

Thus, the rotor position can be controlled by a stator-fixed mul-

tivariable linear quadratic Gaussian (LQG) controller, whereas

the current controllers are implemented using a rotor-fixed

coordinate system. In Sec. III-D, it is shown that a non-

negligible bearing voltage is induced when the rotor is deviated

radially. This voltage has to be accounted for by the current

controller, which is indicated by the dashed line in Fig. 6.

III. RADIAL BEARING DESIGN

In the following analysis vectors, such as three-dimensional

(3D) force vectors, will be denoted by bold letters (e.g. F ),
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Fig. 4: (a) First bending mode of the rotor with a resonance frequency
of 9.6 kHz. (b) Second bending mode with a resonance frequency of
22.8 kHz.

Fig. 5: Radial three-phase skewed bearing winding unit with a pole-
pair number of pw = 2.

whereas complex values, such as current density space vectors,

will be denoted by underlined letters (e.g. JS).

The electromagnetic force and torque on a rotor of an

electric machine can be calculated by integrating the local

stator reaction force density dFS over the Volume V of the

stator

F = −
∫∫∫
V

dFS = −
∫∫∫
V

(dFL,S + dFR,S) . (1)

The minus sign results from the third of Newton’s laws of

motion. The force density dFS can be further split up into a

Lorentz force component

dFL,S = J ×B · dV, (2)

and a reluctance force component

dFR,S =
1

2
H2 ·∇μ · dV, (3)

where J is the current density, B the magnetic flux density,

H the magnetic field and ∇μ the gradient of the local

permeability. In regions with constant permeability μ the

reluctance force density dFR,S = 0 vanishes. Therefore, in

many slotless machine designs the only area where reluctance

forces occur is the inner surface of the stator core.

In [17], an analysis of Lorentz forces generated in slotless

skewed bearing and motor windings is presented. However,

in [17] the reluctance force resulting from high-permeability

stator cores is not considered.

A. Permanent Magnet Flux Density Distribution

The permanent-magnet flux density in the air gap of a

slotless machine for a radially-centered rotor can be described
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Fig. 6: Cascaded control block diagram of the proposed high-speed
self-bearing PMSM.

in cylindrical coordinates (r, θ, z) by Fourier series for both the

radial and the azimuthal field components [18]. For the scope

of this paper, the harmonic components of the permanent-

magnet field are omitted. Thus, a purely-sinusoidal field dis-

tribution

Br = B̂r(r) · cos(ppm(θ − γ)), (4)

Bθ = B̂θ(r) · sin(ppm(θ − γ)), (5)

is assumed, where ppm is the rotor pole-pair number and γ
the angular orientation of the remanent flux density of the

permanent magnet in the xy-plane. In the following subsec-

tions, the configuration ppm = 1 is analyzed in more details.

This field distribution is achieved with the use of a cylindrical

diametrically-magnetized permanent magnet [19]. The field in

axial direction is assumed to be Bz = 0.

B. Analytic Lorentz Force Calculation

In this subsection, analytical results are presented for the

Lorentz force vector generated by skewed bearing windings.

The analysis is based on the integration of the Lorentz

force density over the stator volume. Thereby, the reluctance

force caused by the stator core and the armature reaction is

neglected. Although the presented results are only correct for

ironless designs, they still illustrate the generation of bearing

force what will be the basis of the current and position con-

trollers used to operate the motor. Results including reluctance

force, that are presented in Sec. III-C, show that the influence

of reluctance force can be neglected for sufficiently large ratios

of R6/R4.

The winding parametrization and detailed calculations for

this type of winding are given in [15]. A winding is defined by

the number of pole-pairs pw and the number of phases m. For

the radial bearing winding the configuration pw = 2, m = 3
and ppm = 1 is chosen. According to [15], the amplitude

invariant current density space vector

JS = ĴSe
jε =

3πN · îSejε(√
4L2 + π2R2

4 −
√

4L2 + π2R2
3

) , (6)

can be defined with N being the number of winding turns per

phase and pole, L the axial winding length and j the imaginary

unit. îS denotes the amplitude of the winding current space



vector and ε its phase. In [17], it was shown that for a radially-

centered rotor the integration of the Lorentz force density over

the phase belt of one phase and a subsequent summation over

m phases yields a vanishing torque TL = 0 and the force

vector

FL =
2m sin

(
π
m

)
L2

π

R4∫
R3

(
B̂r + B̂θ

)
rdr

√
4L2 + π2r2

⎡
⎣ĴS cos(ε− γ)

ĴS sin(ε− γ)
0

⎤
⎦ ,
(7)

given in in Cartesian coordinates (x, y, z). The integration over

r is solved using the field solution for B̂r and B̂θ presented

in [19]. Finally, the bearing force can be expressed by

FL =
3

2
χpm,L

⎡
⎣îS cos(ε− γ)

îS sin(ε− γ)
0

⎤
⎦ , (8)

with the Lorentz bearing constant

χpm,L =
3
√

3NKB2R
2
6√

4L2 + π2R2
4 −

√
4L2 + π2R2

3

·K1, (9)

and K1 defined as

K1 = log

(
2L+

√
4L2 + π2R2

3

2L+
√

4L2 + π2R2
4

· 2L−
√

4L2 + π2R2
4

2L−
√

4L2 + π2R2
3

)
.

(10)

The calculation on KB2 is presented in [19]. To facilitate its

calculation, it can be assumed that the relative permeability of

the permanent magnet and the stator core are μr,pm ≈ 1 and

μr,Fe → ∞ [14], which yields

KB2 =
BremR

2
1

2R2
6

. (11)

C. 3D FEM Calculations of the Bearing Forces

The bearing force calculation presented in the previous

subsection is based on Lorentz force solely. With the presence

of an iron stator core, also reluctance forces need to be

considered. Therefore, a magnetostatic FEM calculation is

used to determine the magnetic field generated by the winding.

The 3D winding field distribution is calculated using the

commercial FEM software Comsol. Thereby, the cylindrical

stator core is modeled as a linear material with a relative

permeability μr,Fe = 1000. The total flux density in the air gap

of the bearing is given by the superposition of the winding flux

density and the flux density caused by the permanent magnet,

for which again the analytical 2D model from [19] is used.

As proposed in [15], the bearing force is then obtained by

numerical integration of the Maxwell stress tensor evaluated

for the total flux density on the cylindrical surface with radius

R2.

The FEM calculation yields an increased bearing force with

the presence of an iron stator core. The increase of the total

force compared to the analytically calculated Lorentz force

is shown in Fig. 7 for different bearing geometries. In the

presented prototype, the ratio is R6/R4 = 2. Thus, it is

expected that the total bearing constant χpm is approximately

7% greater than χpm,L calculated by Eq. (9).

1 1.2 1.4 1.6 1.8 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

R6/R4

χ
p
m
/
χ
p
m
,L

R
3
/R

4
=0.9; L/R

4
=2

R
3
/R

4
=0.8; L/R

4
=2

R
3
/R

4
=0.6; L/R

4
=2

calculated
measured

Fig. 7: Ratio of bearing constant χpm including reluctance force to
bearing constant χpm,L calculated by Eq. (9) solely based on Lorentz
force. The cross marks the 3D measurement of total bearing force
measured by a piezoelectric multi-component dynamometer and the
circle the calculated value for the measured geometry.

D. Electrical Bearing Model

In order to control the bearing force F , the bearing currents

have to be controlled. For the design of the bearing inverter

and the corresponding current controller, the electric model of

the bearing has to be analyzed in more detail. In operation of

the magnetic bearing, small radial rotor deflections xB and yB
may occur. The permanent-magnet flux linkage space vector

in the magnetic bearing winding is given by

ψ
pm

= χpm (xB + jyB) ejγ , (12)

for small rotor deflections. The bearing has a symmetrical

magnetic construction, the small difference in permeability

in the magnet magnetization axis and orthogonal thereto is

negligible [20]. Therefore, the bearing winding voltage space

vector is defined as

uS = RSiS +
∂

∂t

(
LSiS + ψ

pm

)
, (13)

where iS is the bearing current space vector, RS the stator

phase resistance and LS the stator phase inductance.

These space vectors are defined in a stator-fixed coordinate

system. However, for control purposes these quantities are

preferably written in a rotor-fixed coordinate system. This

is achieved by expressing uS = (ud + juq) e
jγ and iS =

(id + jiq) e
jγ by rotor-fixed dq-quantities. Thus, Eq. (13) can

be written as

ud = RSid + LS

(
∂id
∂t

− Ωiq

)
+ χpm

(
∂xB
∂t

− ΩyB

)
, (14)

uq = RSiq + LS

(
∂iq
∂t

+ Ωid

)
+ χpm

(
∂yB
∂t

+ ΩxB

)
, (15)

where Ω = ∂γ
∂t is the rotational frequency of the rotor. The

instantaneous bearing power is given by



3

2
� (uSi

∗
S) =

3

2
�
(
RS |iS|2 + LS

∂iS
∂t

i∗S

)

+ F ·
⎡
⎣∂xB

∂t
∂yB

∂t
0

⎤
⎦ + T ·

⎡
⎣0

0
Ω

⎤
⎦ , (16)

where � (. . .) denotes the real part of a space vector and i∗S
the complex conjugate of iS. The resulting bearing force

F =
3

2
χpm

⎡
⎣idiq

0

⎤
⎦ , (17)

can be derived from solving Eq. (16). Furthermore, it can be

seen that an undesirable drive torque

T =
3

2
χpm

⎡
⎣ 0

0
xBiq − yBid

⎤
⎦ , (18)

occurs when the rotor is deviated radially. For applications

where a very accurate control of the rotational frequency Ω
is required, this torque can be compensated by the motor

winding.

IV. POWER ELECTRONICS

A. Specifications

The electrical bearing model (14),(15),(17) implies the need

for three-phase sinusoidal bearing currents to control the rotor

position. Hence, a suitable inverter system is required which

meets the following specifications:

• Extensive simulations have been performed to define the

range of applicable bearing forces F which are required

to stabilize and adequately control the rotor up to the tar-

get rotational speed of 500 000 rpm (Ω = 2π · 8.33 kHz).

Using (17), the number of winding turns N and the

geometry of the bearing winding have been chosen so as

to obtain currents in the low ampere-range. Finally, using

(14) and (15) yields that a peak output voltage |uS|max of

6 V is sufficient for the entire range of operation. The

chosen current and voltage ratings allow for a greatly

simplified inverter implementation as further described

in Sec. IV-B.

• Ripple currents deviating from the desired reference

values do not contribute to a useful net bearing force but

increase the ohmic losses in the windings. Therefore, such

currents must be minimized in order not to compromise

the maximum applicable forces.

• Fast and accurate control of the relative current orienta-

tion ε − γ (Eq. (8)) is crucial for the system stability.

Hence, as the current control actions are performed in

dq-coordinates, the applied dq-transformations between

rotating and rotor-fixed coordinates rely on precise cur-

rent and rotor position measurements. Furthermore, the

transformations must be updated at high sampling rates

to keep the orientation errors small.

• A minimum current controller bandwidth fbw = 12 kHz
was observed to be necessary as a consequence of the

cascaded controller topology (Fig. 6).

B. Implementation

The inverter system has been implemented as a 2-level

voltage source inverter (2LVSI) where a subharmonic sinu-

soidal PWM scheme is employed to generate the gate signals.

Decoupled PI current controllers are applied. In contrast to

standard approaches [21], however, the feedforward terms

must additionally include the back EMF voltages resulting

from rotor displacements (Eq. (14),(15)). The simple topology

and – in contrast to conventional motor drive applications –

low current and voltage rating requirements allow for the use

of integrated gate driver circuits instead of discrete MOSFETS

for the implementation of the inverter half bridges. For the

system at hand, this choice features several advantages: on the

one hand, with gate drivers, very high switching frequencies

fsw can be achieved, which results in small bearing current

ripples and hence low undesired extra losses. On the other

hand, the system complexity can be highly reduced, which

allows for a compact design. Furthermore, high fsw are also

beneficial from the control point of view. Not only are higher

controller bandwidths fbw achievable, but also the current

orientation ε can be adjusted at higher sampling rates, which

improves system stability.

Fig. 8 shows the implemented inverter system. The power

electronics consist of two three-phase 2LVSIs for two radial

bearings as well as an additional full bridge inverter for

the axial bearing. All inverter half bridges are implemented

with IXYS IXDD614 gate drivers and share a common DC-

link capacitance. Five galvanically isolated current sensors

(Sensitec DCS4006) measure the bearing currents. A fully

FPGA-based (Cyclone IV) controller is proposed, which offers

the advantage of running several current controllers in a

simultaneous and time-synchronous manner at high sampling

rates. The implemented inverter system is capable of im-

pressing 5 A peak bearing currents up to the target rotational

speed Ω = 2π · 8.33 kHz and up to switching frequencies

fsw = 1MHz. The DC-link voltage UDC is adjustable between

10 and 35 V. The total loop delay mainly depends on the

filtering effort and can be adjusted between 2 and 6μs. This

enables bandwidths up to fbw = 20 kHz without significant

overshoots.

V. MEASUREMENTS

A. Measurement of Bearing Force

In order to verify the presented bearing force calculations,

a set of 3D force and torque measurements have been per-

formed. The permanent magnet used for this measurement

is mounted on a rotational stage. The rotor is then inserted

without mechanical contact into the stator. The stator is

mounted on a piezoelectric multi-component load cell (Kistler

9256C1) to measure the winding reaction force and torque

components resulting from the injected winding currents.

A Spitzenberger&Spies DM3000 power supply is used to



Fig. 8: Implemented bearing inverter system prototype.
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Fig. 9: Multidimensional dynamometer measurement of bearing force
and torque generated by a skewed pw = 2 test winding with an
ironless stator R6 → ∞.

generate the three-phase symmetric sinusoidal currents fed to

the star connected winding at a frequency of ω = 2π · 1 Hz.

Measurement results are shown in Fig. 9 for an ironless

stator R6 → ∞ configuration and a fixed angular position

of γ = 0 and ε = ωt. This allows to measure the Lorentz

force solely. From Eq. (8), a bearing force amplitude |F̂xy| =
350 mN is expected which corresponds well with the measured

range of 345−375 mN. Furthermore, it can be seen that |F̂xy|
periodically varies approximately 8% of its nominal value. It

is assumed that this effect is caused by small asymmetries of

the phases caused by the two-layer winding structure [15]. It

is expected that no torque T is generated. Indeed, a very small

torque of less than 1.5 Nmm in amplitude was measured.

The force measurement including an iron stator core R6 =
R4 is marked with a cross in Fig. 7. The measured bearing

force amplitude |F̂xy| range of 584−602 mN corresponds well

with the FEM-based value of 601 mN.
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B. Power Electronics

Fig. 10 shows a bearing current step response for Ω =
2π · 8.33 kHz, fbw = 12 kHz, fsw = 500 kHz and UDC = 12V
of the inverter system shown in Fig. 8. The winding parameters

are LS = 2μH and RS = 3.6 Ω. For this measurement the

rotor was removed from the motor. γ was artificially generated

by a sine lookup table and could thus be used to obtain the

step response in dq-coordinates by means of postprocessing

of the measured currents. Due to their high frequency, the

occurring ripple currents will not affect the mechanical system

but increase the losses in the winding. In the final design,

however, an output filter and higher switching frequencies

will be used in the following to reduce the current ripples

considerably.

C. Closed-Loop Measurements of Levitated Rotor

Fig. 11 shows a closed-loop measurement of the system

whose parameters are given in Tab. I for a rotor levitated

at 400 000 rpm. The measurement of the rotor position is

obtained by an external optical displacement sensor of the

type Keyence LK-H022. The sensor is positioned to measure

radial rotor deflections at the rotor tip. An Ω-synchronous

deflection of about ±8μm can be observed. The rotor used

in this measurement was not balanced after manufacturing.

Therefore, it is assumed that at such high rotational speeds the
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Fig. 11: Closed-loop system measurement of the system whose
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the lower plot.

resulting rotor deflections are caused by unbalances. For this

setup fsw = 1MHz and UDC = 12V were chosen. The radial

bearing winding parameters are LS = 4.3μH, RS = 2.4 Ω and

χpm = 71.6 · 10−3 Vs/m.

VI. CONCLUSION

The slotless self-bearing motor prototype presented in this

paper overcomes most limitations of previously presented

high-speed magnetic bearings. All six degrees of freedom of

the rotor are actively controlled by Lorentz forces generated by

air-gap windings. Thus, the bearing forces are not influenced

by eddy-current effects and can therefore be controlled up to

very high frequencies. A mechanical and electrical bearing

model based on analytic and FEM calculations is presented

and verified by multidimensional force measurements. In order

to control the bearing currents, an inverter system is designed

using a switching frequency of 1 MHz. Measurement results

of the achieved controller performance proof the feasibility of

the proposed cascaded controller structure. Closed-loop system

measurements of a spinning levitated rotor at 400 000 rpm

verify the functionality of the overall system. To the authors

knowledge, this is the world record speed for magnetically-

levitated electrical drive systems.
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