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Abstract—Latest research results on three-phase wide-
bandgap (WBG) inverter systems with full-sinewave output
voltage filtering are reported. A new soft-switching modulation
scheme for two-level 1200V SiC inverters is described. Fur-
thermore, a new Figure-of-Merit for determining maximum
multi-level (ML) bridge-leg efficiency is defined and low-
voltage GaN devices are evaluated considering ML flying
capacitor (FC) and multi-cell inverter structures. Finally, new
integrated-filter buck-boost current DC-link inverter topolo-
gies are discussed.

I. INTRODUCTION

Variable Speed Drive (VSD) systems are a core element
of modern industrial automation technology [1] and typi-
cally comprise a mains interface and a subsequent pulse
width modulated (PWM) inverter stage to supply the three-
phase (3-Φ) AC machine which drives the mechanical load.

State-of-the-art inverters employ 1200V silicon
insulated-gate bipolar transistors (Si-IGBTs) with anti-
parallel free-wheeling diodes (Fig. 1a) for the switching
power semiconductors. Under the fundamental limitations
of Si-IGBTs (fixed on-state voltage drop and high switching
losses), this device selection results in low switching
frequencies (typically under 16 kHz), large semiconductor
chip areas, and low partial- and peak-load efficiencies.

The recent commercialization and adoption of wide-
bandgap devices (WBGs) – in particular, 1200V SiC MOS-
FETs – has opened a promising alternative to Si-IGBTs
in VSDs [2]. In SiC MOSFETs, the body diode can be
utilized as the free-wheeling diode (Fig. 1b), switching
speeds are much faster for lower switching losses and
increased switching frequencies (up to 100 kHz), and, with
synchronous rectification, the constant on-state voltage drop
is eliminated for higher efficiencies, especially at light
load. With these increased switching speeds and frequen-
cies, however, care must be taken to avoid exposing the
motor to high dv/dt stresses, to meet radiated emissions
requirements and to limit motor winding insulation aging,
common-mode bearing currents and overvoltages due to
reflection on long motor cables – the “double-edged sword”
of WBG devices for variable speed drives.

We summarize different approaches under research in the
Power Electronics Systems Laboratory of ETH Zurich for
handling this double-edged sword, including novel modu-
lation schemes, multi-level/cell topologies, and current-fed
DC-link inverters with full-sinewave output voltage filtering
(cf. Fig. 1c–Fig. 5 for voltage-fed and Fig. 6,7 for current-
fed approaches).

II. 2-LEVEL SIC VOLTAGE DC-LINK INVERTER

Standard half-bridge (“2-level”, 2L) inverter bridge-legs
typically operate in continuous current mode (CCM) [3],
where the current is controlled to a low-ripple envelope that
follows the sinusoidal average output current. This ensures
low transistor current stress but, with hard-switching for one
device in each half of the line cycle, limits the switching
frequency and may thus result in large filter volumes.

With low on-state resistances of SiC MOSFETs, large-
ripple triangular current mode (TCM) operation (presented

first for 3-Φ systems in [4] and shown in Fig. 2b)
becomes attractive, ensuring soft-switching and/or zero-
voltage-switching (ZVS) over the full output period (elim-
inating the dominant turn-on switching losses) and re-
quiring only an inexpensive current zero-crossing detector.
Relative to CCM, TCM trades off increased conduction
losses (from higher currents) for lower switching losses,
reducing the filter inductance value (i.e. more compact
filter realizations) by leveraging the increased switching
frequency and current ripple amplitude. The core advan-
tages of TCM and its implementation are made possible by
two key enabling technologies of modern power electronics:
low on-resistance of WBG devices and high-speed digital
control. The modulation scheme can be further improved by
introducing a sinusoidal envelope of the phase current (S-
TCM, shown in Fig. 2a,c-d), which maintains the switching
frequency below the conducted EMI measurement range of
150 kHz across the line cycle (a challenge with traditional
TCM schemes) and can be optimized to ensure minimum
conduction losses and full ZVS.

The required effort for full-sinewave output filtering can
be minimized, similarly, through the introduction of output
voltage levels in multi-level (ML) converters, the focus of
the next section.

III. X-LEVEL GAN/SI VOLTAGE DC-LINK INVERTER

ML bridge-leg structures with the flying capacitor (FC)
concept of Fig. 3a (with N +1 levels) reduce the blocking
voltage of the power semiconductors (a factor of N less
than the DC-link voltage, Udc), and, when interleaved gate
signals are used (Fig. 3b), the voltage steps applied to the
output filter are both N lower voltage and N higher effec-
tive frequency (over the device switching frequency) for an
N 2 scaling of filter stress reduction. While a higher number
of levels increases overall complexity through higher counts
of modulation signals, gate drive stages and switches, these
can be managed using fully-automated SMD assembly and
modern digital signal processing technologies.

A. General Scaling Laws for X-Level FC Bridge-Legs
With an increasing number of levels, VSD sys-

tems may move from 1200V semiconductors to 650V
SiC MOSFETs / GaN HEMTs (N = 2 for an 800V DC-
link) or even 200V GaN HEMTs (N = 6 for an 800V
DC-link). Lower-voltage devices are known to exhibit lower
on-state resistances [2], but their higher output capacitances
(which increase switching losses) must be considered to
fully evaluate their performance benefits.

In [5], a device-level Figure-of-Merit, D-FOM, is intro-
duced to quantify the benefits of only moving to lower-
voltage devices. As Fig. 3c shows, there is a modest benefit
of around 1.5× lower semiconductor losses for 6× lower-
voltage switches (operation in quasi-2L, Q2L, mode without
gate interleaving, cf. Fig. 3f). When the frequency multipli-
cation of the gate-interleaved ML topology is considered,
however, a 7-level (7L) topology (N = 6) enables 9×
lower bridge-leg losses (for a fixed filter stress), a massive



benefit that is quantified with a new ML bridge-leg Figure-
of-Merit (X-FOM) in [5] and shown in Fig. 3c. This
improvement is confirmed in a 7L, 2.2 kW, 800V DC-link
demonstrator that is optimized (Fig. 3d) and constructed
(Fig. 3e) with 200V GaN HEMTs, achieving a power
density of 15.8 kW/dm3 and a peak efficiency of 99.03%
[6].

B. Multi-Objective Design Considering Overload

In particular applications, like robotic motor drives, VSDs
are required to provide 3-5× the rated torque for several
seconds. While GaN-based ML converters can achieve
exceptional efficiency (as described in Section III-A), the
small optimal chip area of GaN HEMTs results in a
low thermal time constant, which can be increased only
slightly through mounting configurations of the semicon-
ductors (e.g. a PCB with a copper inlay or a copper heat
spreader, cf. Fig. 4a) [7]. This results, unavoidably, in a
trade-off between overload capability and high efficiency
at rated power, as shown in Fig. 4b-c. With the blocking
voltage reduction enabled by the ML topology, one option
is to replace the GaN HEMTs with 200V Si MOSFETs
with much larger chip areas and therefore higher thermal
time constants [8]. This drastically improves the overload
capability and maximum motor torque at the expense of
lower rated-power efficiency (Fig. 4b-d), representing a
VSD application where Si devices may be preferred despite
the fundamental advantages of WBG technologies.

C. Alternative X-Level/Cell Inverter Approaches

The conventional series-interleaving approach of flying
capacitor ML bridge-legs can be extended with a series-
and parallel-interleaved combination (Fig. 5a), where M
parallel branches are interleaved with N series cells [9].
Increasing N and M improves efficiency, as previously
described and shown in Fig. 5b, but carries the penalty
of higher FC count (higher N ) or higher inductor volume
(higher M ). For N = 2, which moves the power devices
from 1200V SiC to higher-performance 650V GaN, and
M = 3, we achieve a very-high effective switching fre-
quency of 4.8MHz and a highly-compact converter with a
power density of 50 kW/dm3 (Fig. 5c).

The modularization of the inverter stage can be extended
to the motor itself by splitting the motor stator winding into
multiple 3-Φ sub-systems that are individually supplied by
inverters [10] (Fig. 6a). These inverter stages are series-
connected on the DC-side to use 200V GaN HEMTs (even
with an 800V DC-link), resulting in excellent efficiency
(Fig. 6b), high redundancy, and a power converter so
compact that it can be directly integrated into the motor
housing with fully-automated manufacturing on a single
PCB (Fig. 6c) [11]. This concept is especially valuable
for tight inverter-motor integration with a direct solder
connection of the winding terminals, but, with an output
filter potentially required for each inverter stage, may incur
the penalty of a larger filter volume.
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Fig. 1: Bridge-leg, semiconductor die size, and switching waveforms [12] for (a) IGBT + free-wheeling diode and (b) SiC MOSFET. Total die area for
1200V 100A IGBT + diodes is 98.8mm2 + 39.4mm2 compared to 25.6mm2 for the SiC MOSFET [13]. Switching speed for Udc=600V is ≈ 4 V/ns
for the IGBT and ≈ 20 V/ns for the SiC MOSFET. (c) 3-Φ VSD inverter with a DC-link-referenced full-sinewave output filter with three decoupled
phases. Alternatively, separate filter stages for 3-Φ differential- and common-mode noise can be used, leading to a coupling of the three phases [14].

IV. CURRENT-FED DC-LINK BUCK-BOOST INVERTERS

Most fundamentally, the familiar conventional voltage-
fed inverters (Fig. 1c and Fig. 3a) are using buck-type
DC-DC bridge-legs that are operated with a sinusoidally-
varying duty cycle around 1/2·Udc. To extend the input or
output voltage range and reuse existing filter inductors, an
additional bridge-leg per phase can be introduced to realize
a buck-boost capability of the inverter, as shown in Fig. 7a.
A continuous sinusoidal 3-Φ line-to-line voltage is still
provided to the motor, as shown in Fig. 7b as measured
on the 11 kW demonstration hardware (Fig. 7c).

The boost stage of this “Y-inverter” of Fig. 7a is,
essentially, a phase-modular current-fed DC-link converter,
and this design can be converted into a 3-Φ topology with a
conventional current-fed inverter approach. This design uses
only a single inductor and combines the three Y-inverter
buck stages into a single bridge-leg, as shown in Fig. 8a, but
requires a bidirectional voltage blocking capability for each
power switch of the boost stage [15]. This is implemented
with next-generation monolithic bidirectional GaN HEMTs
(Fig. 8b-c), which require two individual gate drive signals
but reduce the required semiconductor area (for a particular
on-state resistance) by a factor of 4 [16].

V. CONCLUSIONS

With the commercialization of wide-bandgap power
semiconductors and ever-improving digital signal process-
ing technologies, VSD systems can achieve higher ef-
ficiencies and power densities, tight inverter and motor
integration, and wide input/output-voltage ranges.

Future research on VSD systems must be scoped com-
prehensively, including detailed motor properties – such
as high-frequency motor losses and impedance models,
thermal models, and modular winding concepts – in the
conceptualization of the inverter. Only this systems-based
approach can overcome the current competence barriers
and drive critical improvements of this foundational electro-
mechanical infrastructure.
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Fig. 2: (a) Bridge-leg filter inductor current (iL,a) and output current (ia) with S-TCM modulation at 100% load, featuring (b) soft-switching (ZVS) and
(c) a limited maximum switching frequency (e.g., 140 kHz) for the whole load range, at a cost of ≈ 45% increase in conduction losses compared to CCM
at full load. The upper (i+) and lower (i-) envelopes always keep a positive and negative value, respectively, to ensure ZVS. (d) S-TCM measurements
without current envelope modulation at 70% output load (1.5 kW, Udc=800V, Lo=52 µH). Using special current envelopes for spectral shaping is
possible. 3rd harmonic injection modulation is allowed, as only line-to-line voltages determine the motor phase currents (open motor star point).
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