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Influence of the Modulation Method on the 
Conduction and Switching Losses 

of a PWM Converter System 
Johann W. Kolar, Hans Ertl, and Franz C. Zach, Member, IEEE 

A bstruct-The optimization of the modulation method of a 
three-phase pulse-width modulation (PWM) converter system 
generally does not lead to purely sinusoidal phase modulation 
functions. In connection with the output currents and the for- 
ward characteristics of the electric valves, these phase modula- 
tion functions directly define the conduction losses of the power 
electronic devices. This paper explores the dependency of the 
conduction losses of a bridge leg of a PWM converter system 
with a high pulse rate on the shape of the phase modulation 
functions. This is done for modulation methods that are opti- 
mized with respect to minimum harmonic current rms values. 
The results are compared with the results gained for simple 
sinusoidal modulation. Besides conduction losses, the switching 
losses of the electric valves are calculated. Deviations from the 
classical sinusoidal modulation here are obtained only for mod- 
ulation methods for which the output voltage is formed by a 
cyclic change via only two active bridge legs and a third, 
unswitching bridge leg. As the calculations show, these modula- 
tion methods allow a significant increase of the effective switch- 
ing frequency. This effect is dependent on the phase angle 
between the fundamental of the converter output phase voltage 
and the converter output phase current; for this comparison, 
equal switching losses as for the simple sinusoidal modulation 
are assumed. The optimal modulation of the pulse frequency of 
a PWM converter system is treated. A side condition that has to 
be observed is that the switching power loss has to correspond 
to the power loss occurring for operation with constant pulse 
frequency. The optimal modulation as calculated leads to a 
reduction of the harmonic power loss in the upper modulation 
region. Furthermore, due to the frequency modulation, the 
spectrum is spread out to a wider frequency band as compared 
with the operation with constant pulse frequency; there, the 
spectrum is concentrated to harmonics in the vicinity of multi- 
ples of the pulse frequency. This effect can influence the noise 
generation of a motor supplied by a converter, for example. 

I. INTRODUCTION 
N this section, we want to summarize briefly these modula- I tion methods that will be applied in subsequent calcula- 

tions, For their characterization the resulting harmonic power 
losses and the shape of the phase modulation functions are 
used. Attention is paid especially to the correspondence of 
the description of the voltage formation using space vector 
calculus and representation by phase quantities. This is of 

Paper IPCSD 91-21, approved by the Industrial Drives Committee of the 
IEEE Industry Applications Society for presentation at the 1990 Industry 
Applications Society Annual Aeeting, Seattle, WA, October 7- 12. 
Manuscript released for publication February 19, 1991. 

The authors are with the Technical University Vienna, Power Electronics 
Section, Vienna, Austria. 

IEEE Log Number 9102112. 

special importance here because the determination of conduc- 
tion and switching losses (which can be linked to a certain 
modulation method) of a PWM converter system (see Fig. 1) 
corresponds directly to phase quantities (phase currents or 
phase modulation functions); furthermore, the optimization 
of the frequency modulation (which is discussed at the end of 
the paper) is essentially connected to a description of the 
system quantities by space vectors. The definition of the 
converter voltage space vector is given by 

2 1 
!!U = 3[ U, ,R  + g u , ,  + g2uu,,] _a = ( -  - + j q  

2 2 

If purely sinusoidal converter output voltage is postulated 
according to 

( 2 )  = U: exp jp, p U  = w N r  

the control signals for the power semiconductor devices can 
be derived in the simplest case, as shown in Fig. 2, by 
“ sampling’ ’ sinusoidal phase modulation functions 

mX(cp,) = Mcos  PrJ 

with 

(3) 

(see Fig. 3). The angle p, (or time r )  denotes the position of 
the resulting converter voltage space vector or the position of 
the corresponding pulse interval within the fundamental pe- 
riod. There, the considerations are limited to the treatment of 
the voltage fundamental or to the average value for one pulse 
period or for half a pulse period. One full pulse period is 
used for symmetric regular sampling and half a pulse period 
is used for asymmetric regular sampling (Ref. [l]). This 
distinction is not important here, however, due to the high 
pulse rate assumed. 

This method (known as subharmonic modulation) leads 
to relative turn-on times (related to the pulse period) of the 
converter bridge legs (which can be replaced by three 
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U 

Fig. 1. Structure of the power circuit of a three-phase voltage dc link 
PWM converter system. For use as PWM inverter for ac machine drives, the 
inductances L and the three-phase system g N  can be interpreted as simple 
equivalent circuit of the ac machine formed by leakage inductances and 
machine counter emf. On the other hand, for mains operation of the PWM 
converter (PWM rectifier, static VAR compensator), the inductances have to 
be connected in series; the voltage system g, is defined by the mains 
conditions. 

Fig. 2. Derivation of the switching times of a converter bridge leg via 
intersection of the relevant phase modulation function with a triangular 
signal (shown for asymmetric regular sampling). 
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Fig. 3 .  Shape of the phase modulation functions for the classical sinusoidal 
modulation (denoted by modulation method [l] in this paper). 

double-pole switches between positive and negative dc link 
voltage bus regarding their electrical function) according to 

% ( ‘ P U )  = + [ I  + 4 P U ) I  

“ S h )  = + [ I  + 4 P U ) l  

a T ( ‘ P U )  = + [ I  + m T ( ‘ P U ) ] .  ( 5 )  

Due to the symmetries of the generated voltage system 
resulting from the three-phase properties the further consider- 
ations can be limited to the interval of the angle 

By introducing space vector calculus, the relative turn-on 
times of the bridge legs given by (5) can be described as a 
weighting (with respect to time) 

6, = CYT 

6 2  = ( a s  - 4 
6, = (1 - a s )  

‘6 = (aR - “ T I  

(7) 

of the voltage space vectors gu,,, gu,6, _U”,, and gU,,, 
which are associated to the switching state of the PWM 
converter (Fig. 4). The indices denote the converter switch- 
ing state by the decimal equivalent of the converter switching 
status vector interpreted as binary number. Therefore (7) 
defines the transition of a description by phase quantities to a 
description by space vector calculus. The modulation method 
is characterized by the switching state sequence 

and this sequence in general is denoted as (7620). In the 
transition between two subsequent switching states there is 
always switching of only one bridge leg. 

In the space vector representation of the converter voltage 
the two non-voltage-forming switching states 0 and 7 cannot 
be distinguished. Therefore, for definition of the converter 
output voltage by space vector calculus, only the entire 
freewheeling state period 

6, + 6, = 1 - ( 6 ,  + 6,) (9) 

can be given. The voltage formation of the converter system 
(related to the average value for one pulse period 2“‘) is not 
influenced by the distribution of the freewheeling states 
within the pulse interval. The definition of a particular distri- 
bution of freewheeling states is really the ultimate basis for 
the definition of phase modulation functions (see (7)). The 
degree of freedom given can now be applied for the optimiza- 
tion of the modulation method. The quality functional I to be 
minimized shall be defined as the squared rms value of the 
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Fig. 4. Approximation of the reference value of the output voltage space 
vector via neighboring converter voltage space vectors (due to the 60" 
symmetry of  the voltage space vectors following for the different converter 
switching states one can limit the considerations to the interval of (7r/3, 
2 ?r /3) shown here). 

resulting current harmonics: 

(Ai;,,  + Ai;,s + Ai;,,) dt, d r  

1 i 
- - Ai;, RST,ms ( 7) d7 + Min. (10) 

Equation (10) is obtained with good approximation for PWM 
converter systems with a high pulse rate (Ref. [2]). For the 
deviation of the current space vector 

E ITN 

AiN = j N  - 1; (11) 

from that of a purely sinusoidal three-phase system 

we have 

dAiN 1 
(13) - -  dt, - -[-U;(.) L - !!U(., f , ) ]  

(cf. Ref. [2]) and 

Ai;,R + + Ai$,T = I AiN I '. (14) 

The minimization of the quality functional Z leads to 

A i ; , R S T , r m s ( d  -.+ Min. (15) 

There, Ai;,RST,rms characterizes a "local" (related to a 
pulse interval) harmonic power loss contribution. It can be 
set equal to the square of a local harmonic current rms value. 

It shows the dependency given by 

Ai;,RST,rms(7) = Ai?v',RST,rms,l{'7(T)y '6(7), ' 2 (7 ) }  

+ Ai&,RST,rms,2{86(7)  9 * 2 ( ' ) )  (I6) 
on the weighting with respect to time of the different con- 
verter voltage space vectors. The optimal phase modulation 
functions follow (as also discussed in Ref. [3]) as 

m R ( q U )  = M I  COS 'pu - M,  C O S 3 q U  

with 

1 

4 

The corresponding phase modulation functions are shown as 
modulation method [3] in Fig. 5. For the global (as related to 
the fundamental period) harmonic current rms value we have, 
in general, with (15), (16), and (10): 

with 

(cf. modulation method [3] in Fig. 6). 
lation region 

ME 0 , -  [ 3 

(20) 

The maximum modu- 

follows for M3 / M ,  = 
A simple suboptimal approximation (denoted by modula- 

tion method [2] in this paper) can be given by distributing the 
freewheeling state to equal parts at the beginning and at the 
end of each pulse half-interval according to 

(see Refs. [2] and [4]). 

' 7 , [ 2 ]  = +('I3 + ' 7 )  = ;[' - ('2 + ' 6 1 1  (22) 

(see Refs. [2] and [5]). For the global harmonic rms value 
there follows 

1 
AZ$,rms,,21 = g A i i M 2  

r 9 1  

M E  0, - . (23) L AI 
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Fig. 5.  Illustration of the modulation methods discussed in this paper via 
representation by the corresponding phase modulation functions: [2] and [ 3 ]  : 
continuous modulation; [4]-[7]: discontinuous modulation). 

As already mentioned, for a simple sinusoidal modulation 
(denoted by modulation method [l]) the distribution of the 
freewheeling states is determined directly by the shape of the 
phase modulation functions. It follows as 

As a limiting case of the distribution of the freewheeling 
states as discussed, we also have a formation of the switching 
state sequence according to 

6, = 1 - (6, + 6,) 
~ - - I  

6, = 0 (26)  
1 M  

67,[11 = 5 + 2 cos ( pu + ;). (24)  
2 6 7 I 1p307 6 2 I 1e=Tp,22 6 7 (762)  or [6]  

(27)  
In this case we have, for the global harmonic rms value, 

1 8M 3 M 2  

6 
AI$,ms,[ll = -AiiM2 or 

6, = 0 

M E  [ O , l ] .  (25)  6, = 1 - ( 6 ,  + 6,) (28) 
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Fig. 6 .  Comparison of the normalized harmonic power losses of one phase 
for various modulation methods (discussed in Section I). [l]: Sinusoidal 
modulation (25). [2]: Suboptimal space vector modulation (23). [3]: Local 
and global optimal sinusoidal modulation with added third harmonic (M3 = 
M ,  /4, (191. [4]-[7]: Discontinuous modulation (cf. (30), (32), (34)); 
k,l4,-17, = 2 .  

that can be considered. There the entire freewheeling state is 
concentrated at the beginning or at the end of a pulse 
half-interval. Due to the given nonoptimal “distribution,” 
there result higher harmonic losses of the system, however. 
The analysis of the associated phase modulation functions (cf. 
modulations [6] and [7] in Fig. 5) shows, however, that then, 
the output voltage system is formed by pulsing of only two 
bridge legs, whereas the third phase remains “clamped” to 
one of the two dc link voltage bus bars (discontinuous 
modulation). Accordingly, the conclusion is obvious that an 
increase of the pulse frequency by a factor k f  = 5 leads to 
equal switching losses and equal thermal stress on the power 
semiconductor devices as compared to the case of continu- 
ous modulation (modulation function without discontinu- 
ities, or, equivalent, pulsing of all bridge legs within each 
pulse (half) interval as used for modulation methods [1]-[3]). 
A closer investigation shows, however, that the possible 
frequency increase is determined essentially by the phase 
relationship between the output current fundamental and the 
output voltage fundamental. This aspect is treated in Section 
111 in detail. The harmonic losses resulting for the modulation 
methods given by (26) and (28) (or (27) and (254, respec- 
tively) follow as 

35M 9M2 3 6  *E - \/59 + 8 (2  + T) ]  

M E  0, - . (30) [ :I 

= f p , [ i l  / fp therefore leads to a significant harmonic power 
loss reduction in the upper modulation region, also if com- 
pared to optimal continuous modulation. 

For a combination (denoted by modulation [4]) of the 
switching state sequences (given by (27) and (29)) according 
to 

a n  
(762) for vu.[?, 51 

(21 1 

there follows 

1 A4 
AZ$,ms,[41 = - A i i M 2 y  - ~ ( 6 2  - 1 5 6 )  

6 k f  9 [41 

9M2 6 
+- 8 (2  + --)I M € [ O ,  -3 (32) 

(cf. modulation method [4] in Figs. 5 and 6). 
An alternative combination (denoted by modulation method 
151) 

(620) for v u t [ ~ ,  n n  y] 
(33) 

leads to 

1 M 
AZ$,ms,[Sl = (8 + 1 5 6 )  

9M2 
8 

(cf. modulation method [5] in Figs. 5 and 6). Equation (31) 
defines the harmonic-optimal discontinuous modulation 
method (cf. modulation methods [4]-[7] in Fig. 6, see also 
Ref. [2]) based on a possible frequency increase k ,  = 5 .  

Finally, we want to point out that all the modulation 
functions discussed here can be derived by extension m, of a 
simple sinusoidal modulation m&-) according to 

mR = mi + m, 
m, = ml, 4- m, 
mT = m; + m, 
m, = + (mR + m, + m T ) .  (35) 

Zero quantity m, is not projected into the corresponding 
space vector when the voltage system is transformed (the 
zero voltage is decoupled); m, only influences the distribu- 
tion of the freewheeling states and therefore the resulting 
harmonic losses. 

11. CALCULATION OF THE CONDUCTION LOSSES OF THE 

POWER SEMICONDUCTOR DEVICES 

They are shown in Fig. 6 (cf. modulation methods [6] and 
[7]) for kf,[61,[71 = 5. The possible frequency increase kf,,il 

The relative conduction periods of the power electronic 
devices of the bridge legs within a pulse half period are 
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defined (as mentioned in the introduction) according to 

(given for phase R and limited to the positive current half 
period; cf. Fig. 7) directly by the shape of the phase modula- 
tion functions. If one approximates the forward characteris- 
tics of the valves by 

'F ,T i ,D i  = uF,T,D + ' F , T , D i T i , D i  (37) 
there follows for the mean value of the conduction losses 
within one pulse half period ("local" conduction losses, i.e., 
"local" with respect to time) 

PF,DI (7)  = 'F,DiDI ,avg ( ') + ' F , D  'Ll ,rms ( 7, 

= u F , D a R ( 7 ) i D 1 ( 7 )  + r F , D a R ( 7 ) i i l ( 7 )  (38) 
with 

i D 1 ( 7 )  = i N , R ( 7 )  = i N c o s ( w N 7 + c p ) .  (39) 

The integration of these local conduction losses for the 
positive half cycle of the output current 

r l 2 - v  r .  ~ 

1 M  
- + -cos cp 

1 M  

8 3 a  - + - COS p)  (41) 

for the global (i.e., related to the fundamental period) con- 
duction loss. There, simple sinusoidal modulation 

a ~ (  7)  = [ I M COS U N 7 1  (42) 
is assumed. Integration for the output current half cycle, 
therefore, means integration of a quantity aD1( 7 )  (or aT2(r)) ,  
which is weighted by the instantaneous current value (and 
dependent on the position cpU of the converter voltage space 
vector) within an interval that is dependent on the phase angle 
between the fundamentals of the converter output phase 
voltage and current. For the conduction losses of the transis- 
tor T2, which conducts current for positive output current, 
there follows then (cf. also Refs. [6, 7, 81) 

- cos (0 

1 M  

8 3 a  

The purely sinusoidal output current shape being assumed 
by (39) limits the validity of (41) or (43), together with (38) 

T O  I I 

- t UZK 
Fig. 7. Division of the output current flowing into controlled and uncon- 

trolled semiconductor devices of a PWM converter bridge leg. 

to a region of high pulse numbers pz (ratio of the pulse 
frequency to the output frequency). It can be used, however, 
(as a comparison with the results of a digital simulation 
shows) in practice already for pz  > 21 with sufficient accu- 
racy for the thermal dimensioning of the valves. In general, 
dimensioning on the basis of gobal power losses (i.e., 
averaged over the fundamental period) assumes sufficient 
(i.e., sufficient for the time of averaging applied, i.e., for the 
fundamental period) thermal inertia of the power semicon- 
ductors. This assumption is sufficiently well fulfilled for 
PWM rectifier systems for high power (the averaging time is 
given by the mains fundamental period). For converters used 
in drives the validity of the relationships derived in this paper 
is limited to the higher output frequency or modulation 
region. (There, frequency-proportional change of the output 
voltage amplitude is usually given.) For low output frequen- 
cies, local power losses and the transient thermal resistance 
must be considered for dimensioning. 

If the simple sinusoidal modulation is extended by addition 
of a third harmonic (Refs. [2]-[4]) (see modulation method 
[3] in Fig. 5 ((17) in Section I)) the relative conduction 
intervals of the valves are influenced (cf. (36)). For example, 
there follows, for diode D1, 

L L  L 

This means that, in any case, a corresponding change of 
the conduction losses can be expected. The evaluation of (40) 
under consideration of (39) and (44) leads to 

and 

+ rF,,f,,( - - -COS Ml cp + - M3 cos3p) (46) 
8 3 a  15a 
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( M ,  = 0.25 M ,  for optimized PWM (cf. Section I)). The 
part of the loss that is dependent on the constant conduction 
voltage representation therefore is not influenced by the 
modulation method modification (cf. (41) and (43)); the part 
linked to the conduction resistance is influenced only 
marginally. As can be considered, e.g., graphically in a 
simple way (cf. Fig. 8), we can write 

n cos [(2' + l)CP,] cos [CPU + 'PI dP, = 0 

k = 1,2, * * * .  (47) 

Therefore, in general for a change of the simple sinusoidal 
modulation method of odd-order harmonics, or, especially, 
by a zero quantity m0 defined by (35) (see modulation 
methods [2]-[7] in Fig. 5) the conduction losses linked to the 
not current dependent part of the conduction voltage are not 
influenced. This means that the calculation can be restricted 
to the second loss part; as a close investigation of the 
modulation methods described in Section I shows, this power 
loss contribution can always be approximated with an accu- 
racy that is sufficient for dimensioning purposes via the 
expression resulting for sinusoidal modulation. The thermal 
dimensioning of the power electronic devices regarding global 
conduction losses, therefore, is only marginally influenced by 
the shape of the modulation function. 

111. CALCULATION OF THE SWITCHING LOSSES 

For the calculation of the switching losses related to the 
modulation methods considered, one assumes (according to 
the measurement results of Refs. [S]-[ll]) a linear depen- 
dency of the switching energy loss (appearing for one switch- 
ing cycle of a bridge leg) on the switched current 

w p , T ( i T ( u N ~ ) }  = k i , T i T ( u N ~ ) .  (48) 

For the definition of a local switching loss (related to a 
position of a pulse interval) one can write 

pP,T = w P , T f P  (49) 

when a high pulse number is implied. 
Averaging 

of this switching loss appearing within the positive (or nega- 
tive) output current half period leads for continuous modula- 
tion (e.g., sinusoidal modulation [l], [2], or 131 in Fig. 5 )  to 
a global switching loss of a transistor-diode pair of a bridge 
leg (e.g., T2 and D1 in Fig. 7) 

(51) 

(52) 

k i , T , D  
'P ,TZ ,Dl  = ' N f P  7 

with 

' 1 , T . D  = ' 1 , T  + ' 1 , D .  

The shape of the modulation function basically influences 
the switching losses only if the various bridge legs are not 
pulsed within the entire fundamental period with pulse fre- 

1069 

0 'PU 

L' 
- 1  

-X-? 0 $-q II F.'P 2 x  2k = 2 

Fig. 8. For derivation of (47). 

quency (discontinuous modulation, modulation methods 
[4]-[7] in Fig. 5). As Figs. 9 and 10 show, there has to be 
decided among different cases in dependency on the phase 
relationship between the fundamentals of the output phase 
voltage and current. For the switching losses there follows 

'P,TZ,DI,[4]  = cos PI a 

?r 

1 sin (o 
a 

k k l , T , D f P , [ 5 ]  

a ( ) PP,T2D1,[5]  = 1 - -cos cp 

- - ' N k l , T , D f P , [ 5 ]  V% sin (o 

a 2 

(54) 

(values for the other phase angle regions follow via symme- 
try considerations (cf. Figs. 9, 10, and 11)). Depending on 
the phase angle of the output current and on the modulation 
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I -  I,co~lv”+Pl - Tu 

Fig. 9. For derivation of the switching loss dependency on the phase shift 
between output voltage and output current for modulation method 151. 
(mR,u,: phase modulation function (given for phase R); switching 
frequency status of the bridge leg ( s ~ , [ ~ ,  = 1 for switching bride leg, 
s,,[,~ = 0 for intervals when bridge leg is clamped); lower curves: distinc- 
tion of different cases for the phase angle regions of the output current). 

P 

p :O 

.- P 3 

2P 3 .- 

-* 

Fig. 11. Possible frequency increase kf,[i ,  of modulation methods [4] and 
[5] in comparison to continuous modulation methods (e.g., simple sinu- 
soidal modulation [l]) for equal switching losses (as a side condition for 
giving equal bases for comparison purposes). 

respectively by a factor of 

p =  0 

Y 
6 
.- 

._ n 
3 

.~ 
2 

2 P  3 ._ 

5P 6 ._ 

- n  

I,wslPu+v’l - Pu 1 -  
Fig. 10. For derivation of the switching loss dependency on the phase shift 
between output voltage and output current for modulation method [4]. 
(mR,141 : Phase modulation function (given for phase R); (sR.141: switching 
frequency status of the bridge leg (SR.[4] = 1 for switching bridge leg, 
sR,14, = 0 for intervals when bridge leg is clamped); lower curves: distinc- 
tion of different cases for the phase angle regions of the output current). 

method used ([4] or [5]), this makes possible (cf. Fig. 11) an 
increase of the “local”’ pulse frequency ( fp,[41 or fp,[51, 

(The local pulse frequency f p , [ i l  in this section is given by either 
fp = 0 for the clamping intervals or by fp = fp , , i l  = constant for the other 
time intervals of the fundamental period. For additional methods concerning 
the modulation of the pulse frequency, see Section VI.) 

2 - - 
[sin (o + cos (o] 

1 r n  a i  

2 - -..- 
& sin cp 

There, equal global switching loss is assumed as for the case 
of the simple sinusoidal modulation for which we have 
equality of “local” and “global” pulse frequency f,. The 
shift between the periods where no pulsing of a bridge leg 
takes place and the associated current fundamental has essen- 
tial influence on the possible frequency increase. This is true 
because the calculation of the switching losses (cf. (49) and 
(50)) is performed by weighting the instantaneous output 
current value by the local pulse frequency. If a converter 
phase is clamped to a bus bar voltage within (n/3)-wide 
intervals (e.g., cf. (33), or modulation method [5] in Fig. 5), 
then k f  shows a significant dependency on the phase shift of 
the output current. If the clamping interval of a phase (i.e., 
there appear no local switching losses) lies symmetrical to the 
current maximum ((o = 0), as is the case for modulation 
method 5, the local switching frequency can be increased by 
a factor of 2 as compared to continuous modulation. The 
frequency increase of k, = 1.5, which could be concluded 
from a superficial consideration of the problem (independent 
of the current phase angle, see Section I), therefore, does not 
represent the maximum achievable value. However, there 
appear phase-angle regions where the clamping states will be 
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located in the neighborhood of the current zero crossings 
(cp = a/2) .  Then the switching of the bridge legs occurs at 
high current levels (near or at the current maximum). The 
possible frequency increase in this case will be given by 
k ,  I 1.5. If the clamping states are distributed more evenly 
over the fundamental period, there results-as is immediately 
clear from previous considerations-a less-pronounced de- 
pendency of the frequency increase on the current phase shift 
(cf. modulation method [4] in Figs. 5 or 11, respectively). 

A closer discussion of the discontinuous modulation meth- 
ods [6] and [7] (cf. Fig. 5), defined in Section I by (26) and 
(28), can be omitted here because the frequency increase, 
which becomes possible when these methods are applied, can 
be derived directly from the relationships calculated for 
modulation method [ 5 ] .  This becomes immediately clear by 
comparing modulation methods [5], [6], and [7] in Fig. 5. 
We have 

or 

(57) 

According to the application area of the PWM converter 
system (phase angle region), the calculations performed give 
a criterion for selecting the modulation method to be applied. 
For the application to ac motor drives, for example, modula- 
tion method [4] would be more advantageous than method 
[5]. This is because, according to (32) and (34), in the whole 
modulation region for a phase-angle region from 40" to 140" 
(or -40" to -140") the harmonic losses of method [4] are 
below the harmonic losses of [5]. 

I v .  OPTIMAL MODULATION OF THE PWM CONVERTER 
FREQUENCY 

The optimization of the continuous modulation can be 
reduced (as described in Section I) to a minimization of the 
local harmonic current rms value (cf. (15)) 

- 2  
AiL,RST,rms - A i N , R S T , r ~ ~ , l  + AiL,RST,rms,2 (59) 

6, = - d 3 M  s i n ( p u -  5 ) .  
2 

For the sake of simplicity in the following we only want to 
refer to the suboptimal solution (cf. (22) or method [2] in 
Fig. 5 ,  respectively) 

67,[21 = t [ I -  (6, + ~ 1 .  (63) 

The dependency of the optimized local harmonic current rms 
value on the modulation depth M and phase cpu of the 
converter voltage space vector is shown in Fig. 12. The 
characteristic shape of the global harmonic losses is given in 
Fig. 6 (cf. modulation method [2]). Fig. 12 shows a pro- 
nounced maximum in the upper modulation region in the 
vicinity of cp,,, = n/2.  Therefore, one has to raise the ques- 
tion whether or how for a given modulation depth M the 
shape of the harmonic power losses can be smoothened and 
thereby possibly the global harmonic power losses further 
reduced. The only remaining degree of freedom of the modu- 
lation method there is given by the variation of the pulse 
frequency that has been assumed constant (independently of 
cpu) so far. Accordingly, the pulse frequency is to be in- 
creased in the region cpu = a / 2  and can be decreased in the 
regions cpU = n / 3  and 2 ~ 1 3 .  

The optimization of the pulse frequency shape f p , F M ( c p u )  
is expressed by a quality functional that has to be minimized: 

I =  
2a 

1 

I -+ Min. (64) 

The associated side condition is given by keeping the switch- 
ing losses constant as they result for constant pulse frequency 
f, according to 

a 

This means equal thermal stress on the power semiconductor 
devices. According to (65), the phase shift between converter 
output current and converter voltage again influences the 
determination of the switching losses, as already discussed in 
Section 111. (The discontinuous modulation discussed there 
basically represents a special case of the general frequency 
modulation treated here.) Therefore, the optimization has to 
be performed for each phase angle cp and for each modula- 
tion depth M.  The side condition (65) can be also written as 
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2lD 

f 0 

0 0.29 0.58 0.87 2 1 6  

Fig. 12. Dependency of the normalized local harmonic power losses 
of the PWM converter system on the position ' pa  of the 

converter voltage space vector and on the modulation depth M for subopti- 
mal modulation [2] ((22), (61), and (62) have to be applied to (59)). 

with 

The weighting function r characterizing the influence of the 
sinusoidal current phase shift is shown in Fig. 13. 

In general, the optimization problem treated here repre- 
sents a problem of variational calculus: one has to calculate 
the shape of the relative (local) pulse frequency (the ex- 
tremal) 

1 
q,m4 = -&,FA4 = k f , F M ( c p U ?  M ?  44 (68) 

f P  

(for given M and cp) that minimizes the global harmonic 
power losses AI&,ms(M, cp) where the side condition of 
constant switching losses is fulfilled. As a necessary condi- 
tion for obtaining the extremal, one can give 

+ X k f , F M ( c p U ,  M ,  c p ) l ( c p U ,  cp = 0 (69) )I 
according to the Euler-Lagrange differential equation of 
variational calculus. The side condition given as integral is 
linked to the calculation by the Lagrange multiplier A. (As we 
know, this parameter is finally determined by inserting of the 

extremal into the side condition (cf. [12]).) For the optimal 
frequency modulation there follows 

3 1  1 

(cf. Figs. 14 and 15). The necessary frequency sweep of the 
modulation is increased with increasing modulation depth and 
shows essentially a shape as already expected in the previous 
discussion. For a practical realization this frequency shape 
(in first approximation independent of the phase shift cp) can 
be approximated, e.g., by a simple sinusoidal or triangular 
modulation that is only dependent on M.  The global har- 
monic power losses resulting for optimal frequency modula- 
tion are given in Fig. 16. We point out especially the 
dependency on cp; no essential improvement of modulation 
method [2] (constant pulse frequency) is obtained, however. 
(Modulation method [2] is treated here as representative case; 
the other methods should show an equivalent result.) 

If one also considers (besides the resulting harmonic power 
losses) the resulting noise of, e.g., an electric motor supplied 
by the converter, then the frequency modulation shows sig- 
nificant advantages as compared to a modulation method with 
constant pulse frequency. This results from the fact that the 
harmonics (which are concentrated in the immediate vicinity 
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Fig. 13. Weighting factor ( of the normalized local pulse frequency kf,FM 
for calculating the converter switching losses in dependency on the phase 
angle rp and on the angle pa (cf. (67)). Due to the symmetries of a purely 
sinusoidal balanced three-phase system the considerations can be limited to 
the interval rp E (0, T /3). 

$ 0  

x 
3 
- 

Fig. 14. Dependence of the optimal normalized frequency kf,FM,[ll of the 
pulse frequency modulation on the position r p a ~ ( r / 3 ,  27r/3) of the 
converter voltage space vector and on the phase shift (o (referred to vu) of 
the converter output current; M = 0.75 (cf. (70)). 

v- 

of multiples of the switching frequency for constant pulse 
frequency) are now distributed in frequency bands of the 
width 

B = 2fP( k,,,, - 1). (71) 

Due to the equal spectral power (as we know, the spectral 
power is not influenced by frequency modulation), their 
amplitudes are decreased accordingly. There, the envelope of 
these spectral components for a large frequency sweep is 
defined by the shape of the modulating signal. There follows, 
e.g., for triangular modulation, an almost constant amplitude 
for the spectral components in the frequency regions defined 
by (71). 

The resulting noise of the ac motor supplied by a PWM 
converter, therefore, is distributed in a wider frequency band 
as compared to modulation methods with constant pulse 
frequency. There do not appear to be pronounced audible 
frequencies with multiples of the pulse frequency. 

V. CONCLUSIONS 

The main topic of this paper is the determination of those 
power loss components of a PWM converter system that can 
be (besides the harmonic losses) influenced by the modulation 
method selected. Those power loss components are usually 
neglected in pulse pattern optimization methods known from 
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kf,FM,[21 

0.58 

0.29 

2n 
3 
- 

n 
3 
- 

0 0.29 0.58 0.87 2 / /5  

M- 

Fig. 15. Dependency of the optimal normalized frequency kf,FM,pl of the 
pulse frequency modulation on the position ( n / 3 ,  2 n / 3 )  of the 
converter voltage space vector and on the modulation depth M ;  rp = 0 (cf. 
(70)). 

0,045 

0.030 

0,015 

0.0 

0 0.23 0.58 087 2/Js 

M -  

Fig. 16. Comparison of the normalized global harmonic losses of one 
phase for constant (denoted by [2],) and modulated (denoted by [2],,) 
converter pulse frequency. The comparison is made for equal global switch- 
ing losses in both cases to given a common basis for the comparison. 
(Parameter of the family of curves: phase angle p of the output current.) 

the literature because the optimization is performed with the 
side condition of a given average (global) switching fre- 
quency, but not with the essential side condition of defined 
global switching losses. 

If the assumption of sufficient thermal inertia of the power 
semiconductor devices is not fulfilled any further (meaning 
low output frequencies), one has to include a dynamic ther- 
mal model (transient thermal resistance) for the power elec- 
tronic devices into the optimization procedure for considering 
the device behavior with respect to the switching and conduc- 
tion losses within the fundamental period. A pulse pattern 
optimization would then be thinkable, e.g., with the side 
condition of a maximum allowable chip temperature. 

For the optimization of the stationary behavior of an ac 
motor drive system (the final goal of a pulse pattern optimiza- 
tion) one should generally check to see whether a detailed 
modeling limited only to the motor is sufficient. One has to 
consider also the loss contributions mentioned in this paper 
and therefore especially the converter losses. It would be not 
advisable to optimize a few percent of harmonic motor power 
losses (which are small for high pulse frequencies in any 
case) if one would not also consider the possibly (much) 
higher influences on the losses of the converter due to the 
nonideality of the power electronic devices. 
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