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Abstract
Bearingless machines are used for a variety of applications with demand for low mechanical loss, low wear and
low contamination. These machines use contact-free magnetic suspension to levitate the rotor. The control of the
machine requires precise radial and angular position information in order to ensure stable levitation. This informa-
tion is usually obtained with two types of sensors: radial displacement sensors and angle sensors. Alternatively, an
angle-sensorless control scheme can be used, reducing the complexity and the cost of the machine. While such a
control is well known for conventional machines it is challenging to adapt it for bearingless machines. The reason
is that most methods fail to provide the angle information at zero- and low-speed but bearingless machines require
knowledge about the rotor angle at all speeds in order to function.
The theoretical mode of operation of a model-based angle observer for zero- and low-speed operation of a bear-
ingless machine was shown in previous publications. The observer obtains the rotor angle estimation error by
analyzing the performance of the radial bearing and comparing it to the performance of a model with zero angle
error. This observer can be used at zero- and at low-speeds.
This paper provides a more detailed description of the non-idealities of the zero- and low-speed observer and
presents new results of machine operation without angle sensors. The generation of torque and force inside the
machine is analyzed in more detail. The experimentally verified results of this paper indicate that the novel observer
can be used up to speeds at which back-electromotive force estimation is possible.
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1. Introduction

Bearingless machines are electric motors that combine the functions of an electric machine and a magnetic bear-
ing in one stator, (Bichsel 1991), allowing for a compact machine design. The motor generates both the torque and the
suspension forces required to levitate the rotor. This allows the elimination of a drive shaft and mechanical bearings
and enables the rotor to be driven inside a sealed compartment, making bearingless machines well suited for appli-
cations with demands on high speed (Mitterhofer, Gruber, and Amrhein 2014), low wear and low particle generation
(Neff, Barletta, and Schoeb 2002).

The rotor of the machine described in this paper consists of a ring shaped one pole-pair, radially-magnetized
rare-earth magnet with a diameter that exceeds its height. This type of machine is called a heteropolar bearingless
permanent magnet slice motor (Schoeb and Barletta 1995). The disk shape is chosen because it simplifies the control
of the machine. Only the radial position and the rotor angle have to be actively controlled while axial movement and
tilting around the radial axis are stable by design (Schoeb and Barletta 1997; Amemiya et al. 2005). Figure 1(b) depicts a
render of the bearingless machine, showing the ring shape of the magnet, the stator iron and the windings that are used to
produce the magnetic fields in the airgap. Parts of the mechanical structure and the case are not shown to make the ring
shaped rotor and the stator structure visible.

The controller of the bearingless machine requires knowledge of both the radial and the angular rotor position in order
to ensure stable levitation and high drive performance (Nussbaumer et al. 2011). The position is commonly obtained with
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(a) (b)

Fig. 1 The bearingless machine that is used to verify the control scheme (a) and a render of the machine showing
the ring shaped rotor (b). Note that the rotor magnet is displaced in order to generate the displacement
force required for the angle estimation.

the use of radial and angular sensor systems that are usually complex and sensitive to harsh environments. Omitting
these sensors reduces the complexity and the cost. This can make bearingless machines suitable for applications in rough
environments or applications with high cost sensitivity.

This paper focuses on the possibility to eliminate the angular position sensors. Multiple angle-sensorless rotor angle
estimation techniques for permanent magnet synchronous machines have been reported in the literature (J.-S. Kim and
Sul 1997; Acarnley and Watson 2006). These methods are of two types: the first type is based on the estimation of the
back-electromotive force (EMF) (Park et al. 2001) and the second type uses high frequency (HF) signal injection (S. Kim
and Ha 2008). The EMF-based control schemes work only above a minimum speed since they require sufficient amplitude
of the induced voltage, which is proportional to the machine speed. Therefore, these methods are not suitable for zero-
and low-speed operation. The HF signal injection methods rely on the fact that the machine inductances are dependent
on the rotor angle due to saliency of the machine. While the method provides rotor angle information over the entire
speed range of the machine it is limited to machines with salient pole rotors. Furthermore, the machine inductances in
bearingless machines are also dependent on the radial rotor position. Therefore, a deviation in the radial position of the
rotor will disturb the rotor angle estimation.

It is possible to use EMF based observers at in combination with a special low speed control method and drive the
machine with a two stage controller. This approach is reported in literature by Raggl et al. (2009). The control scheme
utilizes an open loop controller for zero- and low-speed operation. This paper proposes to replace the open-loop control
with a closed-loop zero- and low-speed angle estimator. The zero- and low-speed angle estimator is model based, meaning
that it utilizes a model of the bearing and compares the ideal model behavior with the actual bearing behavior. The novel
observer allows to drive the machine up to the minimum speed at which EMF-based methods can take over.

The modelling of the magnetic flux around the rotor is shown in Section 2. The results of the flux modelling are
used for the analysis of the torque and bearing force generation in the bearingless machine, which is presented in Section
3. Section 4 presents the functionality and the structure of the angle observer. The functionality of the observer is shown
in Section 5 by measurements taken with the prototype machine shown in Fig. 1(a). Section 6 draws some conclusions,
summarizes the results and gives some outlook on how the control scheme can be improved further.

2. Modelling of magnetic flux in around the rotor magnet

The torque and bearing force calculation is based on the analysis of the magnetic flux density in the airgap, similar
to the analysis presented by Laptre et al. (2015). A FEM program was used to obtain the magnetic flux density around
the rotor. Figure 2(a) and Fig. 2(b) show a schematic top and side view of the motor. The flux density analysis is done
on the circles ξc1,...cn on a cylindrical surface in the airgap and on ξt1,...,tm, ξb1,...,bl on disks above and below the rotor. Note
that the number of circles is reduced in the figures for the sake of clarity, the simulation is done for n + m + l = 43. The
analysis of the flux density above and below the rotor is necessary since the short rotor has significant stray fields. The
stray fields become larger if the rotor is displaced. The consideration of the stray fields is the most significant difference
to the reduced analysis presented in (Wellerdieck, Nussbaumer, and Kolar 2016).

The flux density B around the rotor can be approximated by its space harmonics Bk,i as

Bk (α) ≈
∑

i
B̂k,i cos

(
iα + ϕk,i

)
, k ∈ [(r, t, z) , (x, y, z)

]
(1)
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Fig. 2 Schematic top view (a) and side view (b) of the bearingless motor. The flux density is analyzed on the
circles ξc1...ck on a cylindrical surface around the rotor, ξt1,...tn and ξb1,...bl above and below the rotor. The
amplitude of the radial component of the most prominent flux density harmonics in the arigap over axial
position (c) showing that the flux is not constrained to the rotor height.

with B̂k,i, ϕk,i and α being the amplitude of the i-th harmonic, the phase of the harmonic and the angular position on one
of the circles ξ. Equation (1) is used with cylindrical coordinates in the airgap and with cartesian coordinates on the top
and bottom disks. Figure 2(c) shows the amplitude of the radial component of the fundamental, the fifth and seventh flux
density harmonic for different axial positions in the airgap. This shows that the magnetic flux is not limited to the height
of the rotor and an extension of the analysis to the top and bottom of the rotor is necessary.

Table 1 The variables that define the magnetic flux density around the rotor.

variable description range
∆x displacement in x direction ∆x ∈ [−2 mm, 2 mm]
∆y displacement in y direction ∆x ∈ [−2 mm, 2 mm]
θ rotor angle θ ∈ [0, 2π]
ÎD, ϕD drive current amplitude and phase ÎD ∈ [0, 10 A] , ϕD ∈ [0, 2π]
ÎB, ϕB bearing current amplitude and phase ÎB ∈ [0, 3 A] , ϕB ∈ [0, 2π]

The magnetic fields around the rotor are dependent on the rotor position as well as the bearing and drive currents in
the stator windings. If magnetic saturation is neglected, the amplitudes of the flux density harmonics can be calculated as
a sum of four field components as

B̂k,i = B̂k,i,0 (θ) + B̂k,i,∆ (θ,∆x,∆y) + B̂k,i,D

(
ÎD, ϕD

)
+ B̂k,i,B

(
ÎD, ϕB

)
, k ∈ [(r, t, z) , (x, y, z)

]
(2)

and the phases can be stated as

ϕk,i = ϕk,i,0 (θ) + ϕk,i,∆ (θ,∆x,∆y) + ϕk,i,D (ϕD) + ϕk,i,B (ϕB) , k ∈ [(r, t, z) , (x, y, z)
]
. (3)

Table 1 lists the variables used in (2) and (3) and Tab. 2 shows how the relevant harmonics can be assigned to different
field components in the airgap.

Table 2 The four field components and their relevant harmonics.

description amplitude and phase relevant harmonic number
zero displacement field B̂k,i,0, ϕk,i,0 i ∈ [1, 5, 7, 11, 13]
rotor displacement field B̂k,i,∆, ϕk,i,∆ i ∈ [1 − 10]
drive field B̂k,i,D, ϕk,i,D i ∈ [1, 5, 7, 11, 13]
bearing field B̂k,i,B, ϕk,i,B i ∈ [2, 4, 8, 10, 12, 14, 16]

The concept of the relevant harmonics can best be explained by example. Figure 3(a) and 3(c) show the radial and
tangential field on the circle ξc0 with the axial position z = 0, cf. Fig. 2(b). The middle position is chosen because the z
component of the field is negligible due to symmetry. The bearing current is varied from 0 A to 3 A, while the rotor is at
∆x = ∆y = 0 mm. Figure 3(b) and 3(d) show the amplitudes of the space harmonics B̂r,i and B̂t,i. The constant amplitudes
of the harmonics of the order 1, 5 and 7 of the zero displacement field are clearly visible. It can be seen that only the
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Fig. 3 The field in the middle of the airgap at z = 0 mm for an undisplaced rotor and different bearing current
amplitudes, with the radial field (a), the amplitudes of the radial space harmonics (b), the tangential field
(c) and the amplitudes of the tangential space harmonics (d). Only a limited number of space harmonics
are dependent on the bearing current.

harmonics of the order 2, 4, 8, 10 and 12 change with increasing bearing current while the other harmonics stay constant.
The change of the amplitude is linear.

Only a small number of FEM simulations with different bearing current amplitudes are required to formulate a good
model for the bearing field in the airgap. The same analysis can be done for the displacement and the drive field in
the airgap and for the fields above and below the rotor. The advantage of this approach is that the field model, once it
is formulated with the use of FEM simulations, can be evaluated computationally efficient. The model could even be
implemented on the controller digital signal processor (DSP) to predict the bearing forces precisely.

3. Drive and bearing behavior

The torque and force acting on the rotor magnet can be calculated by evaluating the Maxwell stress tensor on a closed
surface around the rotor. In this section, only magnetostatic forces are considered. The cylindrical surface is split into
43 parts and the magnetic flux density on each part of the surface is approximated by the most relevant space harmonics,
cf. Section 2. Therefore, the surface integration becomes an integration on n cylinder parts on the circles ξc1,...cn,ξt1,...tn
and ξb1,...bl, cf. Fig. 2(a) and Fig.2(b). The torque and force due to the fields in the airgap can be calculated as

Tz,c =
R2

µ0

n∑
i

Hi

∫ 2π

0
Br,ci (α) Bt,ci (α) dα

Fx,c =
R

2µ0

n∑
i

Hi

∫ 2π

0

(
B2

r,ci (α) − B2
t,ci (α) − B2

z,ci (α)
)

cos (α) − 2Br,ci (α) Bt,ci (α) sin (α) dα

Fy,c =
R

2µ0

n∑
i

Hi

∫ 2π

0

(
B2

r,ci (α) − B2
t,ci (α) − B2

z,ci (α)
)

sin (α) + 2Br,ci (α) Bt,ci (α) cos (α) dα

Fz,c =
R
µ0

n∑
i

Hi

∫ 2π

0
Br,ci (α) Bz,ci (α) dα (4)

with Tz,c being the torque in z direction and Fx,c, Fy,c, Fz,c being the radial forces acting on the rotor. The radius of the
circle ξc1,...cn is denoted by R and the height of the i-th cylinder part is labeled Hi. The flux density components on the i-th
cylinder part in radial, tangential and z-direction are labeled Br,ci, Bt,ci and Bz,ci, respectively. A similar torque and force
calculation is done for the top and bottom parts of the enclosing surface.

Equation (4) in combination with the reduced harmonics approach allows for the precise calculation of the torque and
bearing forces acting on the rotor. The calculation is computationally efficient since only additions and multiplications are
required. However, the calculations become extensive if all the harmonics of Tab. 2 are used. Therefore, an example with
a reduced number of harmonics is used to illustrate the behavior of the machine. The simplifications are: the z component
of the field is neglected, the zero displacement field consists only of harmonics of the order 1 while the bearing and
the displacement field consist only of harmonics of the order 2. It is assumed that the rotor is levitating at the position
x = x∗ > 0, y = y∗ = 0 and θ = θ̂ = 0, with x, y denoting the rotor position, x∗, y∗ denoting the reference rotor position
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and θ, θ̂ denoting the rotor angle and the estimated rotor angle, respectively. Figure 4(a) shows a schematic view of this
mode of operation with Ψ⃗r, F⃗∆ and F⃗B denoting the flux direction of the permanent magnet, the force acting on the magnet
due to the displacement and the bearing foce, respectively. The field in the airgap is

Br,1 (α) = B̂r,1,0 cos (α)

Bt,1 (α) = B̂r,1,0 cos (α − π/2)

Br,2 (α) = B̂r,2,∆ cos (2α) + B̂r,2,B cos (2α + π)

Bt,2 (α) = B̂r,2,∆ cos (2α − π/2) + B̂r,2,B cos (2α + π/2) . (5)

The field components are listed in Tab. 2. The amplitudes and harmonics fulfill

B̂r,2,B = B̂r,2,∆ B̂t,2,B = B̂t,2,∆

ϕr,2,B = ϕr,2,∆ + π ϕt,2,B = ϕt,2,∆ + π.
(6)

The bearing controller of the machine has set the bearing current such that the net force acting on the rotor is

F⃗ =
Fx

Fy

 = F⃗∆ − F⃗B = 0. (7)

This is done by measuring the displacement x, y, calculating the bearing current I⃗B =

IBx

IBy

 in the rotor coordinate system

and then rotating the bearing current by θ̂ into the stator coordinate system.
The above is the normal, stable behavior of a bearing controller with correct rotor information. Now, it is assumed

that the rotor angle θ is changed to θ > 0 while the rotor angle estimation is kept at θ̂ = 0, cf. Fig. 4(b). The bearing
controller still applies the same bearing current since neither the position nor the angle estimation changed. The resulting
flux density in the airgap is

Br,1 (α) = B̂r,1,0 cos (α − θ)
Bt,1 (α) = B̂r,1,0 cos (α − θ − π/2)

Br,2 (α) = B̂r,2,∆ cos (2α − θ) + B̂r,2,B cos (2α + π)

Bt,2 (α) = B̂r,2,∆ cos (2α − θ − π/2) + B̂r,2,B cos (2α + π/2) . (8)

Inserting (8) into (4) results a non-zero net force acting on the rotor. The reason is that the reference bearing force F⃗∗B is
not the same as the actual bearing force F⃗B. The rotor will move in y direction because the bearing current is not rotated
by the correct rotor angle. This is an unstable mode of operation. The bearing force acting on the rotor can be expressed
in terms of F⃗∗B and the angle estimation error ∆θ = θ̂ − θ as

F⃗B =

cos (∆θ) − sin (∆θ)
sin (∆θ) cos (∆θ)

 F⃗∗B. (9)

The movement in y direction will be detected by the y-direction position controller. The y-axis bearing controller will
adjust for this movement and reduce IBy. Figure 4(c) shows the effect of this. The reference bearing force has been turned
by the two bearing controllers until F⃗B = F⃗∆ is fulfilled and the rotor is stable again.

Equation (9) describes an approximation of the actual coupling. It is correct for the simple example with only first
and second order harmonics. Figure 5(a) shows the forces acting on a displaced rotor with the rotor angle being changed
from 0 to 2π while the estimated angle is kept θ̂ = 0. The forces calculated with all the harmonics shown in Tab. 2 are
labeled Fx,c, Fy,c and the forces calculated with the simplified approach are denoted Fx,s, Fy,s. This shows that (9) really
is only a rough estimation. However, Section 5 shows that the estimation is sufficient to control the machine.

This section shows how an error in the rotor position results in a coupling of the bearing control in x and y direction.
This coupling effect is used to calculate the rotor angle estimation error and to update the rotor angle estimate. The
method works only for sufficiently small estimation errors since the radial position controllers fail to stabilize the rotor if
the coupling is too strong.
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(a) (b) (c)

Fig. 4 Schematic top view of the bearingless machine showing an operating point with zero rotor angle estimation
error (a), operation point with non-zero angle estimation error without the compensation of the bearing
controllers (b) and with the compensation (c).
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Fig. 5 Radial forces acting on a displaced rotor if the rotor is rotated but the rotor angle estimate is not updated
(a) and simplified controller block diagram of the bearingless machine neglecting the current controllers
and the speed control (b).

4. Observer structure

The angle observer utilizes the force coupling described in (9) to estimate the rotor angle estimation error and the
fact that the two bearing controllers will compensate the coupling for small angle estimation errors.

Figure 5(b) shows a schematic controller block diagram of the bearingless machine. The speed control is not shown
and the sensors are modelled to work without measurement error. Furthermore, the current controllers are assumed to
work perfectly and, therefore, are not shown. Note, that s is the Laplace operator and m is the rotor mass. The two radial
position controllers are labeled Cx (s) and Cy (s) and are of a PID structure. The bearing controllers calculate the bearing
current reference in the rotor oriented coordinate system IBx and IBy based on the difference between the rotor position x∗

and y∗ and the rotor reference positon x, y. The bearing currents are then rotated into the stator coordinate system in the
block T . B (s) denotes the force generation in the machine. Double integrating the sum of the internal forces Fx and Fy

and any external radial forces acting on the rotor Fx,e and Fy,e yield the rotor position. The rotor angle estimation observer
is labeled O an the angle estimation update function is labeled A.

The observer block O calculates an estimate of the rotor angle error as

∆θ = ∠
(
F⃗∗B
)
− ∠
(
F⃗r,e

)
− 2π = ∠

(
I⃗B

)
− ∠
(
F⃗r,e

)
− 2π. (10)

The bearing current angle is known since the bearing currents are defined by the radial position controllers. The external
radial force Fr,e consists of three parts:

F⃗r,e = F⃗∆ + F⃗g + F⃗δ (11)

with F⃗∆, F⃗g and F⃗δ being the force due to radial displacement of the rotor, the radial gravitational pull and any disturbance
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(a) (b)

Fig. 6 Mean rotor angle estimation error during operation of the bearingless machine prototype with constant
speed of 1500 rpm (a), actual and reference speed during operation (b).

forces, respectively. The angle of the displacement force is

∠
(
F⃗∆
)
= ∠
(⃗
r
)

(12)

with r⃗ being the radial displacement. Therefore, the angle of the displacement force can be calculated based on the
measurements of the radial rotor position x, y. The radial gravitational pull is dependent on the orientation of the machine.
Its direction can be measured after the start-up by checking the bearing currents if the rotor is levitating at x∗, y∗ = 0. The
rotor is displaced if no radial gravitational pull is detected in order to generate a known F⃗r,e. The unknown disturbance
forces are usually application dependent or arise from rotor imbalances. However, application dependent disturbances
are usually speed dependent, such as hydraulic forces in fans or pumps, and so are inbalance forces. Nevertheless, any
disturbance force will lead to an undetectable angle estimation error ∆θδ. The biggest undetectable estimation error ∆θ̂δ
occurs if the disturbance force is perpendicular to the known radial forces and can be calculated as

∆θ̂δ = arctan

 |F⃗δ|
|F⃗∆ + F⃗g|

 . (13)

The observer presented in this paper is able to detect the rotor angle estimation error. Subsequently, the angle
estimation is calculated by updating the angle estimation with

θ̂ (t) = θ̂init + P · ∆θ (t) + I ·
∫ t

0
∆θ (τ) dτ (14)

with P, I being the proportional and integrator gain of the update function A and θ̂init being the initial rotor angle. The
initial angle estimation is possible if the rotor is not levitating by evaluating the radial position sensors as shown by Raggl
et al. (2009).

5. Verification

The verification is done with the bearingless machine shown in Fig. 1(a). The machine is operated in a no-load
condition. The control of the machine is executed on a DSP. The DSP communicates with a computer and allows to display
register values directly. The machine was placed with the gravity pulling in z direction of the rotor. Therefore, the known
part of the external radial force F⃗r,e is generated by setting the rotor reference position to x∗ = 0.5 mm, y∗ = 0.5 mm.

The machine is fitted with rotor angle sensors to measure the rotor angle θm. The measured rotor angle is not used
for the control of the machine. Figure 6(a) shows the mean of the difference between estimated and observed rotor angle
∆θm = θ̂ − θm for multiple rotations. Note that ∆θ , ∆θm since the observer performance is degraded by parasitic effects
and disturbance forces. The estimator performance is sufficient to ensure stable levitation. Figure 6(b) shows the reference
rotor speed n∗ and the estimated speed n̂. The speed estimate is calculated as

n∗ =
∂θ̂

∂t
· 60

2π
· rpm

s
. (15)

The verification shows that the angle observer is able to estimate the rotor angle with sufficient accuracy for speeds
up to 1500 rpm which is 15 % of the nominal machine speed. It is possible to switch the angle estimation to a back-EMF
based scheme and then drive the machine up to the maximum speed.
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6. Conclusion

The angle observer structure shown in this paper allows for the detection of the rotor angle at zero- and low machine
speeds in bearingless machines. The observer is based on the fact that a rotor angle estimation error leads to a coupling
of the radial position control in x and y direction. This coupling can be measured by evaluating the bearing currents. The
observer uses an initial rotor angle estimation and updates it continuously. The method is based on the assumption that
the radial disturbance forces acting on the rotor are small. The validity of this assumption is depending on the application
of the bearingless machine and the maximum speed at which the observer is used.

The functionality of the method is shown by measurements with a prototype. A machine speed of 1500 rpm can be
reached. This corresponds to 15 % of the nominal speed. A back-EMF observer can be used for the angle estimation at
higher machine speeds.

The quality of the angle estimation can be improved if the coupling matrix, cf. (9), is adapted to represent the effect
of all the harmonics. This would then allow to also adapt the angle estimation function shown in (10).
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