

IEEE PEAS 2021 The 1st IEEE International Power Electronics and Application Symposium

« X-Concepts » The DNA of Future High-Performance Power Electronic Systems

Johann W. Kolar et al.

Source: hathornconsultinggroup.com

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Nov. 13, 2021

ETH zürich

IEEE PEAS 2021 The 1st IEEE International Power Electronics and Application Symposium

« X-Concepts » The DNA of Future High-Performance Power Electronic Systems

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Nov. 13, 2021

"X-Concepts" – The DNA of Future High-Performance Power Electronic Systems

Abstract – Aiming for a disruptive next step of power electronics performance improvement it is interesting to contemplate on potential driving forces, in other words to identify "x-concepts", which enable the full utilization of basic scaling laws and of "x-technologies" like wide bandgap power semiconductors, digital signal processing and 3D-packaging introduced over the last decade.

The talk first identifies 4 core approaches, namely modularization, hybridization, synergetic association and functional integration and subsequently demonstrates/verifies the capabilities of the x-concepts based on latest research results of the Power Electronic Systems Laboratory of ETH Zurich like a 99.4% efficient multi-level PV inverter system, an ultra-compact 3-port automotive DC/DC converter system, a synergetically controlled ultra-wide output voltage range three-phase EV charger, a monolithic bidirectional GaN switch current DC-link AC/AC converter for motor integrated variable speed drives, a 4.8MHz switching frequency 100kHz bandwidth AC-source and a partial power processing DC/DC server power supply. Finally, life cycle analysis, embodied energy, and design for recyclability are highlighted as major topics to be integrated into future power electronics research and development processes.

Outline

Acknowledgement ► Introduction M. Antivachis X-Technologies
 X-Concepts / «Genes» **Conclusions**

J. Azurza D. Bortis M. Guacci T. Guillod M. Haider G. Knabben F. Krismer D. Menzi S. Miric J. Miniböck N. Nain J. Schäfer L. Schrittwieser F. Vollmaier St. Waffler D. Zhang

Power Electronics

Driving Applications — Performance Indicators / Trends — Technology S-Curve

Driving Applications

Global Megatrends \rightarrow Industry Automation | Renewable Energy | Sustainable Mobility | Urbanization etc.

● Clean Energy Transition → "All-Electric" Society

Performance Indicators / Trends

ETH zürich

S-Curve of Power Electronics

- « X-Technologies » / "Moon-Shot" Technologies
 « X-Concepts » → Full Utilization of Basic Scaling Laws & X-Technologies
 Power Electronics 1.0 → Power Electronics 4.0
- 2...5...10x Improvement NOT Only 10% !

X-Technologies

SiC | GaN —— 3D-Packaging & Integration —— Digital Signal Processing Energy Storage

Low R_{DS(on)} High-Voltage Devices

- Higher Critical E-Field of SiC \rightarrow Thinner Drift Layer Higher Maximum Junction Temperature $T_{j,max}$

• Massive Reduction of Relative On-Resistance \rightarrow High Blocking Voltage Unipolar Devices

Low R^{*}_{DS(on)} High-Voltage Devices

- SiC MOSFETs / GaN HEMTs (Monolithic AC-Switch) Low Conduction Losses & ZVS
- High Efficiency

• High-Voltage Unipolar (!) Devices \rightarrow Excellent Switching Performance

Monolithic 600V GaN Bidirectional/Bipolar Switch

- PowerAmerica Program Based on Infineon's CoolGaN™ HEMT Technology (infineon Dual-Gate Device / Controllability of Both Current Directions Bipolar Voltage Blocking Capability | Normally On or Off

• Analysis of 4-Quardant Operation of $R_{DS(on)} = 140m\Omega \mid 600V$ Sample @ $\pm 400V$

Example of 3-Level T-Type Inverter

- *Utilization of 600V Monolithic Bidirectional GaN Switches* 2-Gate Structure Provides Full Controllability

• Factor 4 (!) Reduction of Chip Area vs. Discrete Realization

n «

Circuit Parasitics

- **Extremely High di/dt Commutation Loop Inductance** L_s Allowed L_s Directly Related to Switching Time $t_s \rightarrow$

Advanced Packaging & Parallel Interleaving for Partitioning of Large Currents (Z-Matching)

3D-Packaging / Heterogeneous Integration

- System in Package (SiP) Approach Minim. of Parasitic Inductances / EMI Shielding / Integr. Thermal Management Very High Power Density (No Bond Wires / Solder / Thermal Paste)

0.91"

- PCBs Embedded Optic Fibres
- Automated Manufacturing

2.1 in² and 34 W/in² 0.57 in² and 105 W/in² 72 Watts 60 Watts \rightarrow 2.3" 1.26 in² and 26 W/in² 33 Watts 0.97"

- 1.3"

←0.65"->

0.87

- Future Application Up to 100kW (!)
 New Design Tools & Measurement Systems (!)
 University / Industry Technology Partnership (!)

ETH zürich

- Slowing Transistor Node Scaling → Vertical & Heterogeneous Integr. of ICs for Performance Gains
 Extreme 3D-Integrated Cube-Sized Compute Nodes
 Dual Side & Interlayer Microchannel Cooling

• Interposer Supporting Optical Signaling / Volumetric Heat Removal / Power Conversion

Digital Signal & Data Processing

- Exponentially Improving uC / Storage Technology (!)
- Extreme Levels of Density / Processing Speed Software Defined Functions / Flexibility Continuous Relative Cost Reduction

Moore's Law

- Distributed Intelligence
- Fully Digital Control of Complex Systems Electrical/Optical/Wireless Signal Transfer
 Massive Comp. Power → Fully Automated AI-Based Design / Digital Twins / Industrial IoT (IIoT)

Ρ

D

n

 $\frac{\partial \eta}{\partial \rho}$

Automated Design (1)

- Based on Mathematical Model of the Technology Mapping Multi-Objective Optimization \rightarrow Best Utilization of the "Design Space" Identifies Absolute Performance Limits \rightarrow Pareto Front / Surface

Clarifies Sensitivity $\Delta \vec{p} / \Delta \vec{k}$ to Improvements of Technologies Trade-Off Analysis

Automated Design (2)

- Design Space Diversity
 Equal Performance for Largely Different Sets of Design Parameters (!)

- E.g. Mutual Compensation of Volume or Loss Contributions (e.g. Cond. & Sw. Losses) Allows Consideration of Additional Performance Targets (e.g. Costs)

Design Space Diversity — Example

- Design of a Medium-Frequency Transformer
- Power Level & Power Density = const.
- Wdg./Core Loss Ratio, Geometry, n etc. as Design Parameters

- Mutual Compensation Core & Winding Losses Changes
- Limits on Part Load Efficiency / Costs / Fixed Geometry → Restricted Diversity

Design Automation Roadmap

- **End-to-End Horizon** Cradle to Grave/Cradle Modeling & Simulation
- Design for Cost / Volume / Efficiency / Manufacturing / Testing / Reliability / Recycling

• AI-Based Summaries → No Other Way to Survive in a World of Exp. Increasing # of Publications (!)

X-Concepts

Scaling of Multi-Cell/Level Concepts

- **Reduced Ripple @ Same (!) Switching Losses Lower Overall On-Resistance @ Given Blocking Voltage** Application of LV Technology to HV

• Scalability / Manufacturability / Standardization / Redundancy

SiC/GaN Figure-of-Merit

- Figure-of-Merit (FOM) Quantifies Conduction & Switching Properties FOM Determines Max. Achievable Efficiency @ Given Sw. Frequ.

• Advantage of Multi-Level over 2-Level Converter Topologies

X-FOM of ML-Bridge-Legs

- *Quantifies Bridge-Leg Performance of N-Level FC Converters Determines Max. Achievable Efficiency & Loss Opt. Chip Area @ Given Sw. Frequ.*

ETH zürich

15

99.35%

2.6kW/kg

56 W/in³

20

3-Φ Hybrid Multi-Level Inverter

- Realization of a 99%++ Efficient 10kW 3-Ф 400V_{rms,ll} Inverter System
 7-Level Hybrid Active NPC Topology / LV Si-Technology

• 200V Si \rightarrow 200V GaN Technology Results in 99.5% Efficiency

Source: M. Schweizer

ABB

Quasi-2L & Quasi-3L Inverters (1)

- Operation of N-Level Topology in 2-Level or 3-Level Mode
 Intermediate Voltage Levels Only Used During Sw. Transients

- Clear Partitioning of Overall Blocking Voltage & Small Flying Capacitors
 Low Voltage/Low R_{DS(on)}/Low \$ MOSFETs → High Efficiency / No Heatsinks / SMD Packages

Quasi-2L & Quasi-3L Inverters (2)

- Operation of 5L Bridge-Leg Topology in Quasi-3L Mode
 Intermediate Voltage Levels Only Used During Sw. Transients
- Applicability to All Types of Multi-Level Converters

3.3kW @ 230V_{rms}/50Hz

Equiv. $f_s = 48 kHz$

- Reduced Average dv/dt → Lower EMI
 Clear Partitioning of Overall Blocking Voltage & Small Flying Capacitors
 Low Voltage/Low R_{DS(on)}/Low \$ MOSFETs → High Efficiency / No Heatsinks / SMD Packages

Quasi-2L & Quasi-3L Inverters (3)

Source: M. Schweizer ABB

- Operation of 5L Bridge-Leg Topology in Quasi-3L Mode
 Intermediate Voltage Levels Only Used During Sw. Transients
- Applicability to All Types of Multi-Level Converters

Operation @ 3.2kW

- *Conv. Output Voltage*
- Sw. Stage Output Voltage
- Flying Cap. (FC) Voltage
- Q-FC Voltage (Úncntrl.)

Output Current — Conv. Side Current _

- Reduced Average dv/dt → Lower EMI
 Clear Partitioning of Overall Blocking Voltage & Small Flying Capacitors
 Low Voltage/Low R_{DS(on)}/Low \$ MOSFETs → High Efficiency / No Heatsinks / SMD Packages

- **Example of Google Little Box Challenge** Target: 2kW 1-Φ Solar Inverter with Worldwide Highest Power Density Comparative Analysis of Approaches of the Finalists

• 3D-Packaging / Integration Highly Crucial for Utilizing Multi-Level Advantages (!)

- **Example of Google Little Box Challenge** Target: 2kW 1-Φ **Solar Inverter** with Worldwide Highest Power Density Comparative Analysis of Approaches of the Finalists

• 3D-Packaging / Integration Highly Crucial for Utilizing Multi-Level Advantages (!)

Remark 2-Level vs. Multi-Level Inverter

- 400kW Extreme Fast EV Charger | $3-\Phi$ 13.2kV AC \rightarrow 1kV DC
- Input Series Output Parallel (ISOP) Solid-State Transformer
- Alternative Low-Frequency Transformer & AC/DC Converter

• 1.2kV SiC MOSFETs Utilized in Both Systems

• 3 x 9 = 27 AC/DC—DC/DC Cells / 3-Level PFC Input Stage & Full-Bridge DC/DC Output Stage

Remark 2-Level vs. Multi-Level Inverter

• 400kW Extreme Fast EV Charger $| 3-\Phi 13.2kV AC \rightarrow 1kV DC$

■ Input Series Output Parallel (ISOP) Solid-State Transformer

- Forced Air Cooling
- 3 x 9 = 27 AC/DC—DC/DC Cells 98+ % Efficiency | 3000kgs Weight | 3100 x 1300 x 2100 mm Outer Dimensions

Remark 2-Level vs. Multi-Level Inverter

- **400kVA** EcoDryTM High-Efficiency Transformer & AC/DC Converter Vacuum Cast Coils \rightarrow No Fire Hazard
- Amorphous Metal Core → Low No-Load Losses
 High Overvoltage / Overload Capability

- $400kVA \rightarrow 1400 \times 750 \times 1500 \text{ mm}$ Outer Dimensions
- Utilizing SST SiC MOSFETs in AC/DC Stage → 99++ % Efficiency
 Higher Efficiency / Power Density / Robustness of LFT-Based Concept (!)

Buck-Boost 3- Variable Speed Drive Inverter

- Generation of AC-Voltages Using Unipolar Bridge-Legs Utilize Filter Inductor for Boost Operation \rightarrow Functional Integration

Switch-Mode Operation of Buck OR Boost Stage → Single-Stage Energy Conversion (!)
 3-Φ Continuous Sinusoidal Output / Low EMI → No Shielded Cables / No Motor Insul. Stress

Boost-Operation $u_{an} > U_i$

Phase-Module

 φ_{0}

 $-\varphi_{0}$

- Current-Source-Type Operation
 Clamping of Buck-Bridge High-Side Switch → Quasi Single-Stage Energy Conversion

Buck-Operation $u_{an} < U_i$

Phase-Module

 $\varphi_{\rm o}$

 $-\varphi_{\rm o}$

- Voltage-Source-Type Operation
 Clamping of Boost-Bridge High-Side Switch → Quasi Single-Stage Energy Conversion

SiC 3- Φ Buck-Boost Inverter Demonstrator

Dimensions \rightarrow 160 x 110 x 42 mm³

Isolated Matrix-Type $3-\Phi$ PFC Rectifier (1)

- Based on Dual Active Bridge (DAB) Concept Ingegration of $3-\Phi$ PFC Rectifier & DC/DC Converter Stage Opt. Modulation ($t_1...t_4$) for Min. Transformer RMS Curr. & ZVS or ZCS Allows Buck-Boost Operation

• Equivalent Circuit

• Transformer Voltages / Currents

Isolated Matrix-Type 3-ΦPFC Rectifier (2)

ETH zürich

3-Port Resonant GaN DC/DC Converter

- Single Transformer & Decoupled Power Flow Control Charge Mode PFC \rightarrow HV (250...500V) SRC DCX / Const. f_{sw} , Min. Series Inductance / ZVS Drive Mode HV \rightarrow LV (10.5...15V) 2 Interleaved Buck-Converters / Var. f_{sw} / ZVS

P = 3.6*k*W

- Peak Efficiency of 96.5% in Charge Mode / 95.5% in Drive Mode
- **PCB-Based Windings** / No Litz Wire Windings \rightarrow Fully Automated Manufacturing

Low-Loss PCB-Winding Inductor

- Conv. PCB Windings & Airgaps \rightarrow Skin / Proximity / Fringing Field $^{\perp}$ to PCB \rightarrow Current Displacement Arrangement of Airgaps for Mutual Field Compensation Thermal Interfaces for Efficient Cooling

- Optimal Positions & Wdg Distance of Airgaps for Multi-Airgap / Multi-Layer Inductors
 Factor of 3 Red. of Skin & Prox. Losses

3-Φ EV-Charger Topology

- Isolated Controlled Output Voltage
 Buck-Boost Functionality & Sinusoidal Input Current
 Applicability of 600V GaN Semiconductor Technology
 High Power Density / Low Costs

 \rightarrow Conventional / Independent OR "Synergetic Control" of Input & Output Stage

Sector I

Synergetic Association

1/3-Modulation \rightarrow Significant Red. of Losses of the Power Switches Comp. to 3/3-PWM

Sector I

Conduction Losses of the Switches ≈ -80%

• Operating Point Dependent Selection of 1/3-PWM OR 3/3-PWM for Min. Overall Losses

- Hybrid Combination of Mains- and Forced-Commutated Converter 3rd Harmonic Current Injection into Phase with Lowest Voltage Phase Selector AC Switches Operated @ Mains Frequency 3-Φ Unfolder

Non-Sinusoidal Mains Current

38/52

IAF PFC Rectifier & Buck Converter Demonstrator

• Controlled Output Voltage

ETH zürich

Power Electronic Systems Laboratory

IEEE PEAS 202 The 1st IEEE International Power Electronics and Application Symposium

Partial/Differential Power Processing

$$p_{c} = \frac{P_{c,1}}{P_{1}} = \frac{\frac{U_{c}}{U_{2}}}{1 + \frac{U_{c}}{U_{2}}}$$

Low Influence of Converter Efficiency on Overall Efficiency

$$\eta = \frac{P_2}{P_1} = \frac{(1 + \frac{U_c}{U_2} \eta_c)}{(1 + \frac{U_c}{U_2})}$$

ETH zürich

Pre-Regulated LLC DC-Transformer

- Aux. Converter Stage for ± 10% V_{in} Compensation | V_{in} = 340V ... 420V
 Const. Voltage Transfer Ratio / High Efficiency LLC «DC/DC Transformer» @ Const. Frequency | f_{sw} = 100kHz
 Const. Output Voltage | V_{out} = 48V

- **Rectangular Aux. Voltage Added or Subtracted (f**_{aux} = 600kHz) from V_{in} Marginal Impact of Control on Overall Power Density & Efficiency

1-Φ AC/DC—DC/DC Solid-State Transformer

- Bidirectional 3.8 kV_{rms} 1- Φ AC \rightarrow 400V DC @ 25 kW Power Conversion Based on 10 kV SiC MOSFETs
- Full Soft-Switching

• 35...75 kHz iTCM Input Stage

• 48 kHz «DC-Transformer» Output Stage

Overall Performance AC/DC — DC/DC

- **Full Soft-Switching**
- 98.1% Overall Efficiency @ 25 kW
 1.8 kW/dm³ (30 W/in³)

Significantly Simpler System Structure Compared to Multi-Module (ISOP) SST Approach

Hybrid EMI-Filter / Leakage Current Reduction

- **Future Extension of EMI Limits** 9kHz ... 150kHz | IEC TS 62578 Tech Spec. for Active Infeed Conv. Applications
- Earth Leakage Current "Compensation"
- Conducted CM EMI Filter

- Prevents Unintentional Residual Current Device (RCD) Tripping w/o Isolation Transformer
- Attenuation of Cond. EMI Emissions in Wide Frequency Range 30/40/15dB @ 4/10/150kHz

Networking Scaling

- Metcalfe's Law
- Moving from Hub-Based Concept to Community Concept Increases Potential Network Value Over-Proportional → ~n(n-1) or ~n log(n)

ETH zürich

IIoT in Power Electronics

Digital Twin → Physics-Based "Digital Mirror Image"
 Digital Thread → "Weaving" Real/Physical & Virtual World Together

- Requires Proper Interfaces for Models & Automated Design
 Model of System's Past/Current/Future State → Design Corrections / Predictive Maintenance etc.

IIoT Starts with a Sensor (!)

- **Condition Monitoring of DC Link Capacitors** On-Line Measurement of the ESR in *"Frequency Window"* (Temp. Compensated) Data Transfer by Optical Fibre or Near-Field RF Link

Possible Integration into Capacitor Housing or PCB

Additionally features Series Connect. Voltage Balancing

finininin MICRO- 🕀 (-)DC LINK CONTROLLER BUS BARS ΠŤ PCB R_{SH} SHUNT-RESISTOR MONITORING BUS ELECTROLYTIC CAPACITOR

Source: R. Sommer

Smart Inverter Concept

Utilize High Computing Power and Network Effects in the Cloud

SIEMENS Intelligent Gate Drive Unit Passive Components ŧ (Filter, dc-link, ...) Semiconductor protection (overcurrent, overvoltage, ...) · Collecting and preprocessing of sensor data (current, Sensors (Current, Voltage, ...) voltage, temperature, ...) • Semiconductor specific condition monitoring functions Power Semiconductors (IGBT, SiC ...) Communication Gate Drive Unit (GDU) Internet (e.g. intelligent digital GDU) • Communication protocol instead of on/off signals Gateway Communication Sensors **Drive Controller** (Speed,Temp.) Drive Controller (HW Observer based condition monitoring functions and Drive SW) Predictive maintenance functions · Data Processing and data compression Communication to customer automation and/or internet Customer Automation Internet / Cloud Service and commissioning tools Internet Internet • Algorithms for "Big Data" analysis Gateway Gateway • Smart documentation (e.g. video to support service) • ... Internet / Cloud Service

• On-Line Optimization / Protection / Monitoring on Component | Converter | Drive | Application Level

"Moore's Law" of Power Electronics

- "Moore's Law" Defines Consecutive Technology Nodes Based on Min. Costs per Integr. Circuit (!)
- Complexity @ Min. Comp. Costs Increases approx. by Factor of 2 / Year

- Potential Power Density Improvement Factor 2...5 Until 2030 Definition of " $\eta *_{\rho} *_{\sigma} *_{f_{\rho}} *_{-}$ Technology Node" Must Consider Conv. Type / Operating Range etc. (!)

Future Development

- Commoditization / Standardization
- **Extreme Cost Pressure (!)**

• Key Importance of Technology Partnerships of Academia & Industry

Source: www.roadtrafficsigns.com

Power Electronics \rightarrow "Energy" Electronics

Design Considering Converters as Standardized "Integrated Circuits" (PEBBs)

Extend Analysis to Converter Clusters / Power Supply Chains / etc.

→ "Systems" (Microgrid) or "Hybrid Systems" (Automation / Aircraft)
→ "Integral over Time" "Converter" 'Time" "Power" \rightarrow "Energy"

$$p(t) \rightarrow \int_{0}^{t} p(t) dt$$

- Power Conversion \rightarrow Energy Management / Distribution
- Converter Analysis
- → System Analysis (incl. Interactions Conv. / Conv. or Load or Mains)
 → System Stability (Autonom. Cntrl of Distributed Converters)
 → Energy Storage & Demand Side Management — Converter Stability
- Costs / Efficiency

- Cap. Filtering

- etc.

 \rightarrow Life Cycle Costs / Mission Efficiency / Supply Chain Efficiency

Energy Electronics Systems Performance Figures/Trends

ETH zürich

Thank you!

