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State-of-the-Art
Trends and Future Requirements

3-Φ Variable Speed Drive 
Inverter Systems



Variable Speed Drive Inverter Concepts
■ DC-Link Based  OR  Matrix-Type  AC/AC Converters
■ Battery  OR Fuel-Cell Supply OR Common DC-Bus Concepts

● High Performance @ High Level of Complexity / High Costs (!)  
● All Separated  Large Installation Space / Complicated / Expert Installation

Source:  
IndiaMART
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● Main “Enablers”   SiC/GaN Power Semiconductors  & Digitalization  (“X-Technologies”)
 Adv. Inverter Topologies  & Control Schemes          (“X-Concepts”)

VSD Inverter - Future Requirements
■ “Non-Expert” Installation  Motor-Integrated Inverter OR “Sinus-Inverter”

■ Low Losses   &  Low HF Motor Losses      / Low Volume & Weight
■ Wide Output Voltage Range  / High Output Frequencies (High Speed Motors)
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WBG Semiconductors
“X-Technologies”

Source:  
www.terencemauri.com



■ Higher Critical E-Field of SiC  Thinner Drift Layer
■ Higher Maximum Junction Temperature Tj,max

● Massive Reduction of Relative On-Resistance  High Blocking Voltage Unipolar Devices 
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● Extremely High  di/dt & dv/dt  Challenges in Motor Insulation / Bearing Currents / EMI
● Small Chip Size & Integration  Challenges in Gate Drive & PCB / Packaging & Thermal Management

Si vs. SiC Switching Behavior 
■ Si-IGBT           Const. On-State Voltage Drop / Rel. Low Switching Speed 
■ SiC-MOSFETs   Resistive On-State Behavior / Factor 10 Higher Sw. Speed

Source: Fuji Electric

1200V  100A
Die Size:  25.6mm2

Si 1200V  100A
Die Size: 98.8mm2 + 39.4mm2

Source:  CreeSource:  Infineon
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Full-Sinewave Filtering
Inverter Output Filters



State-of-the-Art Drive System
■ Standard 2-Level Inverter — Large Motor Inductance / Low Sw. Frequency   
■ Shielded Motor Cables / Limited Cable Length / Insulated Bearings / Acoustic Noise

● Line-to-Line Voltage   | CM Leakage Current    |   Motor Surge Voltage  | Bearing Current

Source:
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■ Measures  Ensuring EMI Compliance  /  Longevity of Motor Insulation & Bearings 
■ Motor Reactor | dv/dt Filters | DM-Sinus Filters | Full-Sinus Filters

● Small Filter Size  High Sw. Frequ.  SiC|GaN

Source:

Source:

Output Voltage Filtering 


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● Sinewave LC Output Filter   Corner Frequency  fC= 34kHz
● 2% Higher Efficiency of GaN System Despite LC-Filter (Saving in Motor Losses) !  

■ Comparison of Si-IGBT System (No Filter, fS=15kHz) & GaN Inverter (LC-Filter, fS= 100kHz)
■ Measurement of Inverter Stage &  Overall Drive Losses @ 60Hz

3-Φ 650V GaN Inverter System
Source: 

0.45%=4.5W
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Flying Capacitor Inverter
Multi-Level Inverters

G. Rohner, S. Miric, D. Bortis, J. W. Kolar, M. Schweizer,
Comparative Evaluation of Overload Capability and Rated Power Efficiency of 200V Si/GaN 7-Level FC 3-Phase Variable Speed Drive Inverter Systems, 

Proceedings of the 36th Applied Power Electronics Conference and Exposition (APEC 2021), June 14-17, 2021.
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Scaling of Flying Cap. Multi-Level Concepts
■ Clear Partitioning of Overall Blocking Voltage  Lower Voltage Steps /  Lower EMI / Reflections
■ Higher Effective Switching Frequency @ Output  fsw,eff = Nꞏfsw

■ Low Output Inductance & Application of LV Technology to HV
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SiC/GaN Figure-of-Merit 

● Advantage of  LV over HV Power Semiconductors
● Advantage of  Multi-Level over 2-Level Converter Topologies
 Lower Overall On-Resistance @ Given Blocking Voltage

■ Figure-of-Merit (FOM) Quantifies Conduction & Switching Properties 
■ FOM Identifies Max. Achievable Efficiency @ Given Sw. Frequ. 
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Motor Integrated 7-Level FC Inverter
■ Specifications

• DC Input Voltage: 800V 
• Nominal Operation: 15Apeak, 350Vpeak (7.5kW)
• Overload Operation: 45 Apeak for 3s
• Temperature Aluminum (Flange): 90°C

Steps of 133V

● 7-Level Flying Capacitor Inverter enables Usage of 200V Devices (Si or GaN)

● Nominal Efficiency Target 99% (only Semicond.)  # Semicond. Devices 
● Max. Achievable Switching Freq.  Determines Flying Cap. Vol.

200V Si

200V GaN
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Nominal Load Operation
■ 99% at Nom. Load – 7.5 kW  75W Total Semi. Losses   (Only 2.1W per Switch)
■ Comparison of best 200V Si and GaN Devices available on the Market

• Si-MOSFET: IPT111N20NFD, Optimos 3 (11mOhm)
• GaN: EPC2034C (8mOhm)

● GaN achieves 2-3 times Higher Switch. Freq. compared to Si for 99%  2-3x lower FC Volume

● Overload Capability 3 x Nominal Load for 3 Seconds

Nominal Load Efficiency (%)

1x Si: 25kHz 

2x GaN: 60kHz 

# Discrete Devices # Discrete Devices

1 2
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● Conduction Losses dominate Overload Losses  Increase Switching Frequency at Overload
● 3 x Switching Frequency  Flying Cap. designed for Nom. Load

● Max. Junction Temp. (Si: 175°C/ GaN: 150°C) Proper Cooling Concept needed

■ Worst Case Overload Operation at Standstill
■ 3 x Torque/Current (45Apeak) for 3s  Strongly Increased Semicon. Losses

 3 x Flying Cap. Vol. for same FC Voltage Ripple

53W

23W

2x GaN

1x Si

75kHz 180kHz

40W

11W

Overload Operation
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■ Si MOSFET  Cooling Through PCB with Copper Inlay
■ GaN (Bottom Side mounted)  Directly Attached Copper Piece   & TIM to Heatsink

● Inlay for Si    &    Copper Plate for GaN  Thermal Capacitor & Heat Spreader
● Minimize Th. Contact betw. GaN Device and Cu Plate  Heat Paste, Liquid Gap Filler, Solder Pad

● Determine Thermal Performance  Realization  & Dynamic Thermal Model

Cooling Concepts

Copper Inlay

Si: IPT111N20NFD 

(Optimos 3 FD)

GaN: EPC2034C

Top: 𝑅ΘJC = 0.3 K/W

Bottom: 𝑅ΘJB = 4 K/WBottom: 𝑅ΘJB = 0.4 K/W

Copper Piece

TIMTIM
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■ Si MOSFET  Cooling Through PCB with Copper Inlay
■ GaN (Bottom Side mounted)  Directly Attached Copper Piece   & TIM to Heatsink

Flying Capacitor Cell Realization

Si: IPT111N20NFD 

(Optimos 3 FD)

GaN: EPC2034C

Top: 𝑅ΘJC = 0.3 K/W

Bottom: 𝑅ΘJB = 4 K/WBottom: 𝑅ΘJB = 0.4 K/W
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● Inlay for Si    &    Copper Plate for GaN  Thermal Capacitor & Heat Spreader
● Minimize Th. Contact betw. GaN Device and Cu Plate  Heat Paste, Liquid Gap Filler, Solder Pad

● Determine Thermal Performance  Realization  & Dynamic Thermal Model



■ Si MOSFET  Cooling Through PCB with Copper Inlay
■ GaN (Bottom Side mounted)  Directly Attached Copper Piece   & TIM to Heatsink

Dynamic Thermal Modeling

Si: IPT111N20NFD 

(Optimos 3 FD)

GaN: EPC2034C

Top: 𝑅ΘJC = 0.3 K/W

Bottom: 𝑅ΘJB = 4 K/WBottom: 𝑅ΘJB = 0.4 K/W
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● Inlay for Si    &    Copper Plate for GaN  Thermal Capacitor & Heat Spreader
● Minimize Th. Contact betw. GaN Device and Cu Plate  Heat Paste, Liquid Gap Filler, Solder Pad

● Determine Thermal Performance  Realization  & Dynamic Thermal Model



■ Empirical Parametrization  Measure Temp. Profile for different Injected Power Profiles
■ Junction Temp.  Electrically with temperature-dependent Rds,on (1ms Rate)
■ Case, Cu-Plate & Heat Sink  Optically with Thermal Camera (40ms Rate)

● DC Power Injection  Relation betw. Junction Temp. and Rds,on
 Thermal Resitances

● Pulsed Power Injection  Thermal Capacitances

Dynamic Thermal Model Parametrization

FLIR A655SC & Close-up Lens 
- 100μm Resolution 
- 40ms Update Rate
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■ Normalized Thermal Step Response  Cu-Piece increases Time Constant drastically 
■ Similar Dyn. & Stat. Th. Behavior for 1xSi & 2xGaN if Cu-Piece same Dim. as Si-Exposed Pad

● Initial Small Time Constant  Defined by Device Package (𝜏 < 10ms)
● Afterwards Large Time Constant  Defined by Cooling Concept (𝜏Si = 0.4 s, 𝜏GaN = 0.65 s)

● Overload Duration > 4 ⋅ 𝜏Semi  Equals Continuous Overload (Worst Case)

Dynamic Thermal Model

Cu-Piece 
Thickness

GaN:  1.81 K/W per Device

Si: 0.91 K/W per Device

CCP = 0.6 J/K

3s
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Si Temperature Profile
(1x Si at 75 kHz , Overload)

GaN Temperature Profile
(2x GaN at 180 kHz, Overload)

Thermal Cycling vs. Output Frequency (1)
■ Max. and Min. Junction Temperature within one Electric Period depending on fout
■ Maximum Overload Junction Temperature at Standstill  approx. 130°C for Si and GaN

Cu-Piece 
Thickness

● Immediate Reduction of Th. Cycling at Low Speeds  Th. Low-Pass Filter Behavior with 𝜏Semi
● Residual Th. Cycling at High Speeds due to thermal Behavior of Device Package

● Experimental Verification  AC Current  &  Switched 2L-Operation
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10Hz1Hz0.1Hz

Blue: Measured
Red: Simulated
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Thermal Cycling vs. Output Frequency (2)
■ Switched 2L-Operation  Measurement and Simulation of Case Temperature
■ Junction Temperature Profile  Determined from Thermal Model
■ Injected Losses  Calculated from Semiconductor Loss Model

● Very Good Agreement between Measured and Simulated Temperature Profiles
● Fast Decay of Thermal Cycling Magnitude with increasing Frequency
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LC Output Filter with Overload Capability
■ Multi-Level Converter  Small Voltage Steps but still high dv/dt
■ LC Output Filter mitigate  CM & Bearing Currents

 EMI Emissions & HF-Machine Losses

● Multi-Level Converters enable  Small Filter Volume 
 Overload Capability (3 x Inom) needed for Filter Inductor

Steps of 133V
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Output Inductor Design
■ Ferrite Core Filter Inductor   Sudden Drop of Permeability around Saturation 

 Magnetic Design for Overload needed

■ Powder Core Filter Inductor   Smooth Drop of Permeability till Saturation

Nominal Operation

Overload Operation

-66%

15A 45A
Source: mag-inc.com

● Max. FC Voltage Ripple  Inverter operated with 3x fsw at Overload
● Constant Inductor Current Ripple  Inductance can drop by x3 at Overload

 Powder Core Filter Inductor designed for Nominal Load (!)

KoolMu HF, Bsat = 1 T
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Output Inductor Design
■ Filter Inductor Pareto Optimization for Si 7L FCi

● Tiny Filter Inductor for a Nominal 7.5kW Integrated Motor Drive  3-4 x Smaller than Ferrite
● Temperature Increase of 5°C at Overload  based on Thermal Capacity

2.7 cm

2
.2
cm

𝟏𝟎. 𝟒𝟓 𝐜𝐦𝟑

Nom. Ind.: 20.4 µH
OL Ind.: 7.6 µH
Ripple: 80% fsw = 25 kHz

fsw = 75 kHz
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fsw = 180 kHz

fsw = 60 kHz

Nom. Ind.: 13.4 µH
OL Ind.: 4.9 µH
Ripple: 50%

2.8 cm

1
.6
cm

𝟖. 𝟐 𝐜𝐦𝟑

Output Inductor Design
■ Filter Inductor Pareto Optimization for GaN 7L FCi

25/35

● Tiny Filter Inductor for a Nominal 7.5kW Integrated Motor Drive  3-4 x Smaller than Ferrite
● Temperature Increase of 5°C at Overload  based on Thermal Capacity



Phase-Modular Buck+Boost Inverter
“X-Concepts”



■ General / Wide Applicability 

● No Additional Converter for Voltage Adaption    Single-Stage Energy Conversion

Motivation

— Adaption to Load-Dependent Battery | Fuel Cell Supply Voltage
— VSDs   Wide Output Voltage & Speed Range
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Buck-Boost Y–Inverter

● Switch-Mode Operation of Buck OR Boost Stage  Single-Stage Energy Conversion (!)
● 3-Φ Continuous Sinusoidal Output / Low EMI      No Shielded Cables / No Motor Insul. Stress

■ Generation of  AC-Voltages  Using Unipolar  Bridge-Legs 



“Y-Inverter”
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● Operating Behavior

■ uam < Uin  Buck Operation
■ uam > Uin  Boost Operation 
■ Output Voltage Generation Referenced to DC Minus

Buck-Boost Y–Inverter
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● Max. Output Power   6…11 kW
● Output Frequency Range    0…500Hz
● Output Voltage Ripple            3.2V Peak @ Output of Add. LC-Filter 

■ Wide DC Input Voltage Range   400…750VDC
■ Max. Input Current              ± 15A

● Demonstrator Specifications

Y–Inverter VSD
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■ Dimensions   160 x 110 x 42 mm3

Control 
Board

Main 
Inductors

3Φ Output

■ 3x SiC (75mΩ)/1200V per Switch 
■ Sw. Frequency             100kHz
■ IMS Carrying Buck/Boost-Stage Transistors & Comm. Caps & 2nd Filter Ind.  

Output Filter
Inductors

DC Input

15kW/dm3

(245W/in3)

Y–Inverter Demonstrator  
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100V/div
100V/div

6A/div
6A/div

■ Dynamic Behavior V-f Control and Load-Step
■ Smooth/Sinusoidal Voltage and Current Waveforms

100V/div
uDC

UDC=   400V
UAC=   400Vrms (Motor Line-to-Line Voltage) 
fO =   50Hz
fS =   100kHz / DPWM
P  =   6.5kW

ucua ub

uDC

ia

iLa

ua

● Transient Operation

Y–Inverter - Measurement Results 
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CSI & DC/DC Front-End
Three-Phase Integration



3-Φ Current Source Inverter Topology Derivation   
■ Y-Inverter  Phase Modules  w/ Buck-Stage | Current Link | Boost-Stage   
■ 3-Φ CSI      Buck-Stage V-I-Converter | Current DC-Link DC/AC-Stage

 Single Inductive Component  &  Utilization of Monolithic Bidirectional GaN Switches




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■ Bidirectional/Bipolar Switches  Positive DC-Side Voltage for Both Directions of Power Flow

● Monolithic Bidir. GaN Switches  Factor 4 (!) Red. of Chip Area Comp. to Disc. Realization

Source:



3-Φ Current Source Inverter (CSI)    



■ “Synergetic” Control of Buck-Stage & CSI Stage 
■ 6-Pulse-Shaping of DC Current by Buck-Stage   Allows Clamping of a CSI-Phase 


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3-Φ Buck-Boost CSI – Synergetic Control

● Switching of Only 2 of 3 Phase Legs  Significant Red. of Sw. Losses (≈ -86% for R-Load) 
● Operation with Phase Shift of AC-Side Voltage & Current possible



Conclusions



■ System Level  Integration of Storage, Distributed DC Bus Systems / Industry 4.0 etc.

► Conclusions

─ Low-Voltage Steps  &  Scaling of Inductor  &  FOM
─ ALL SMD Realization  Automated Assembly
─ Loss Distribution among many Devices  High Overload Capability
─ Filtering Recommended  Powder Core

─ Wide Input / Output Voltage Range
─ Electromagnetically „Quiet“ 
─ Synergetic Control & Monolithic Bidirectional GaN Switch

■ “X-Technology”: SiC / GaN Enable Motor-integrated Drive Systems

─ High dv/dt & Thermal Management are Major Challenges
─ Continuous / Sinusoidal Output Voltage  Full-Sinewave Filters

35/35

■ “X-Concepts”: Multi-Level Converters and Integrated Filters



Thank you!
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