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Requirements
The Grand Prize 
Finalists & Finals

Little Box Challenge
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● Design / Build the 2kW 1-ΦSolar Inverter with the Highest Power Density in the World
● Power Density > 3kW/dm3 (> 50W/in3, multiply  kW/dm3 by Factor 16)
● Efficiency    > 95%
● Case Temp.  < 60°C
● EMI  FCC Part 15 B

■ Push the Forefront of New Technologies in R&D of High Power Density Inverters

!

!

!

!
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The Grand Prize

■ Timeline – Challenge Announced in Summer 2014
– 2000+ Teams Registered Worldwide
– 100+ Teams Submitted a Technical Description until July 22, 2015
– 18 Finalists (3 No-Shows)

$1,000,000

● Highest Power Density (> 50W/in3)
● Highest Level of Innovation
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Finalists

- 5 Companies
- 6 Consultants
- 4 Universities

* and  FH IZM /
Fraza d.o.o.

Univ. of Tennessee  

Univ. of Illinois   

Virginia Tech  
Rompower  

Schneider
Electric  

Tommasi
Bailly  

CE+T 

Energy 
Layer  

AHED  OKE Services  

Cambridge 
Active
Magnetics  

AMR  

Venderbosch  

Fraunhofer
IISB  

*

15 Teams/Participants in the Final @ NREL
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– Finalists Invited to NREL / USA
– Presentations on Oct. 21, 2015
– Subsequent Testing by NREL

Final Presentations
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Acknowledgement

Little Box 1.0
Converter Topology
Modulation & Control 
Technologies /Components  
Mechanical Concept
Exp. Analysis  
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Derivation of    
Converter Concept 



11/147

1-Φ Output Power
Pulsation Buffer
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● Parallel Buffer @ DC Input

● Series Buffer @ DC Input

■ Parallel Approach for Limiting Voltage Stress on Converter Stage Semiconductors

Power Pulsation Buffer  
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Passive Power Pulsation Buffer (1)

■ C > 2.2mF / 166 cm3   Consumes 1/4 of Allowed Total Volume !

S0 = 2.0 kVA
cos Φ0 = 0.7
VC,max = 450 V
ΔVC/VC,max=3 %

● Electrolytic Capacitor

5 x 493μF/450 V
C = 2.46 mF
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*  Cr =   20 μF
*  Lr = 127 mH @ vLr = 400 V

● Series Resonant Circuit / Used in Rectifier Input Stage of Locomotives

■ Unacceptably Large Inductor Volume !  Electronic Inductor

fr = 120Hz

Passive Power Pulsation Buffer (2)

f
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● Coupling Capacitor & “Electronic Inductor” Processing Only Partial Power

■ Low UC,aux  Low Converter Losses
■ High Values of CK, Caux Required for Low UC,aux
■ Full-Bridge Aux. Converter Allows Lower UC,aux

Partial Active Power Pulsation Buffer  

*  Ertl  (1999)
*  Enslin (1991)
*  Pilawa (2015)

Electronic 
Inductor 
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Properties of Full-Bridge Aux. Conv.

● Coupling Capacitor & “Electronic Inductor”

■ Low UC,aux  Low Converter Losses
■ High Values of CK, Caux Required for Low UC,aux
■ Full-Bridge Aux. Converter Allows Lower UC,aux

►

Partial Active Power Pulsation Buffer  
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● Large Voltage Fluctuation Foil or Ceramic Capacitor
● Buck- or Boost-Type DC/DC Interface Converter
● Buck-Type allows Utilizing 600V Technology

■ Significantly Lower Overall Volume Compared to Electrolytic Capacitor

108 x 1.2 μF /400 V
Ck ≈ 140 μF
VCk= 23.7cm3

CeraLink

Full Active Power Pulsation Buffer *  Kyritsis (2007)
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Output Stage 
Topology / Modulation
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● Symmetric PWM Operation of Both Bridge Legs
● No Low-Frequency CM Output Voltage Component

■ DM Component of  u1 and u2 Defines Output uO
■ CM Component of  u1 and u2 Represents Degree of Freedom of the Modulation (!)

Symmetric PWM Full-Bridge AC/DC Conv. Topology 
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■ Requires Only Measurement of Current Zero Crossings, i = 0
■ Variable Switching Frequency Lowers EMI

● TCM Operation for Resonant Voltage Transition @ Turn-On/Turn-Off

ZVS of Output Stage / TCM Operation



*  Henze (1988)
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4D-Interleaving
● Interleaving of 2 Bridge Legs per Phase  - Volume / Filtering / Efficiency Optimum
● Interleaving in Space & Time – Within Output Period
● Alternate Operation of Bridge Legs @ Low Power
● Overlapping Operation @ High Power

■ Opt. Trade-Off of Conduction & Switching Losses  / Opt. Distribution of Losses
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Remark: i TCM Inverter Topology 

*  P. Jain (2015)

● TCM :   Challenging Inductor Design  Superposition of HF & LF Currents
● iTCM:   Adding LC-Circuit between Bridge Legs  Separation of LF & HF Currents  L >>LB

■ Low Output Current Ripple  Reduced Filtering Effort
■ PWM Modulation Applicable  Simple Control Strategy
■ Dedicated LF and HF Inductor Designs Possible   Improved Converter Efficiency

– TCM – iTCM 
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Selection of Switching Frequency
● Significant Reduction in EMI Filter Volume for Increasing  Sw. Frequency

■ Doubling  Sw. Fequ.  fS Cuts Filter Volume in Half
■ Upper Limit due to Digital Signal Processing Delays / Inductor & Sw. Losses – Heatsink Volume
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EMI Filter Topology (1)
● Conventional Filter Structure – DM Filtering Between the Phases

– CM Filtering Between Phases and PE

■ CM Cap. Limited by Earth Current Limit – Typ. 3.5mA for PFC Rectifiers (GLBC: 5mA then 50mA !)
■ Large CM Inductor Needed – Filter Volume Mainly Defined by CM Inductors
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EMI Filter Topology (2) 
● Filter Structure with Internal CM Capacitor Feedback 
● Filtering to DC- (and optional to DC+)

■ No Limitation of CM Capacitor C1 Due to Earth Current Limit µF Instead of nF Can be Employed
■ Allows Downsizing of CM Inductor and/or Total Filter Volume  
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Final Converter Topology

■ ZVS of All Bridge Legs @ Turn-On/Turn-Off in Whole Operating Range (4D-TCM-Interleaving) 
■ Heatsinks Connected to DC Bus / Shield to Prevent Cap. Coupling to Grounded Enclosure

● Interleaving of 2 Bridge Legs per Phase   
● Active DC-Side Buck-Type Power Pulsation Buffer
● 2-Stage EMI AC Output Filter (1)  Heat Sink

(2)  EMI Filter
(3)  Power Pulsation Buffer 
(4)  Enclosure

S
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Power Semiconductors 
Cooling

DSP/FPGA
Auxiliary

Technologies

■
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● Accurate Measurement of ZVS Losses Using Calorimetric Approach
● High Sw. Frequency for Large Ratio of Sw. and Conduction Losses

Evaluation of Power Semiconductors (1)

■ Direct Measurement of the Sum of Sw. and Conduction Losses
■ Subtraction of the Conduction Losses Known from Calibration
■ Fast Measurement  by Cth.ΔT/Δt Evaluation
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Evaluation of Power Semiconductors (2)

● Comparison of Soft-Switching Performance of ~60mΩ, 600V/650V/900V GaN, SiC, Si MOSFETs
● Measurement of Energy Loss per Switch and Switching Period

■ GaN MOSFETs Feature Highest Soft-Switching Performance
■ Similar Soft-Switching Performance Achieved with Si and SiC
■ Almost No Voltage-Dependency of Soft-Switching Losses for Si-MOSFET



30/147

Selected Power Semiconductors

● 600V IFX Normally-Off GaN GIT  - ThinPAK8x8
● 2 Parallel Transistors / Switch
● Antiparallel CREE SiC Schottky Diodes

■ CeraLink Capacitors for DC Voltage Buffering

- 1.2V typ. Gate Threshold Voltage
- 55 mΩ RDS,on @ 25°C,  120mΩ @ 150°C 
- 5Ω Internal Gate Resistance

dv/dt = 500kV/μs
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High dv/dt-Immunity Gate Drive (1)
● Low Threshold-Voltage of GaN GIT Devices  Negative Gate Voltage During Off-State Needed
● Internal Diode Characteristic  Gate Current Limitation During On-State Needed

►

– R3 Discharges Cs
During Off-State

■ Duty Cycle and Frequency Dependent Gate Voltage
■ Risk of Parasitic Turn-on Due to Switching of Complementary Switch

– Cs Enables High Gate 
Current for Fast Turn-On

● State-of-the-Art Gate Drive with Additional RC-Circuit
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High dv/dt-Immunity Gate Drive (2)

– Diode ZD1 Prevents Cs
from Complete Discharge 

During Off-State

►

● Improved Gate Drive Circuit with RC-Circuit and Added Clamping Diodes
● High Current for Fast Turn-On as Conventional Approach

■ Fixed Neg. Turn-Off Gate Voltage Independent of Duty Cycle and @ Start-Up

– Diode ZD2 Quickly 
Discharges Cs to VZD2 

@ Turn-Off
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High dv/dt-Immunity Gate Drive (3)

– Diode ZD1 Prevents Cs
from Complete Discharge 

During Off-State

►

● Improved Gate Drive Circuit with RC-Circuit and Added Clamping Diodes
● High Current for Fast Turn-On as Conventional Approach

■ Fixed Neg. Turn-Off Gate Voltage Independent of Duty Cycle and @ Start-Up
■ RC-Circuit in Neg. Rail Enables Precharge of Cs with R4

– Diode ZD2 Quickly 
Discharges Cs to VZD2 

@ Turn-Off
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Final Advanced Gate Drive
● Fixed Negative Turn-off Gate Voltage - Independent of  Sw. Frequency and Duty Cycle
● Extreme dv/dt Immunity  (500kV/μs) - Due to CM Choke at Signal Isolator Input

■ Total Prop. Delay < 30ns incl. Signal Isolator, Gate Drive, and Switch Turn-On Delay

IFX 5893LM5114
►
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High Frequency Inductors (1)

■ Dimensions  - 14.5 x 14.5 x 22mm3

- L= 10.5μH
- 2 x 8 Turns
- 24 x 80μm Airgaps 
- Core Material DMR 51 / Hengdian
- 0.61mm Thick Stacked Plates
- 20 μm Copper Foil / 4 in Parallel
- 7 μm Kapton Layer Isolation
- 20mΩ Winding Resistance / Q≈600
- Terminals in No-Leakage Flux Area

● Multi-Airgap Inductor with Multi-Layer Foil Winding Arrangement Minim. Prox. Effect
● Very High Filling Factor / Low High Frequency Losses
● Magnetically Shielded Construction Minimizing EMI
● Intellectual Property of F. Zajc / Fraza
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High Frequency Inductors (2)
● High Resonance Frequency Inductive Behavior up to High Frequencies
● Extremely Low AC-Resistance Low Conduction Losses up to High Frequencies
● High Quality Factor

■ Shielding Eliminates HF Current through the Ferrite Avoids High Core Losses 
■ Shielding Increases the Parasitic Capacitance
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■ Comparison of Temp. Increase of a Bulk 
and a Sliced Sample @ 70mT / 800kHz

● Cutting of Ferrite Introduces Mech. Stress  
● Significant Increase of the Loss Factor
● Reduction by Polishing / Etching (5 μm)

x 7 (!)

*  Knowles (1975!)

High Frequency Inductors (3)
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Thermal Management  

● Evaluation of Optimum Heatsink Temperature for Thermal Isolation of Converter

● 30°C max. Ambient Temperature
● 60°C max. Allowed Surface and Air Outlet Temperature

■ Minimum Volume Achieved w/o Thermal Isolation with Heatsink @ max. Allowed Surface Temp.
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Thermal Management  
● Overall Cooling Performance Defined by Selected Fan Type and Heatsink

– Axial Fan– Radial
Blower

– Square 
Cross Section

of Heatsink for 
Using a Fan

– Flat and
Wide 

Heatsink 
for Blower

■ Optimal Fan and Heat Sink Configuration Defined by Total Cooling System Length
■ Cooling Concept with Blower Selected Higher CSPI for Larger Mounting Surface 
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● 30mm Blowers with Axial Air Intake / Radial Outlet
● Full Optimization of the Heatsink Parameters

- 200um  Fin Thickness 
- 500um  Fin Spacing  
- 3mm Fin Height 
- 10mm Fin Length
- CSPI = 37 W/(dm3.K) 
- 1.5mm Baseplate

■ CSPIeff= 25 W/(dm3.K) Considering Heat Distribution Elements
■ Two-Side Cooling  Heatsink Temperature = 52°C @ 80W (8W by Natural Convection)

Final Thermal Management Concept (1)
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i =0 Detection

● Analyzed Methods • Shunt Current Measurement 
• Measurement of the Rds,on
• Two Antiparallel Diodes 
• Giant Magneto-Resistive Sensor
• Hall Element 

• Saturable Inductor 

Losses, No Galvanic Isolation, 
Low Signal-to-Noise Ratio (SNR), 
Size, Bandwidth, Realization 
Effort

Various Drawbacks

■ Galvanic Isolation, High SNR, 
Small Size, High Bandwidth, 
Simple Design

■ Min. Core Volume/Cross Section for Min. Core Losses   
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● Saturable Inductor – Toroidal Core    R4 x 2.4 x 1.6, EPCOS (4mm Diameter)
– Core Material    N30, EPCOS

■ Operation Tested up to 2.5MHz Switching Frequency

Digital Signal vo

Induced Voltage vi

Current i

i =0 Detection
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● Saturable Inductor – Toroidal Core    R4 x 2.4 x 1.6, EPCOS (4mm Diameter)
– Core Material    N30, EPCOS

■ Operation Tested up to 2.5MHz Switching Frequency

i =0 Detection
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Control Board  & i=0 Detection
● Fully Digital Control - Overall Control Sampling Frequency of  25kHz
● TI  DSC TMS320F28335 / 150MHz / 179-pin BGA / 12mm x 12mm
● Lattice FPGA LFXP2-5E / 200MHz / 86-pin BGA / 8mm x 8mm

■ i=0 Detection of TCM Currents Using  R4/N30 Saturable Inductors 
■ Galv. Isolated / Operates up to 2.5MHz  Switching Frequency / <10ns Delay

- TCM Current / Induced Voltage / Comparator Output
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Active Power Pulsation Buffer Capacitor 
● Electrolytic Capacitors – Limited by Lifetime-Relevant Current Limit  
● 2.2μF, 450 V Class II X6S MLCC – Highest Energy Density but Cap. Decreases with DC Bias

● Novel 1 μF /2 μF, 650 V CeraLinkTM Cap. (PLZT Ceramic) Features High Cap. @ High DC Bias   
● Allows 125°C Operating Temp.  &  Shows Very Low ESR @ High Frequencies  

■ CeraLink Resonance Frequency at Several MHz 
■ Small-Signal ESR of CeraLink in MHz Frequ. Range Sign. Lower Comp. to X6S MLCC

Top =25°C

Top =25°C
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Final Active Power Pulsation Buffer
● High Energy Density 2nd Gen. 400VDC CeraLink Capacitors  Utilized as Energy Storage
● Highly Non-Linear Behavior  Optimal DC Bias Voltage of 280VDC
● Losses of 6W @ 2kVA Output Power

■ Effective Large Signal Capacitance of C ≈160μF

- 108 x 1.2μF /400 V
- 23.7cm3 Capacitor Volume
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Active Power Pulsation Buffer Control (1)
● New Cascaded Control Structure

■ P-Type Resonant Controller
■ Feedforward of Output Power Fluctuation
■ Underlying Input Current (ii) / DC Link Voltage (uC) Control



48/147

Active Power Pulsation Buffer Control (2)

Inverter AC Output
Voltage & Current

Current Reference
for Power Decoupling

● Multiple Controller Outputs Combined in a Single Current Reference

■ Regulation of Mean Buffer Voltage (Bias Voltage)
■ Tight Control of Inverter DC Link Voltage also During Transients
■ Active Power Decoupling – Rejection of 2 x Line-Frequ. Ripple in Inverter DC Input Voltage

Current Ref. for 
Bias Voltage Cntrl

Current Ref. for Inverter
DC Input Voltage Cntrl

Total PPB Inductor 
Current Reference
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Auxiliary Supply   
● Constant 50% Duty Cycle Half Bridge w. Diode Rect. or Synchr. Rectification (SR) 
● ZVS  Compact / Efficient / Low EMI

■ Only Marginal Eff. Gain with Synchr. Rectification for Output Power Levels > 5W

@ Vin = 380V, Pout = 10W
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Auxiliary Supply  &  Measurement Circuits
● Constant 50% Duty Cycle Half Bridge with Synchr. Rectification 
● ZVS  Compact / Efficient / Low EMI (fs=465 kHz)

■ 19mm x 24mm x 4.5mm  (2cm3 Volume )

- 10W   Max. Output Power   
- 390V…450V Input Operating Range 
- 13.8V…16.8V DC Output in Full Inp. Voltage / Output Power Range
- 90%  Efficiency @ Pmax
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3D-CAD Construction
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Mechanical Construction (1)

● Built to the Power Density Limit @ η= 95% / Tc < 60°C 

■ 88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3 ) 8.2 kW/dm3

Top Side Heatsink
Power 

Pulsation 
Buffer 

Cap.

Power 
Pulsation 

Buffer 
Inductor
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Mechanical Construction (2)

■ 88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3 ) 8.2 kW/dm3

i=0
Detector

Power Pulsation Buffer 
Bridge Leg

Auxiliary 
Supply & 
Measurement
Board

● Built to the Power Density Limit @ η= 95% / Tc < 60°C 
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Mechanical Construction (3)

■ 88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3 ) 8.2 kW/dm3

Bottom Side
Heat Sink

DSP/FPGA
Board Gate Driver

Board

● Built to the Power Density Limit @ η= 95% / Tc < 60°C 
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Mechanical Construction (4)

■ 88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3 ) 8.2 kW/dm3

Output Stage 
Inductor Cooling Output Stage 

Transistor Heat 
Spreading

Output Stage
Power Board

Output Stage 
Inductors

● Built to the Power Density Limit @ η= 95% / Tc < 60°C 
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Mechanical Construction (5)

■ 88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3 ) 8.2 kW/dm3

Two-Stage
EMI Filter

CM Inductor

DM Inductor

● Built to the Power Density Limit @ η= 95% / Tc < 60°C 
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Hardware
Output Voltage/Input Current Quality

Thermal Behavior
Efficiency 

EMI

Experimental Results
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● System Employing Active Ceralink 1-Φ Power Pulsation Buffer  

Little Box 1.0  - Prototype

- 8.2 kW/dm3

- 8.9cm x 8.8cm x 3.1cm
- 96,3%  Efficiency @ 2kW
- Tc=58°C @ 2kW

- ΔuDC,pp   = 1.1%
- ΔiDC,pp     = 2.8%
- THD+NU = 2.6%
- THD+NI = 1.9%

135 W/in3

■ Compliant to All Original Specifications (!)

- No Low-Frequ. CM Output Voltage Component
- No Overstressing of Components
- All  Own IP / Patents
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Little Box 1.0  - Prototype

- 8.2 kW/dm3

- 8.9cm x 8.8cm x 3.1cm
- 96,3%  Efficiency @ 2kW
- Tc=58°C @ 2kW

- ΔuDC=  1.1%
- ΔiDC= 2.8%
- THD+NU = 2.6%
- THD+NI = 1.9%

■ Compliant to All Original Specifications (!)

- No Low-Frequ. CM Output Voltage Component
- No Overstressing of Components
- All  Own IP / Patents

135 W/in3

● System Employing Active Ceralink 1-Φ Power Pulsation Buffer  
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■ Compliant to All Specifications

Output Current  (10 A/div)
Inductor Current  Bridge Leg 1-1  (10A/div)
Inductor Current  Bridge Leg 1-2  (10A/div)

DC Link Voltage (AC-Coupl., 2V/div)
Buffer Cap. Voltage  (20 V/div)
Buffer Cap. Current  (10 A/div)

Output Voltage  (200V/div)

- Ohmic Load / 2kW

Little Box 1.0  Measurement Results (1)
● System Employing Active Ceralink 1-Φ Power Pulsation Buffer  
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■ Start-up and Shut-Down (No Load Operation)

Buffer Cap Voltage  (50 V/div)
Output Voltage (50V/div)

Buffer Cap. Current   (5A/div)
Ind. Curr. Bridge Leg 1-1  (5 A/div)

Little Box 1.0  Measurement Results (2)

300 V

225 V

5 A

5 A

● System Employing Active Ceralink 1-Φ Power Pulsation Buffer  
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■ Stationary Operation @ 2kW Output Power 

Buffer Cap. Voltage  (50 V/div)
Buffer Cap. Current  (10 A/div)

Conv. Inp. Curr.  (AC Coupl. 500 mA/div)
DC Link Voltage  (AC Coupl. 1 V/div)

Little Box 1.0  Measurement Results (3)
● System Employing Active Ceralink 1-Φ Power Pulsation Buffer  
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■ Transient Response for Load-Step of  0 Watt  700 Watt

DC Link Voltage (50 V/div)
Buffer Cap. Voltage (50 V/div)
Buffer Cap. Current (10 A/div)
Conv. Input Current  (2 A/div)

Little Box 1.0  Measurement Results (4)

● System Employing Active Ceralink 1-Φ Power Pulsation Buffer  
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■ Transient Response for Load-Step of 700 Watt  0 Watt

Little Box 1.0  Measurement Results (5)

DC Link Voltage (20 V/div)
Buffer Cap. Voltage (20 V/div)

Buffer Cap. Current (5A/div)
Conv. Input Current (1A/div)

● System Employing Active Ceralink 1-Φ Power Pulsation Buffer  
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■ Compliant to All Specifications

Little Box 1.0  Measurement Results (6)
● System Employing Active Ceralink 1-Φ Power Pulsation Buffer  

ηw=95.07% Weighted Efficiency
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● CSPI = 37 W/(dm3.K)
● 30mm Blowers with Axial Air Intake / Radial Outlet
● Full Optimization of the Heatsink Parameters

■ CSPIeff= 25 W/(dm3.K) Considering Heat Distribution Elements
■ Two-Side Cooling  Heatsink Temperature = 52°C @ 2kW Output Power (74 W Loss)

Little Box 1.0  - Measurement Results (6)
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        ■ Compliant to All Specifications

Little Box 1.0  Measurement Results (7)
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Little Box 1.0  Volume and Loss Distribution

■ Large Heatsink (incl. Heat Conduction Layers)
■ Large Losses in Power Fluctuation Buffer Capacitor (!)
■ TCM Causes Relatively High Conduction & Switching Losses @ Low Power
■ Relatively Low Switching Frequency @ High Power – Determines EMI Filter Volume 

● Volume Distribution (240cm3) ● Loss Distribution (75W)
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■ Other Finalists 
Topologies 

Switching Frequencies
Power Density / Efficiency Comparison

Detailed Descriptions: 
www.LittleBoxChallenge.com
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Finalists - Performance Overview  
● 18 Finalists (3 No-Shows)    
● 7 Groups of Consultants / 7 Companies / 4 Universities

■ 70…300 W/in3

■ 35 kHz … 500kHz… 1 MHz (up to 1MHz: 3 Teams)
■ Full-Bridge or  DC/ AC  Buck Converter + Unfolder 
■ Mostly Buck-Type Active Power Pulsation Filters (Ceramic Caps of Electrolytic Caps)
■ GaN (11 Teams) / SiC (2 Teams) / Si (2 Teams)

x 2

x 5 

IV III II 

Note: Numbering of 
Teams is Arbitrary.  .
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Finalists - Performance Overview  
● 18 Finalists (3 No-Shows)    
● 7 Groups of Consultants / 7 Companies / 4 Universities

(1) Virginia Tech
(2) Schneider Electric
(3) EPRI (Univ. of Tennessee)
(4) Venderbosch
(5) Energy Layer

(6) ETH Zurich
(7) Rompower
(8) Tommasi-Bailly
(9) Red Electric Devils
(10) AHED

(11) FH IISB
(12) Univ. of Illinois
(13) AMR
(14) OKE
(15) Cambridge Magnetics

x 2

x 5 

IV III II 

Note: Numbering of 
Teams is Arbitrary.  .
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■ 70…300 W/in3

■ 35 kHz … 500kHz… 1 MHz (up to 1MHz: 3 Teams)
■ Full-Bridge or  DC/ AC  Buck Converter + Unfolder 
■ Mostly Buck-Type Active Power Pulsation Filters (Ceramic Caps of Electrolytic Caps)
■ GaN (11 Teams) / SiC (2 Teams) / Si (2 Teams)

● 18 Finalists (3 No-Shows)    
● 7 Groups of Consultants / 7 Companies / 4 Universities

Finalists - Performance Overview  

@ Rated Power

(1) Virginia Tech
(2) Schneider Electric
(3) EPRI (Univ. of Tennessee)
(4) Venderbosch
(5) Energy Layer
(6) ETH Zurich
(7) Rompower
(8) Tommasi-Bailly
(9) Red Electric Devils
(10) AHED
(11) FH IISB
(12) Univ. of Illinois
(13) AMR

Note: Numbering of 
Teams is Arbitrary.  .
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Red Electric Devils    
● No Low-Frequ. Common-Mode Output Voltage Comp.  ignd < 5mA (!)
● Buck-Type DC-Side Active Power Pulsation Filter (MLCC Cap. <150μF, 200Vpp)

■ 2 x Interleaved Bridge Legs for Each Half-Bridge   
■ DM Inductors  (L1/L2 and L4/L5) and  Series Connected CM Inductor (L7/L8)
■ Single Open-Loop Hall Sensor Outp. Curr. Measurement + Observer-Based Curr. Reconstruction

►

145 W/in3
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■ DSP & CPLD Control
■ GaN Systems @ ZVS (35kHz … 240kHz) 
■ Shielded Multi-Stage EMI Filter @ DC Input & AC Output

►►

Red Electric Devils   
● No Low-Frequ. Common-Mode Output Voltage Comp.  ignd < 5mA (!)
● Buck-Type DC-Side Active Power Pulsation Filter (MLCC Cap. <150μF, 200Vpp)

145 W/in3



75/147

● 3D Sandwich Assembly
● Single Ultra-Thin PCB – Power / Control / Aux.
● Honeycomb Cu-Heatsink & Al Oxide Inductor Cooling
● MLCC Storage Caps Rows Utilized as Heatsink “Fins” (1mm Gaps)

►
►

■ 145 W/in3 

■ 95.4 % CEC Efficiency
■ ignd < 5mA (!)
■ CSPI = 22.6 W/(dm3.K) - Heatsink & Axial Fan 

Red Electric Devils    145 W/in3
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Tc=51°C

● 3D Sandwich Assembly
● Single Ultra-Thin PCB – Power / Control / Aux.
● Honeycomb Cu-Heatsink & Al Oxide Inductor Cooling
● MMLC Storage Caps Rows Utilized as Heatsink “Fins” (1mm Gaps)

■ 145 W/in3 

■ 95.4 % CEC Efficiency
■ ignd < 5mA (!)
■ CSPI = 22.6 W/(dm3.K) - Heatsink & Axial Fan 

Red Electric Devils    145 W/in3
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Global Team

● High Efficiency & Robustness Preferred  Larger Size
● DC-Side Series (!) Active Power Puls. Filter  Compensates 120Hz DC Link Volt. Variation

■ CDC = 400uF / 450V
■ 1/5 Volume  Comp. to only Bulk Capacitors
■ Vdcinput Ripple <10% (<30Vpp) @ Full Load  

100 W/in3

■ Nanocrystalline CM Choke 
■ DC-Side & AC-Side EMI/RF Filter
■ Q5…8 – TO247 SiC MOSFETs, 45kHz of Both Legs
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Global Team

● High Efficiency & Robustness Preferred  Larger Size
● PWM of Both Legs of Output Full-Bridge       No Low. Frequ. CM Output Voltage Comp.
● DC-Side Series (!) Active Power Puls. Filter  Compensates 120Hz DC Link Volt. Variation

100 W/in3

■ CDC_RF=2 x 1500uF/25V, UDC_RF=15V
■ Only  52VA Processed Ripple Filter Power @ Rated Output (!)
■ Q1/Q2 & Q3/Q4 - Rds,on= 2.2mΩ MOSFETs (40V, 100A), w/o Heatsink, fS= 130kHz of Both Legs
■ TI Piccolo DSP Control of Entire System / Open Loop Control of 120Hz Comp. Filter

■ ignd < 25mA (!)
■ 97.2 % CEC Efficiency
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Prof. Pilawa-Podgurski & Team

● 7-Level Flying Capacitor Converter 
● Series-Stacked Active Power Buffer

■ 216 W/in3 

■ 100V GaN
■ Integrated Switching Cell 
■ 720kHz Eff. Sw. Frequ. (7 x 120kHz)
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Prof. Pilawa-Podgurski & Team

● 7-Level Flying Capacitor Converter 
● Series-Stacked Active Power Buffer

■ 216 W/in3 

■ 100V GaN
■ Integrated Switching Cell 
■ 720kHz Eff. Sw. Frequ. (7 x 120kHz)

Y. Lei, C. Barth, S. Qin, W.-C. Liu, I. Moon, A. Stillwell, D. Chou, T. Foulkes, 
Z. Ye, Z. Liao and R.C.N. Pilawa-Podgurski “A 2 kW, Single-Phase, 7-Level, 
GaN Inverter with an Active Energy Buffer Achieving 216 W/in^3 Power 
Density and 97.6% Peak Efficiency”, IEEE Applied Power Electronics 
Conference, Long Beach, CA, 2016
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■
Competition
Conclusions

Key Technologies 
Power Density Limit
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Little Box Challenge Summary 

■ 200W/in3 (12kW/dm3) Achievable

● fs < 150kHz (Constant)  
● SiC (Not GaN)
● ZVS (Partial, i.e. Around i=0)   
● Full-Bridge Output Stage 
● Active Power Pulsation Buffer (Buck-Type, X6S Cap.)
● Conv. EMI Filter Structure
● Multi-Airgap Litz Wire Inductors
● DSP Only (No FPGA)

■ Overall  

● Engineering “Jewels”
● No (Fundamentally) New Approach / Topology
● Passives & 3D-Packaging are Finally Defining the Power Density
● Careful Heat Management (Adv. Heat Sink, Heat Distrib., 2-Side Integr. Cooling, etc.)
● Careful Mechanical Design (3D-CAD, Single PCB, Avoid Connectors, etc.)
● Clear Power Density / Efficiency Trade-Off

100+ Teams
3 Members / Team, 1 Year

300 Man-Years
3300 USD / Man-Year
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Adv. Modulation / Circuit Concepts
Measurement of Buffer Cap. Performance
Measurement of GaN ZVS & On-State Losses
Measurement of Multi-Airgap Core Losses

Optimization & 
Advanced Analysis
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● TCM   ZVS but Large Current Ripple & Wide Frequency Variation
● PWM  Const. Sw. Frequency but Hard Sw. @ Current Maximum  

● Opt. Combination of TCM & PWM  Optim. Frequ. Variation Over Output Period
● Exp. Determination of Loss-Opt. Sw. Frequency fOFM Considering DC/DC Conv. Stage

■ DC/AC Properties Calculated Assuming Local DC/DC Operation
■ Loss-Optimal Local Sw. Frequ. fOFM for Given VDC & Local iO & vCO

CO

DC

Eff. Optimal fS-Modulation



DC
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● TCM   ZVS but Large Current Ripple & Wide Frequency Variation
● PWM  Const. Sw. Frequency but Hard Sw. @ Current Maximum  

● Opt. Combination of TCM & PWM  Optim. Frequ. Variation Over Output Period
● Exp. Determination of Loss-Opt. Sw. Frequency fOFM Considering DC/DC Conv. Stage

■ DC/AC Properties Calculated Assuming Local DC/DC Operation
■ Loss-Optimal Local Sw. Frequ. fOFM for Given VDC & Local iO & vCO

CO

DC

0

Eff. Optimal fS-Modulation


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● Resulting Time-Dependency of Optimal Sw. Frequ. & Power Loss  
● Comparison with 140 kHz Const. Sw. Frequency PWM 

Eff. Optimal fS-Modulation

■ Higher Average Switching Frequency fs @ Light Loads
■ Reduction of fs @ Mains Voltage Peak (for Ohmic Load) for Sustaining ZVS
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● Optimal Inductor Current Envelope for Diff. Output Power Levels 

Eff. Optimal fS-Modulation

■ Higher Average Switching Frequency fs @ Light Loads
■ Reduction of fs @ Mains Voltage Peak (for Ohmic Load) for Sustaining ZVS
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Buffer Capacitor Losses / Cap. 
Power Semicond. ZVS & On-State Losses 
Ferrite Multi-Airgap Core Losses

Measurements
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■ PPB Design Optimiz. Requires Large-Signal Capacitance and Power Loss Data in All Operating Points

CeraLink  vs.  X6S
● Electrolytic Capacitors                    Limited by Lifetime Current Limit  
● X6S MLCC, 2.2μF, 450 V Class II     Highest Energy Density but Low Cap. @ High DC Bias
● CeraLinkTM,1μF /2μF, 650 V            PLZT Ceramic, High Cap. @ High DC Bias   
● CeraLinkTM Allows Op. @ 125°C      Very Low ESR @ High Frequencies  
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■ Experimental Setup for Generation of DC Bias & Superimposed AC Voltage

CeraLink  vs.  X6S
● Electrolytic Capacitors                    Limited by Lifetime Current Limit  
● X6S MLCC, 2.2μF, 450 V Class II     Highest Energy Density but Low Cap. @ High DC Bias
● CeraLinkTM,1μF /2μF, 650 V            PLZT Ceramic, High Cap. @ High DC Bias   
● CeraLinkTM Allows Op. @ 125°C      Very Low ESR @ High Frequencies  
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CeraLink  vs.  X6S  

EPCOS/TDK 
CeraLinkTM 2µF, 600V

TDK Class II 
X6S MLCC 2.2µF, 450V

■ PPB Design Optimiz. Requires Large-Signal Capacitance and Power Loss Data in All Operating Points

►

►

● Variation ofDC Bias and 
Superimposed AC Voltage
@ 60°C Operating Temp.

Designed Op. Point
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Measurement of 
GaN ZVS  &  On-State Losses  



93/147

● Little-Box 1.0 Experiments Indicated Residual ZVS Losses of GaN Power Transistors
● Losses Cannot be Explained by Remaining iD, uDS Overlap / Non-Ideal Gate Drive etc.

Analysis of GaN Power Transistor ZVS Losses

■ Potentially Large Measurement Error for Electric Double-Pulse Sw. Loss Measurement 
■ Accuracy only Guaranteed by Direct Loss Measurement  Calorimetric Approach 


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● Little-Box 1.0 Experiments Indicated Residual ZVS Losses of GaN Power Transistors   
● Losses Cannot be Explained by Remaining iD, uDS Overlap / Non-Ideal Gate Drive

Analysis of GaN Power Transistor ZVS Losses

■ Potentially Large Measurement Error for  Electrical Double-Pulse Sw. Loss Measurement 
■ Accuracy only Guaranteed by Direct Loss Measurement  Calorimetric Approach 
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● “Inductor in the Box”      Accurate DC Inp. & Outp. Power Measurement, Subtr. on Ind. Losses
● “Bridge Leg in the Box”  Direct Measurement of the Sum of Cond. & Sw. Losses

Calorimetric Measurement of ZVS Losses

■ “Bridge Leg in the Box”  &  Fast Measurement  by Cth.ΔT/Δt Evaluation
■ DC/DC Operation @ High Sw. Frequency for Large Ratio of Sw. and Conduction Losses
■ Subtraction of the Cond. Losses from Datasheet or Dir. Measurement
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■ Isolated Temp. Measurement with Optical Fiber (GaAs Crystal) Instead of Thermocouple
■ Calibration by On-State of T1 and T2 & DC Current Operation / DC Power Loss Measurement

Calorimetric Measurement of ZVS Losses
● “Bridge Leg in the Box”  &  Fast Measurement  by Cth.ΔT/Δt Evaluation
● Subtraction of the Cond. Losses from Datasheet or Direct Measurement
● DC/DC Operation @ High Sw. Frequency for Large Ratio of Sw. and Conduction Losses
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● Calibration by  On-State of T1 and T2 & DC Current Operation / DC Power Loss Measurement  
● Identification of  Thermal Cap. Cth and  Thermal Resistance Rth

Calibration of “Bridge Leg in the Box” Setup 

■ DC Power Loss Measurement Ensures High Accuracy
■ Thermal Behavior for Short Measurement Times Mainly Determined by Cth



98/147

● Clamping Diode for Limiting the On-State Voltage Measurement (OVM) to  2V  
● Subtraction of the SiC Diode Forward Voltage Drop for High Accuracy  (2mV) 

Accurate On-State Voltage Measurement  

■ Only 50ns Blanking Time – OVM Circuit Can also be Used for Dynamic RDS,on Measurement
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● Clamping Diode for Limiting the On-State Voltage Measurement (OVM) to  2V  
● Subtraction of the SiC Diode Forward Voltage Drop for High Accuracy  (2mV) 

Accurate On-State Voltage Measurement  

■ Only 50ns Blanking Time – OVM Circuit Can also be Used for Dynamic RDS,on Measurement
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■ Switching w/ and w/o 100pF Parallel Low-Loss SMD Multilayer Ceramic Chip Capacitor (450V)
■ dv/dt Measured in 10%…90% of Turn-off Voltage, Behavior @ at Low dv/dt Still to be Clarified 

● Measurement of Energy Loss per Switch and Switching Period
● GaN Enhancement Mode Power Transistor (600V, 70mΩ@25°C) 
● Antiparallel CREE SiC Schottky Freewheeling Diode  (600V, 3.3A)

ZVS Loss Measurement Results (1)
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● Analysis of a Permanently-Off Half-Bridge Excited with Switch Node Voltage 
● Measurement of Energy Loss per Switch and Switching Period

■ Heating Indicates Losses in the Permanently-Off Devices 
■ Losses Comparable to the Losses of the Switching Half Bridge for Same dv/dt

ZVS Loss Measurement Results (2)
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● Analysis of a Permanently-Off Half-Bridge Excited with Switch Node Voltage 
● Measurement of Energy Loss per Switch and Switching Period

■ Heating Indicates Losses in the Permanently-Off Devices 
■ Losses Comparable to the Losses of the Switching Half Bridge for Same dv/dt

ZVS Loss Measurement Results (2)
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Measurement of 
Ferrite Multi-Airgap Core

“Mystery” Losses  
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Multi-Airgap Inductor
● Ferrite E-Core with 50 x 0.3mm Thick Stacked Plates as Center Post
● Power Loss of TCM Inductors Sign. Higher than Expected 

■ Analysis by Shows Up to Factor 10 High Core Losses (!) “Mystery” Losses
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● 1964 - E. Stern & D. Temme     Machining / Compressive Stress 
Changes BH-Loop of NiZn Ferrite

– Machining Increases Core Losses

● 1974 - J. Knowles, E. Snelling    Compressive Stress Incr. 
Loss Fact., Reduces μ, 

● 1984 - E. Klokholm & H. Wolfe   40 μm Magn. Dead Surface 
Layer of MnZn Ferrite

● 1987 - S. Chandrasekar et al.      Lapping Causes Greater Residual Stress than Grinding 
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Ferrite Machining Process
● Cutting of Thin Plates from Ferrite Rod with Diamond Saw
● Abrasive Machining Introduces Mech. Stress into Surface

■ Ferrite Properties in Surface Altered  Increase of Loss Factor

Diamond Blade
5000rpm

Machined
Core

SEM Image of 
Machined  MnZn 

Ferrite (3F4)
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● Focused Ion Beam (FIB) Cut into Ferrite (3F4) Sample & Scanning Electron Microscopy (SEM)  
● Polishing of Surface with Grain Sizes  2400 SiC  4000 SiC  Colloidal Silica SiO2

■ Polishing Removes 500μm  of Surface   Bulk Material Exposed
■ Bulk Ferrite also Exhibits Cavities  Result of (Imperfect) Sintering Process

Subsurface Condition of Machined Ferrite
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Thermometric Surface Loss Measurement  
● Impression of Homogeneous Sin. Flux Density of Desired Ampl. / Frequ.
● Cap. Series Comp. for Lowering Impedance @ High Frequencies
● Measurement of Transient Temp. Change Calcul. of Losses 

■ Temperature Rise of ΔT= 1.5°…5°C Sufficient (Accuracy ±0.2°C), Fast Measurement (!)

Sample A
Sample B
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Test Fixture / Magnetic Circuit
● E-Type Fixture for Swift Installation of Diff. Samples (7mm x 6.4mm x 21.6mm)
● FEM Optimiz. of Dimensions – Large Core Cross Section / Tapered Outer Limbs

■ Therm. Insul.  & Airgap Lattice Ensure Low Heat Flux to Ambient  
■ Measurement of Temp. Increase Over Time  Allows to Verify Homog. Flux Density in Sample

Sense
Winding

Airgap
Lattice
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Identification of Therm. Parameters Rth, Cth

● DC Current Impressed in Ferrite, Voltage Control for Const. Power Dissipation as RDC=RDC(Temp.)
● Temperature Response of Sample Recorded (FLIR A655sc W with Close-Up Lens) 
● Emissivity of Ferrite Determined Using Heat Plate (ε= 0.86)

■ Rth = 37.8 K/W Can be Neglected 
■ Obtained Parameter Cth=3.83J/K Close to Cth Calc. Based on Vendor Data (Cth = 3.6J/K)
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Surface Loss Measurement Principle
● Hypothesis:  Core Loss Density in Surface Layer Higher than in Bulk
● Thinner Plates  Higher Average Losses / Faster Temp. Rise
● Stacking of Plates Does NOT Affect Temperature Rise (!)

■ Surface Loss Density  Can be Directly Calc. from Mat. Parameters / Geometry  & ΔtA and ΔtB

dA

dA
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Temperature Rise Recording
● Comparison of Solid 3F4 Sample (1 x 21.6mm) and Stacked Plates Sample (7 x 3mm) 
● Sinusoidal Excitation 100mT / 400kHz

■ Thermal Image shown 25 Seconds After Turn-On of Magnetic Excitation

3F4 Solid Sample / 21.6mm

7 Plates 3F4 / 3mm
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Measurement Results – Bulk Losses

● Comparison of Measurement Results and Datasheet Values, 3F4 @ 25°C
● Measurement Error Approx. ±10% (Worst Case)

■ Good Agreement with Datasheet Values / Vendor Steinmetz Parameters 
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■ Comp. of Steinmetz Parameters of Surface Losses & Bulk Losses BS > B, aS < a

Measurement Results – Surface Losses

● Measurement Error Approx. ±25% (Worst Case)
● Error Determined by Meas. Time &  Temp. Reading Accuracy 
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“Critical Thickness” of Ferrite Plates
● “Critical Thickness” Reached for Equal Losses in Bulk & Surface 
● Critical Plate Thickness is INDEPENDENT of Cross Section (!)

■ Dependence on Flux Density Ampl. & Frequency !
■ Dependence on Material / Machining Process / Power Processing Treatment

3F4 Critical Thickness 
for 125mT / 400kHz
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Little Box 2.0
DC/│AC│Converter + Unfolder
PWM vs. TCM Optimization
ηρ-Pareto Limits 
Hardware Prototype
Experimental Results 

240 W/in3
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Little Box 2.0 – New Converter Topology (1)

■ vC0 Easy to Generate/Control
■ Higher Conduction Losses Due to FB-Unfolder 
■ Lower CM-Noise (DC & n x 120Hz-Comp.)
■ CCM=700nF Allowed for 50mA Gnd Current

■ vAC1 More Difficult to Generate/Control
■ Lower Conduction Losses
■ Higher CM-Noise (DC and n x 120Hz-Comp.)
■ CCM=150nF Allowed for 50mA Gnd Current

● Alternative Converter Topology  Only Single HF Bridge Leg + 60Hz-Unfolder
● DC/│AC│- Buck Converter + Full-Bridge Unfolder  OR HF Half-Bridge & Half-Bridge Unfolder
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Little Box 2.0 – New Converter Topology (2)
● Alternative Converter Topology - DC/│AC│- Buck Converter + Unfolder
● 60Hz-Unfolder (Temporary PWM for Ensuring Continuous Current Control)
● TCM  or PWM of  DC/│AC│- Buck-Converter

■ Full Optimization of All Converter Options for Real Switches / X6S Power Pulsation Buffer
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Little Box 2.0 – Multi-Objective Optimization 
● DC/│AC│- Buck Converter (Single Bridge Leg) + Unfolder & PWM Shows Best Performance
● Full-Bridge Would Employ 2 Switching Bridge Legs - Larger Volume & Losses
● Interleaving Not Advantageous – Lower Heatsink Vol. but Larger Total Vol. of Switches and Inductors

■ ρ= 250W/in3 (15kW/dm3) @ η= 98% Efficiency Achievable for Full Optimization




(s)      Soft-Switching (ZVS) 
(p-h)  Partial Hard Switching 
(h) Hard-Switching



120/147

Little Box 2.0 – Control Structure

■ Each Stage (Buck & Unfolder) Controlled with Cascaded Current and Voltage Loop
■ Without Switching of Unfolder Control Like for Conventional Boost PFC Rectifier
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3D-CAD Construction
of the Final System

240 W/in3
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Little Box 2.0 – Final Mechanical Construction (1)

■ 60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 ) 14.8 kW/dm3 (243 W/in3)

PPB Capacitor
Output Filter
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Little Box 2.0 – Final Mechanical Construction (2)

■ 60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 ) 14.8 kW/dm3 (243 W/in3)

PPB Capacitor

Heat Sink + Fans

Output Filter
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Little Box 2.0 – Final Mechanical Construction (3)

■ 60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 ) 14.8 kW/dm3 (243 W/in3)

PPB Capacitor

Inductors
(Buck-Stage &
Unfolder)

Heat Sink + Fans

Output Filter



125/147

PPB Capacitor

Heat Sink + Fans

Power Board

■ 60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 ) 14.8 kW/dm3 (243 W/in3)

Little Box 2.0 – Final Mechanical Construction (4)

Inductors
(Buck-Stage &
Unfolder)

Output Filter
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Control Board

Little Box 2.0 – Final Mechanical Construction (5)

PPB Capacitor

Heat Sink + Fans

Power Board

■ 60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 ) 14.8 kW/dm3 (243 W/in3)

Inductors
(Buck-Stage &
Unfolder)

Output Filter
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Experimental Results
Hardware Prototype

Output Voltage/Input Current Quality
Steady-State / Step-Response Waveforms

Efficiency
EMI Measurements

Operating Temperature
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Control Board

Little Box 2.0 -- Demonstrator

Heat Sink + Fans

Power Board

■ 60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 ) 14.8 kW/dm3 (243 W/in3)

Inductors
(Buck-Stage &
Unfolder)

Output Filter

85/92

240 W/in3

PPB Capacitor
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Control Board

PPB Capacitor

Heat Sink + Fans

Power Board

■ 60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 ) 14.8 kW/dm3 (243 W/in3)

Inductors
(Buck-Stage &
Unfolder)

PPB Capacitor

86/92

Little Box 2.0 -- Demonstrator 240 W/in3
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Analysis of DC/│AC│-Buck Converter & Unfolder

● Voltage Zero Crossing Behavior With (Right) & Without (Left) Switching of Unfolder

■ Output Voltage & Current Fully Controlled Around Voltage Zero Crossings 
■ Slope of Buck Conv. Outp. Curr. can be Decreased – Adv. for React. Loads (No Step-Change of DC Curr.)

Output Voltage  (200V/div)
Output Current  (10 A/div)                 
Buck Inductor Current  (10A/div)        
Unfolder Output Voltage (200V/div)
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■ Capacitive Load

Little Box 2.0 – Measured Waveforms (1)

● DC/|AC| Buck-Stage Output Voltage & Inductor Current

■ Inductive Load■ Resistive Load
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Little Box 2.0 – Measured Waveforms (2)

● Step-Response Waveforms for 600 W Load Step

■ Good Performance of Output Voltage Controller

AC current (5 A/div)
AC voltage  (200 V/div)

Buck Inductor Current  (10 A/div)
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Little Box 2.0 – Measured Waveforms (3)

● Step-Response Waveforms for 600 W Load Step
● DC-Side and PPB Waveforms

■ Transients Settle Within 50 ms

Buffer Voltage (100V/div)
Buffer Inductor Current (10 A/div)
DC-Link Voltage (AC Coupl. 5V/div)

Conv. Input Current (2A/div)
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Little Box 2.0 – Efficiency Measurements (1)

● Performance of LB 2.0 with X6S Power Pulsation Buffer
● 140 kHz PWM
● High Speed Fan for Improved Cooling

■ 97.4 Peak Efficiency @ 2kW
■ 96.12 % CEC Efficiency with Conv. Fans 
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Little Box 2.0 – Efficiency Measurements (2)

● Performance of X6S Power Pulsation Buffer
● Performance of Inverter with Electrolytic Capacitors

■ 99.1% Peak Efficiency of PPB
■ ≈98% Peak Efficiency of Inverter
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Little Box 2.0 – Thermal Management

● Steady-State Operating Temperature @ 2 kW
● CSPI = 53 W/(dm3.K)

■ 60°C - 65°C of Exposed Surfaces
■ 85°C Winding Temperature
■ CSPI = 37.5 W/(dm3.K) Including Air Duct
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■ Compliant to FCC Part 15 B EMI Limits
■ Compliant to Revised 50 mA Ground Current Limit

Little Box 2.0 – EMI Measurements

IPE,rms ≈ 6 mA
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Little Box Comparison - Volume and Loss Distribution

Tot. Volume: 240.5 cm3 Tot. Losses: 74.4 W

Tot. Volume: 137.9 cm3 Tot. Losses: 56.4 W
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■ 70…300 W/in3

■ 35 kHz … 500kHz… 1 MHz (up to 1MHz: 3 Teams)
■ Full-Bridge or  DC/ AC  Buck Converter + Unfolder 
■ Mostly Buck-Type Active Power Pulsation Filters (Ceramic Caps of Electrolytic Caps)
■ GaN (11 Teams) / SiC (2 Teams) / Si (2 Teams)

● 18 Finalists (3 No-Shows)    
● 7 Groups of Consultants / 7 Companies / 4 Universities

Finalists - Performance Overview Revisited 

@ Rated Power


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Source: whiskeybehavior.info

Overall
Summary
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Performance Limits / Future Requirements  

● New Integr. Control Circuits and i=0 Detection for Sw. Frequency >1MHz   
● Integrated Gate Drivers & Switching Cells
● High Frequency Low Loss Magnetic Materials
● High Bandwidth Low-Volume Current Sensors
● Low Loss Ceramic Capacitors Tolerating Large AC Ripple
● Passives w. Integr. Heat Management and Sensors
● 3D Packaging 

● New U-I-Probes Required for Ultra-Compact Conv. R&D
● Specific Systems for Testing  Devices Equipped with Integr. Measurement Functions
● Convergence of  Sim. & Measurem. Tools  Next Gen. Oscilloscope
● New Multi-Obj. Multi-Domain Simulation/Optim. Tools 

121/124

● 220…250W/in3 for Two-Level Bridge Leg + Unfolder 
● 250…300W/in3 for Highly Integrated Multi-Level Approach 
● Isol. Distance Requirements Difficult to Fulfill
● Fulfilling Industrial Inp. Overvoltage Requirem. would Signific. Reduce Power Density

● Low Frequency (20kHz…120kHz) SiC  vs.  HF (200kHz…1.2MHz) GaN
● Multi-Cell Concepts for LV Si (or GaN) vs. Two-Level SiC (or GaN)
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References
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Other Finalists
Non-Finalists
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