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Abstract: Electrodynamic suspension (EDS) relies on the repulsive force created by eddy currents in a stationary conductive
body (rail) and a magnetic field generated by an excitation system on a moving vehicle (pod). The excitation system in this
paper consists of permanent magnets in a Hallbach array. EDS generates lift forces that levitate the pod reliably at high speeds
of the vehicle since no mechanical suspension is required. Therefore, it gains interest for high-speed transportation applications
such as the Hyperloop project, driven by the Space Exploration Technologies Corporation (SpaceX). Electrodynamic fields and
forces have been analysed in detail in the literature; however, the sophistication and/or limited applicability of analytical
approaches or the computational burden of FEM/numerical methods render those impractical for the initial design of EDS
systems. Therefore, power and loss scaling laws for EDS systems are derived in this study. A 3D simulation for a design
example shows that the scaling law is within 10% deviation. Finally, the drag coefficient of EDS systems is compared with other
forms of commercial high-speed ground and air transportation systems. A pod with EDS running in vacuum has the potential of
decreasing energy consumption significantly above the cruising speeds of modern subsonic airliners.

1 Introduction
Even though the concept of high-speed travel in tubes is a more-
than-a-century-old idea [1], and concrete technical designs for
high-speed ground transportation in (partially) evacuated tubes
have been published already several decades ago [2], the idea has
recently regained popularity [3–6]. Also, Elon Musk's
announcement in 2013 contributed to the regaining of interest,
which details the design of the Hyperloop [7], a form of high-speed
ground transportation that would reduce the travel time from Los
Angeles to San Francisco (563 km/350 miles) down to 35 min. The
proposed system is based on the idea of using small vehicles,
denoted as pods that carry goods or passengers. The pods travel
inside tubes, which are partially evacuated in order to eliminate or
minimise air friction and it is intended to be an alternative for
bullet trains up to distances of 1500 km/900 miles [7].

For maintaining a reliable operation at speeds above the state-
of-the-art in ground transportation (up to ≃ 100 m/s = 360 km/h
for high-speed trains), contactless methods are needed for the
suspension of a vehicle. Two candidate technologies considered
today are air bearings and magnetic levitation. Electrodynamic
suspension (EDS) systems with permanent magnets (PMs) and
passive secondaries fall within the latter category, and they offer an
interesting solution due to their simple construction and control.

In such systems, PMs are usually arranged as linear Halbach
arrays, in order to generate a strong magnetic field with a minimum
weight [8]. When the PMs are in motion, e.g. mounted at the
bottom of the suspended vehicle, facing an electrically conductive
and non-ferromagnetic (otherwise, an attractive force will
counteract the levitation force) surface (henceforth called the
secondary), eddy currents are induced in the secondary, which in
turn lead to repulsive Lorentz forces; hence, suspension.

A vast amount of the literature analysing electrodynamic fields
and forces has been published over the past decades. Knowles has
developed a general theory of EDS systems using a double Fourier
series approach in [9]; Hill has solved Maxwell's equations for
obtaining lift and drag forces in simplified EDS geometries in [10];
and Ko and Ham have studied the transient behaviour of an EDS
with a linear Halbach array using wavelet transformation in [11]. In
addition to such analytical efforts, scholars have also commonly

used finite-element method (FEM) to analyse the performance of
numerous EDS variants [12–14].

However, the sophistication and/or limited applicability of
analytical approaches or the computational burden of FEM/
numerical methods render those impractical for the initial design of
EDS systems, which motivate the development of scaling laws. In
a recent work, Carlstedt et al. provided an in-depth discussion
about the use of dimensional analysis for deriving similarity
relationships. However, the analysis is based on a single PM [15]
and is not extended toward a realistic EDS system. On the other
hand, Chen and Zhang [16] provide an analytic calculation and
FEM simulations of forces in an EDS system; however, a statement
on energy consumption, condensed in a scaling law, is not
included.

Therefore, the contribution of this paper is toward the study of
feasibility and limitations of utilising EDS systems in high-speed
transportation and deriving power and loss scaling laws therefore.
The detailed modelling of the field source is excluded and the
analysis starts with the assumption of a given magnetic field, which
not only simplifies the derivation, but also broadens the analysis
toward various EDS systems with different field sources. Both the
lift and drag forces, as well as their ratio, which is the so-called
drag coefficient, are derived analytically in Section 2. Afterwards,
FEM simulations are used not only to validate analytical scaling
laws, but also to quantify the effects occurring in practical designs
in Section 3. Moreover, an example levitator design is shown in
Section 4. Specifications for the application example are taken
from the Hyperloop student competition organised by the Space
Exploration Technologies Corporation (SpaceX), where the
participants are asked to design and build a scaled-down model of a
pod and test it on ∼1 mile (1.6 km) long test track. The track
comprises a tube that can be evacuated; two horizontal, flat,
aluminium surfaces (rails), above which the pod can be suspended;
and an aluminium beam, which can be used for guidance of the
pod. Fig. 1 illustrates Swissloop, the pod designed by the students
of Swiss Federal Institute of Technology (ETH) Zurich for this
competition [17]. 

For evaluating the design example, a three-dimensional (3D)
simulation is conducted and results are compared with the derived
scaling law. Finally, the drag coefficient of EDS systems are
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compared with other forms of state-of-the-art high-speed ground
and air transportation in Section 5.

2 Scaling laws: a simple and general
representation of the EDS system
The key elements of any EDS system are a magnetic field and an
electrically conductive body (secondary). Both are in relative
motion with respect to each other with a slip speed of vs, while the
vehicle moves above the secondary with a speed of v1. If the source
of the magnetic field (primary) is a PM array or an electromagnet
excited with a DC current, which is fixed on the vehicle, the
reference system for the analysis is fixed to the secondary, and the
slip speed equals the vehicle speed, vs = v1. On the other hand,
different EDS systems employing either rotating PM arrays [18–
20] or single-sided linear induction machines [21, 22] have also
been proposed in the literature, in which case vs ≠ v1.

An analytical model for the magnetic field, induced current
field, and the resulting Lorentz force in the secondary are derived
in the following. Even though a fixed PM array mounted on the
vehicle is of primary interest, for the sake of generality, the slip
speed vs is used instead of the vehicle or primary speed v1, and a
magnetic field with a given form is assumed rather than conducting
a detailed modelling of different primary arrangements. For
brevity, both longitudinal end effects and transversal edge effects
are omitted at the first step by assuming both the primary and
secondary to be infinitely long and wide (compare x-direction and
y-direction in Fig. 2, respectively). 

The analysis starts with the assumption of a sinusoidal flux
density on the top side of the secondary with an amplitude of B^  and
an x-axis spatial period of 2τ, with τ being the pole pitch. The flux
density, which could be resulting from a Halbach arrangement of
magnets above the air gap, is described by the expression

Bg(t) =
Bg, x

Bg, y

Bg, z

=

0
0

B^
g sin π x

τ + ωst
, (1)

where ωs is the slip frequency, which is also the frequency of the
eddy current density j2 induced in the secondary

ωs = π
vs
τ . (2)

If a wider pole pitch τ is considered for a vehicle travelling with a
certain slip or vehicle speed vs, a stationary observer and so the
secondary matter will observe a lower slip frequency ωs as a lower
number of magnetic poles will be observed passing by in a fixed
duration of time. For obtaining the flux density distribution in the
secondary B2, the following equations, which are derived from
Ampere's law, the Maxwell–Faraday equation, and Gauss's law for
magnetism, are applied

∇ × (∇ × B2) = − μ2 κ2
∂B2

∂t , (3)

∂B2, x
∂x = − ∂B2, z

∂z , (4)

where μ2 is the secondary permeability and κ2 is the secondary
conductivity. As outlined in [23], one can define the flux density in
the secondary B2 as the real part of an exponential function with
complex eigenvalue sB

B2, x(t)
B2, y(t)
B2, z(t)
= B2(t)

= Re B2 exp sB
T

x
y
z
t

. (5)

With (4) and (5), one can obtain the solution for (3), where (1) is
the boundary condition at the interface of air gap and secondary.
With the qualified assumption that the pole pitch is sufficiently
larger than the secondary skin depth

τ ≫ δSkin, (6)

one can obtain the complex eigenvalue sB of the field problem as

sB =

jπ
τ
0

−(1 + j)/δSkin

jωs

, (7)

with the skin depth

δSkin = 2
ωs μ2 κ2

= 2 τ
π vs μ2 κ2

. (8)

Therefore, the amplitude of the field distribution in the secondary
B2 can be obtained as

Fig. 1  Concept image of the Swissloop transportation system (Images
curtesy of Swissloop [17])
(a) Schematic representation of the pod, the evacuated tube and the rail, (b) Detailed
and annotated view of the pod

 

Fig. 2  Illustration of the fields, forces and currents in the EDS system
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B2 = B^
g ⋅

−(1 + j)/δSkin ⋅ π /τ
0

− j
(9)

and the solution for the secondary flux density can be expressed as
a function of time as

B2(t) = B^
g exp − z

δSkin

⋅

− 2τ
πδSkin

cos π x
τ + ωst − z

δSkin
+ π

4
0

sin π x
τ + ωst − z

δSkin

.
(10)

Furthermore, the current density distribution in the secondary j2
can be found with

j = 1/μ2 ∇ × B (11)

as

j2 = B^
g

μ2
exp − z

δSkin

2τ
δSkin

2 π
⋅

sin π x
τ + ωst − z

δSkin

+ π
τ cos π x

τ + ωst − z
δSkin

⋅
0

−1
0

;

(12)

which using (6) again yields

j2 ≃ B^
g

μ2

2τ
δSkin

2 π
exp − z

δSkin

⋅ sin π x
τ + ωst − z

δSkin
⋅

0
−1
0

.
(13)

2.1 Lorentz force density

Following the derivation of the flux density B2 and the induced
current density j2, this section analyses the longitudinal (thrust or
drag) and normal (lift) components of the Lorentz force.

The volumetric Lorentz force density

f = j2 × B2, (14)

yields together with (10) and (13)

f = − B^
g
2

μ2
exp − 2z

δSkin

2τ
δSkin

2 π
sin π x

τ + ωst − z
δSkin

⋅

sin π x
τ + ωst − z

δSkin

0
2τ

δSkinπ
cos π x

τ + ωst − z
δSkin

+ π
4

.
(15)

A surface force density σ, which is the force per magnetic
interaction area Am in the x–y-plane (compare Fig. 2), follows as:

σ = ∫
0

∞
f x dz . (16)

The average surface force density, which can be directly applied to
an initial dimensioning of an EDS system follows as:

σ̄ =
σ̄x

σ̄y

σ̄z

=

− B^
g
2
τ

2μ2δSkinπ
0

B^
g
2
τ2

2μ2δSkin
2 π2

. (17)

Rewriting (17) with (2) and (8), the ratio cD = σ̄x/σ̄z = Fx/Fz,
which describes the relation between longitudinal force Fx and lift
force Fz can be derived as

cD = π
δSkin

τ = 2π
τκ2μ2vs

. (18)

In the case of a PM array fixed to the pod's bottom, cD is the drag-
to-lift ratio, or as it will be called in the rest of this paper, the drag
coefficient.

The specific power demand per lift force follows as:

cP = cDvs = 2πvs
τκ2μ2

. (19)

Consequently, the instantaneous power demand Ptravel of the system
can be calculated as

Ptravel = m g cD vs
cP

, (20)

where m is the total vehicle mass and g is the gravity. Hence, the
propulsion system must be able to supply the required amount of
power Ptravel to maintain a constant speed.

2.2 Interpretation of drag coefficient scaling

The above-derived drag coefficient (18) shows directly how the
losses of an EDS system scale with the secondary conductivity κ2,
the pole pitch τ, and the slip speed vs. Further results in this work
are for an aluminium secondary with κ2 = 35 MS/m, which is in
accordance to most research projects in the field of EDS high-
speed transportation (e.g. [7]). However, according to the scaling
law (18), introducing a copper secondary would reduce the losses,
regardless of the practical realisation of the levitator, by a factor of

κAlκCu = 0.78 or 22%.
To illustrate the effect of the pole pitch τ on the drag coefficient,

the cause for build-up drag and lift force shall be analysed briefly.
Clearly, the drag Fx is developed by the vertical component of the
flux Bz and the current (density) flowing in the secondary j2. On the
other hand, the lift force Fz is developed by the horizontal flux
component in the secondary Bx and the current (density) flowing in
the secondary j2. Owing to the skin effect and the law of magnetic
flux conservation, illustrated for this specific case in Fig. 3a, the
relation between fluxes in horizontal direction and vertical
direction is

Bx δSkin ∼ Bz τ . (21)

Since the skin depth [compare (8)] scales with (2) as
δSkin ∼ 1/ τ , the influence of the pole pitch τ on the drag
coefficient must scale as

cD = Fx
Fz

∼ δSkin j2

τ j2
∼ 1

τ
. (22)

Moreover, Fig. 3b shows for two pole pitch values how lift force
and drag develop over the depth in the secondary. One can see that
most of the force (and secondary losses due to drag) is generated in
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the skin depth. While the peak value of drag force (Fx) density is
proportional to Fx ∼ (1/τ), the peak value of the lift force (Fz)
density is proportional to Fx ∼ 1/ τ .

3 Verification of the scaling laws: ideal and
practical EDS systems
2D FEM simulations are used in this section, first for the
verification of the analytically derived scaling laws; moreover then,
for the quantification of effects occurring in practical EDS systems.
The first analysed effect is the finite length of the PM arrangement,
which results in entry and exit effects. Those will be referred to as
edge effects in the following. Second, the effect of higher-order
magnetic field harmonics, originating from the realisation of the
primary as Halbach array will be studied.

In the following, the drag coefficient cD is used to assess the
effects of levitator imperfections. Table 1 lists the dimensions and
material properties used for the FEM calculations. 

3.1 Infinitely long, ideally magnetised Halbach array

An infinitely long magnet with ideal, sinusoidal Halbach
magnetisation is used in a first step to verify the scaling law.
Fig. 4a shows the magnet and the secondary. The magnetisation M
of the magnet is

M(x) =
Mx(x)
Mz(x) = M0 sin x/τ π

M0 cos x/τ π
, (23)

with x being the position in the x-direction and M0 as the amplitude
of the magnetisation. The overall length of the levitator (consisting
of an array of magnets with discrete magnetisation or one
sinusoidally magnetised magnet) is

llev = 2 p τ, (24)

where p is the number of pole pairs. The longitudinal boundaries of
the model are defined as

A(x = 0) = A(x = llev) (25)

with A being the magnetic vector potential. This corresponds to an
infinitely long levitator since the magnetic vector potentials at both
ends of the levitator are equal. 

Figs. 5a and b show the analytically calculated drag coefficient
and FEM simulation results for selected pole pitches and speeds.
The derived scaling law and 2D FEM results agree well. 

3.2 Finite-length, ideally magnetised Halbach array

An ideally magnetised levitator, compare (23), with finite length is
used to analyse the impact of longitudinal end effects on the
levitator performance. This phenomenon is well known, described
for linear induction machines and decreases the machine's
performance due to existing eddy currents, which do not longer
contribute to thrust generation [24], p. 72. Similarly, for a levitator,
finite-length results in an increased drag coefficient. Fig. 6a shows
the induced current density in the rail as an outcome of a 2D FEM
simulation for a levitator with infinite length, whereas Fig. 6b
shows the induced current density for a levitator with finite length.
In Fig. 6a, the distribution of induced currents is homogeneous and
shows a characteristic wave pattern. The distribution of eddy
current fields in an EDS system with finite length shows
inhomogeneities at the ends of the levitator, which is denoted as
edge effect in Fig. 6b. For illustrative purposes, Figs. 6a and b are
given for low speed (v1 = 25 m/s), and hence for a larger skin
depth. Fig. 6c illustrates the field distribution of the system
cruising at high speed (v1 = 350 m/s). 

For stating the quantitative effect of finite magnet length,
Fig. 7a shows the z-component of the air-gap field Bg, z for a
levitator with p = 2 and τ = 0.5 m. It shall be denoted that this is
only the field of the magnet as defined in (1), without the eddy
current reaction. The ends of the levitator lead to a steep slope of
the field in the air gap. 

Fig. 7b quantifies the end effect by comparing the drag
coefficients cD, finite for finite-length levitators with pole pitch
τ = 0.5 m and different pole pair numbers p, moving at
v1 = 100 m/s. As expected, a performance degradation is seen,
especially with lower pole pair numbers. Nevertheless, the increase
of the cD, finite is limited to 15%, and approaches the ideal value
cD, ∞ for a higher number of pole pairs.

3.3 Finite-length, segmented Halbach levitator

Practical Halbach arrays are often assembled using discrete
magnets, each with a uniform direction of magnetisation. The angle
between the magnetisation directions of neighbouring magnets is
denoted here with φim. Fig. 4b shows a Halbach array with
φim = 90∘. Fig. 7c shows the z-component of the air-gap field Bg, z

Fig. 3  Interpretation of drag coefficient scaling
(a) Illustration of flux conservation in the secondary, (b) Lift and drag force and their
densities illustrated for a typical operation point of an EDS system and speed of 100 
m/s for two different pole pitch values. While the peak value of drag force density is
inversely proportional to pole pitch, the peak value of the lift force density is inversely
proportional to the square root of the pole pitch. Therefore, an increased pole pitch
reduces the drag coefficient significantly

 

Table 1 Dimensions and material properties used for
simulations
Parameter Value/range Unit
pole pair number p 1…6 1
pole pitch τ 0.25…3.50 m
levitator height dlev 0.2 m
speed v1 25…350 m/s
magnet coercivity Hcb 890 kA/m
secondary conductivity κ2 35 MS/m
magnet permeability μ1 1μ0 Vs/Am
secondary permeability μ2 1μ0 Vs/Am
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for a levitator with p = 2 and τ = 0.5 m for φim = 90∘ and
φim = 45∘.

The discrete magnetisation leads to an additional distortion of
the air-gap field and increases the drag coefficient. The amounts of
field distortion and the drag coefficient are inversely proportional
to φim as shown in Fig. 7d. Smaller φim values constitute to a better
approximation of the continuously magnetised levitator. This
example shows that a levitator with a discretisation angle of
φim = 90 features a drag coefficient cD, that is, ≃ 9% higher
compared with a continuously magnetised levitator. However, a
reduction of the discretisation angle below φim < 15∘ does not
reduce of the drag coefficient significantly.

3.4 Effects of finite levitator width and length

For the example design given in Table 2, end and edge effects due
to the EDS levitator's finite length and width as well as the
discretisation of its Halbach array (φim = 15∘) are analysed. The
simulation is conducted in 3D with a numeric method based on
[25–27]. Fig. 8a illustrates the magnetic field on the surface of the
aluminium rail for a speed of v1 = 100 m/s. One can identify a
certain distortion due to finite length and width of the levitator.
However, comparing the scaling law to the 3D simulation in
Fig. 8b shows that the deviation is minor. The error of the scaling
law was found to be  < 10% for interesting speeds of v1 > 100 m/s. 

This clearly demonstrates that the analytical scaling laws are a
valid tool for the initial design of practical systems, even though
they have been derived assuming an ideal levitator.

4 Case study: levitator for the Hyperloop
competition
To illustrate the application of EDS in high-speed transportation
further, an example of levitation system in accordance to the
specifications of the Hyperloop student competition [28] is given in
this section. The levitation system is composed of two levitators,
designed to float on the pair of flat aluminium surfaces running
parallel to each other at the bottom of the evacuated tube. Each
levitator is 2 m long and weighs mlev = 30 kg. The system has a
payload capacity of up to mp = 250 kg, while guaranteeing an air
gap above 10 mm for speeds exceeding 25 m/s (90 km/h). On the
basis of results in Section 3.3, the incremental angle of
magnetisation is set to φim = 15∘. The magnet discretisation results
in only seven differently magnetised blocks of magnets (0∘, 15∘, 30∘,
45∘, 60∘, 75∘, 90∘) with using the symmetry properties of the
arrangement. With the chosen pole pitch τ = 500 mm, the
levitator's discrete magnets can be realised as blocks of
τ /24 = 20.8 mm length (in the x-direction), wlev = 120 mm width
(in the y-direction), and hlev = 16 mm height (in the z-direction).
Further dimensions of the proposed design are summarised in
Table 2.

4.1 Steady-state air gap and 1D dynamics of an EDS system

Fig. 9 shows the lift force of one levitator and the gravitational
force (mp/2 + mlev)g of the mass, which is lifted by one levitator.
The force equilibrium

Fz, L lg, S, v1 = Fz, g = (mp/2 + mlev)g (26)

Fig. 4  Magnetisation pattern and field lines of simplified finite length
Hallbach arrays used in the FEM verification
(a) Continous, ideal Hallbach magnetization, (b) Practical realization consisting of
discrete magnets, with an incremental angle of magnetsiation φim of 90∘

 

Fig. 5  Drag coefficients, calculated for an ideally magnetized Hallbach
array with infinite length
(a) Drag coefficient over speed for different pole pitches, (b) Drag coefficient over
pole pitch for different speeds

 

Fig. 6  Induced current density in the rail as an outcome of a 2D FEM simulation with ideally magnetized Hallbach arrays
(a)For a levitator with infinite length moving at v1 = 25 m/s, (b) For a levitator with finite length moving at v1 = 25 m/s, (c) for a levitator with finite length moving at v1 = 350 m/s
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determines the speed dependent, steady-state air gap lg, S. Fig. 9
shows this for the limits of the operational range (25 and 350 m/s).
The steady-state air gap stays within 12.8 mm ≤ lg, S ≤ 18.6 mm. 

As an extended vehicle stability analysis of an
electrodynamically suspended pod is beyond the scope of this
paper and task of further research, only a 1D analysis of the

resonance frequency is conducted, where a vertical displacement of
the pod is considered. Tangent lines at the steady-state levitation
points in Fig. 9 show the stiffness of the proposed levitation
system. As a displacement of the pod in direction of a decreased air
gap causes an increase in lift force for all air-gap positions, it can
be concluded that the system is stable for small excitations and
with regard to the considered displacement. With stiffness k and the
pod's mass m, the (undamped) mechanical resonance frequency for
vertical oscillations is

f res = 1
2π

k(v1)
m ≃ 0.07 Hz (27)

for all operating conditions. This rather low frequency is well
suited for active damping systems, as it shall be possible to design
either electromagnetic or mechanical (e.g. by using compressed
gas, which may already be on board and utilised for propulsion)
active damping systems that feature a bandwidth well above
f res ≃ 0.07 Hz.

4.2 Considerations on the achievable range

In the following, the maximum range of the electrodynamically
levitated high-speed pod shall be briefly discussed. Both the
propulsion system and the energy storage systems are assumed to
be on the pod, which is in accordance to [28]. It results in a very
simple track structure with just flat conductors and no energised
parts.

According to the results depicted in Fig. 8b, a drag coefficient
of cD = 0.04 and speed of 250 m/s (∼900 km/h or 560 mph) is
assumed. Therefore, the power required to overcome the drag of
the levitation system and to maintain this constant speed is
Ptravel = 30 kW. For the sake of simplicity, it is assumed at a first
step that the total mass of the energy storage mbat accounts for one
third of the total vehicle mass mtot. At this point, losses of the
energy storage and the propulsion system are neglected. The
required power density of the energy storage Pbat′  can then be
calculated as

Pbat′ = Ptravel
mbat

= 3 g cD v1 = 0.29 kW/kg . (28)

This is well below the power density of batteries used in
commercial electric vehicles [29], e.g. Chevrolet Volt:
Pbat′ ≃ 0.65 kW/kg [30]. Using the energy density
Wbat′ ≃ 0.1 kWh/kg of the aforementioned lithium-ion battery
system, the reachable range xrange is

xrange = W′bat
3 g cD

≃ 300 km . (29)

Fig. 7  z-Component of the air-gap field Bg, z for a levitator with p = 2 and τ = 0.5 m
(a) Air-gap flux density without interaction of the secondary for a finite-length magnet with pole pitch τ = 0.5 m, pole pair number p = 2 and ideal Halbach magnetisation, (b) the
drag coefficient cD for a finite-length levitator and different pole pair numbers, for a speed of v1 = 100 m/s, (c) The air-gap flux density Bz without eddy current reaction, for a finite-
length levitator with pole pitch τ = 0.5 m and pole pair number p = 2, consisting of discretely magnetised magnets, (d) The drag coefficient cD for a finite-length levitator with
varying incremental angles of magnetisation, for a speed of v1 = 100 m/s

 

Fig. 8  Effects of finite levitator width and length
(a) 3D simulation result, illustrating the magnetic field on the aluminium rail due to
one levitator according to Table 2 at a speed of v1 = 100 m/s, (b) Comparison of the
drag coefficient predicted by the scaling law and 3D simulation result for the levitator
according to Table 2. For speeds v1 = 100 m/s the scaling law deviates<10% from the
3D simulation

 

Table 2 Dimensions of the example system
Parameter Symbol Value Unit
number of levitators 2 1
levitator length llev 2 m
levitator width wlev 0.12 m
levitator height hlev 0.016 m
pole pitch τ 0.5 m
incremental magnet angle φim 15 deg
levitator weight mlev 30 kg
payload mp 250 kg
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The range can be extended further by an energy storage with
higher-energy density, battery replacement stations, or (wireless)
charging along the track. Alternatively, the energy storage and
propulsion can be removed from the pod entirely by using an
energised track that acts as the stator of a linear machine, whose
mover is attached to the pod [7].

5 Comparison to other forms of high-speed
transportation
In this section, an electrodynamically suspended vehicle is
compared with other high-speed ground and air transportation
systems. To achieve a simple comparison, several aspects such as
their related propulsion/traction methods and their efficiencies or
environmental impact are left out. Moreover, the vehicle is
assumed to travel in a tube, which is completely air-evacuated (as
e.g. proposed for the Hyperloop) and the drag coefficient of the
EDS system cD is selected as the sole performance metric. Fig. 10
depicts this comparison. 

State-of-the-art high-speed ground transportation is represented
in Fig. 10 by the German Inter City Express (ICE). The rolling
resistance and the air-friction resistance of an ICE with 14 coaches
and a mass of 800,000 kg is calculated according to Sauthoff's
equation [31], p. 40, up to 100 m/s. There is no literature for the

rolling resistance of high-speed trains above this speed, since the
high stresses in the mechanical suspension systems prevent
increasing the speed further for regular passenger transportation.
However, the rolling resistance of today's modern high-speed trains
is much lower compared with the drag coefficient of an EDS
system below 100 m/s (360 km/h or 224 mph).

Nevertheless, the results turn in favour of the
electrodynamically suspended vehicle when it is compared with
state-of-the-art air transportation systems at speeds above 200 m/s.
Küchemann [32], p. 341, gives an expected range of cruising drag
coefficients for various aircrafts, which is plotted in blue in Fig. 10.
The drag coefficients for cruising operation for a Boeing 747
airplane [33], p. 20, an Airbus A380 [34], p. 4, and Concorde
supersonic plane [35], p. 26 broaden this picture. Hence, it can be
concluded that an electromagnetically suspended vehicle (e.g.
Hyperloop pod) can significantly reduce the power required to
cruise at speeds exceeding 250 m/s compared with today's
airplanes.

6 Conclusion
In this paper a simple, yet accurate analytical model for an EDS
system has been derived. Scaling laws [compare (18) and (19)] are
deducted from the model and given insight in the build-up of the
drag coefficient, which is drag per obtained lift force in an EDS
system. The detailed modelling of the magnetic field source is
omitted for the sake of simplicity, and a given magnetic field is
assumed for the analysis in a first step. This enables the use of the
presented method to evaluate various EDS systems with different
excitations such as single-sided linear stators, rotating PMs, and of
course the most common and simplest variant, a static (fixed on a
moving vehicle), linear Halbach array. According to the derived
scaling law, the drag of the EDS system reduces with higher
travelling speed, higher rail conductivity, and longer pole pitch of
the excitation system.

2D FEM models are first used to validate the analytical models.
Afterwards, they are used to quantify the effects of practical design
aspects such as finite magnet length and the discrete realisation of a
Halbach array. Simulations verify the scaling law for the drag
coefficient on practical EDS systems. An example levitator design
is shown, which is in accordance to the specifications of the
Hyperloop student competition. 3D simulations, therefore,
considering finite levitator length and width as well as
discretisation of the EDS system's Halbach array (φim = 15∘) reveal
that the error of the scaling law is minor (<10%) for higher speeds
(v1 > 100 m/s). Therefore, it can be concluded that the provided
scaling law is sufficiently accurate for an initial design of an EDS
system and for evaluating the feasibility of an application utilising
an EDS system. The study on the system realisation concludes with
analysing the resonance frequency of the suspension for an
assumed displacement in vertical direction. For this mode, it was
calculated as <1 Hz for the design example. Stability analysis of
the analysed concept, considering all degrees of freedom in
displacement as well as considerations on the track guiding of the
levitated vehicle shall be analysed in forthcoming publications.

Finally, comparing the drag coefficient of EDS systems to other
forms of state-of-the-art high-speed ground and air transportation
presents an interesting picture. Above the cruising speeds of
modern subsonic airliners, an electrodynamically levitated vehicle
in an evacuated tube (e.g. Hyperloop) has the potential of
increasing the cruising-speed energy efficiency significantly. The
drag due to the EDS system decreases with increasing travelling
speed, while air friction of airliners increases with travelling speed.
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