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Abstract—Linear-rotary actuators (LiRAs) are electric machines
that can perform linear and rotary movements. They are used
in many different applications, for example, for pick-and-place
robots, in packaging or sorting lines, or as gearbox actuators. A
linear-rotary movement can be obtained with various combinations
of linear and rotary machines, whereas depending on the speci-
fications of the underlying application the most suitable actuator
arrangement has to be identified. In order to simplify the selection
of the appropriate actuator configuration, this paper first gives an
overview of possible realization concepts of linear-rotary actuators,
which are also suitable to implement magnetic bearings (MB).
Afterwards, fundamental scaling laws concerning achievable axial
forces and torques of linear and rotary machines with interior and
exterior rotor arrangement are derived, enabling a qualitative com-
parison in order to figure out the most suitable actuator concept.
In this context, it is important that the derivation also considers the
machine-internal heat flow and the heat dissipation to the ambient,
which finally leads to a maximum current density depending on
the selected topology. All findings are verified by finite element
method simulations. In order to show the applicability of the
derived scaling laws, a design example is discussed.

Index Terms—Current density, axial force, torque, linear-rotary
actuators, tubular actuators, magnetic bearings, self-bearing.

I. INTRODUCTION

Linear-Rotary Actuators (LiRAs) are used in many different
industries and application areas, for example, in electronics
and semiconductor manufacturing industries in pick-and-place
robots [1], [2], or in industries such as aerospace or automotive
[3]–[5], food or pharmaceutical. Since LiRAs are used in so
many different application areas, they have to meet different
torque and/or force requirements, while also a given axial stroke
has to be achieved. Consequently, choosing the most suitable
actuator for given application specifications is not an easy task.
Therefore, in this paper, torque and force scaling laws that give
a quick and clear performance overview of different actuator ar-
rangements are derived and verified with finite element method
(FEM) simulations. Compared to scaling law derivations already
done in literature [6], also thermal aspects are considered, which
show to have a significant influence onto the optimal actuator
geometry.

This paper focuses on permanent magnet (PM) LiRAs, as in
general they have the highest power densities [7], but the derived
scaling laws can also be applied to reluctance, flux switching
or induction machines [2]. Besides the machine type, LiRAs
can be realized in many different combinations of individual
actuators, whereby also the coupling of the machines can
be versatile, e.g. a parallel or series mechanical coupling, a
magnetic coupling (e.g. checkerboard actuator [8]) or a double
stator configuration [9], [10] can be used. However, as the LiRA
with parallel mechanical coupling has a mechanical connection
of the linear and rotary actuators [7], with independent rotors
(also called ’movers’ or ’sliders’), it is not further considered in
this work, since it would result in a bulkier and less robust
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Fig. 1: Possible axial combinations of linear machines (L), rotary
machines (R) and magnetic bearings (MB) to realize a self-bearing
linear-rotary actuator. The possible combinations can be divided into
two groups, where the first group uses either only interior or exterior
rotor, while the second group is using a combined rotor, i.e. a double
stator machine.

design with lower acceleration performances due to higher
moving mass and moment of inertia.

Another important aspect in LiRAs are the bearings. Most
of the LiRAs use mechanical bearings, either ball or slider
bearings. Besides their high stiffness and simplicity, both of
those feature drawbacks, such as the need for lubrication and
the particle generation. This is mainly a problem in applications
where a high purity is required, e.g. in clean room applications.
As an alternative, air bearings could be used, but they require
a pressurized air supply and the operation in low pressure
environments is prohibited. Accordingly, the mentioned issues
can only be solved by magnetic bearings (MBs), which are
gaining more and more attention in tubular linear and linear-
rotary actuators [11]–[13].

This paper first summarizes possible options to realize a LiRA
with MBs, and afterwards provides initial design considerations
in terms of general scaling laws of electric machines that would
help a potential designer to chose a topology suitable to the
desired application. In contrast to the existing literature, the
derived scaling laws also consider the machine-internal heat
flow and the heat transfer to the ambient. Furthermore, the
general scaling laws are applicable to any kind of electric
machine and are also verified by FEM simulation.

II. ACTUATOR TOPOLOGY CONCEPTS

Depending on the application specifications, the LiRA with
magnetic bearings (MB) can be built with different combinations
of linear (L) and rotary (R) machines, as shown in Fig. 1.
The considered actuators are divided into two groups, the first
that features only an axial stator displacement of the different
machines (i.e. linear, rotary or magnetic bearing) with either all
interior rotor (cf. Fig. 2(a)) or all exterior rotor arrangements
(cf. Fig. 2(b)), and the second group featuring a combined stator
arrangement, i.e. a double stator LiRA (cf. Fig. 2(c)).

As can be noticed, for all possible LiRA arrangements always
two independent magnetic bearings (MB) on each axial end are978-1-5386-5804-8/19/$31.00 ©2019 IEEE
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Fig. 2: Radial actuator arrangements: (a) interior rotor, (b) exterior
rotor and (c) combined rotor featuring two radially displaced stators,
also known in literature as double stator motor (cf. [14]).

required, such that rotor tilting can be controlled. Furthermore,
depending on the degree of integration, the magnetic bearing
can be either realized as an independent machine with separate
stator (cf. LiRA-1 in Fig. 1) or can be integrated either into
the rotary machine, i.e. a self-bearing rotary machine (MB+R)
[15], or into the linear (L) machine (cf. LiRA-2 and LiRA-
3 in Fig. 1), while a full integration of all three machines
into a single machine is also possible (cf. LiRA-4 in Fig. 1).
The realization options of these machines are shown in Fig. 3,
where in the first row the different rotor’s permanent magnet
arrangements and in the second row the corresponding stator’s
winding configurations are given. As can be noticed, a rotary
machine realized with a R-Rotor and R-Stator can also perform
self-bearing (MB+R), while a linear machine (L) with L-
Rotor and L-Stator doesn’t feature magnetic levitation. Hence,
the integration of the magnetic bearing into a rotary machine
(MB+R) is easier to realize compared to the integration of the
MB into a linear machine (MB+L). In order to achieve self-
bearing and linear movement in one machine, the L-Rotor must
be combined with a CB-Rotor (’Checkerboard-Rotor’, cf. [8]),
as done in [13]. A further option to realize either a self-bearing
rotary machine (MB+R) or a linear machine (L), is to use a S-
Rotor (’Square-Magnet-Rotor’, cf. [10]) with either a R-Stator
or an L-Stator. Finally, to fully integrate all features into a single
machine (MB+R+L), a CB-Rotor with the CB-Stator is needed.
It should be noted that the same integration concepts (except the
full integration) can also be applied to the double stator LiRA
(cf. LiRA-5 and LiRA-6 in Fig. 1) and that the functionalities of
the inner and outer stator can also be exchanged, i.e. the linear
machine (L) would then be the outer actuator and the magnetic
bearing (MB) together with the rotary machine (R) would be the
inner actuator. Another aspect in LiRAs is the maximum axial
stroke zstroke that can be achieved with the selected machine
arrangement. First of all, it has to be considered that the rotor
or mover should be longer than the total stator length for at least
zstroke, such that a constant interaction between the stator and
the rotor is obtained. Furthermore, it has to be considered that
depending on the selected stator and rotor arrangement, a certain
distance ∆z between the different stators is needed, which in
case of an independent linear (L) or rotary (R) machine would
have to be ∆z = zstroke (cf. LiRA-1 to LiRA-3 in Fig. 1), while
for a fully integrated checkerboard machine or a double-stator
machine no distance between the stators is needed, i.e. ∆z = 0
(cf. LiRA-4 to LiRA-6 in Fig. 1). Indeed, LiRAs with an S- or
CB-Rotor can be realized with ∆z = 0, however, as will be
shown in the following section, they also feature lower torque
and force densities due to the inherently lower flux linkage of
the S-Rotor [10] or the larger end windings of the CB-Stator
[16], and therefore finally result in a larger machine volume
to achieve the same force and torque performances. For sake
of completeness, the LiRA assemblies from Fig. 1 are listed
in Tab. I for the different rotor and stator realizations given in
Fig. 3 and it is shown whether a distance ∆z between the stators
is needed or not.

III. SCALING LAWS

In this section, the scaling laws for the achievable torque and
the thrust force of the Interior Rotor and Exterior Rotor actuator
arrangements are derived. In contrast to other literature [6],
the current density amplitude Ĵ is calculated from the thermal
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Fig. 3: Viable rotor and stator realization options that can be used for
the LiRA design, i.e. R-Rotor and R-Stator to realize a rotary machine
which also can perform self-bearing, L-Rotor and L-Stator for the
linear machine, S-Rotor (’Square-Magnet-Rotor’, cf. [10]) with either
R-Stator or L-Stator to realize either a self-bearing rotary machine or
a linear machine, and CB-Rotor (’Checkerboard-Rotor’, cf. [8]) with
CB-Stator to realize a fully integrated machine featuring the linear and
rotary movement as well as the magnetic bearing. Furthermore, the
L-Rotor can also be in combination with the CB-Stator in order to
realize a self-bearing linear machine [13]. These realization concepts
are only shown for the interior rotor actuator, but the same winding
configuration and the permanent magnet arrangement can also be
applied for the exterior rotor actuator.

TABLE I: Overview of the LiRA assemblies.

Rotor Stator ∆z
LiRA-1: (MB, L, R, MB)
(R, L, R, R) (R, L, R, R) zstroke
(S, S, S, S) (R, L, R, R) 0
LiRA-2: (MB+R, L, MB+R)
(R, L, R) (R, L, R) zstroke
(S, S, S) (R, L, R) 0
LiRA-3: (MB+L, R, MB+L)
(L, R, L) (CB, R, CB) zstroke
(S, S, S) (CB, R, CB) 0
LiRA-4: (MB+R+L, MB+R+L)
(CB, CB) (CB,CB) 0
LiRA-5: (MB, R, MB / L)
(R, R, R / L) (R, R, R / L) 0
(S, S, S / S) (R, R, R / L) 0
LiRA-6: (MB+R, MB+R / L)
(R, R / L) (R, R / L) 0
(S, S / S) (R, R / L) 0

(cooling) considerations, which have a significant influence on
the achievable torques and forces. The scaling laws are verified
with FEM simulations for the stator and rotor realizations shown
in Fig. 3. The considered parameters are given in Tab. II.

Furthermore, it is assumed that the thickness of the rotor,
the stator back iron, the permanent magnet, and the air gap are
identical for all machines and compared to the outer dimensions,
i.e. the inner and outer radii r and R as well as the length L
of stator, are negligible. Moreover, also the air gap flux density
Bag is fixed to a constant value for all machines.

In [6], the current density amplitude Ĵ is assumed to be
constant. This work extends the approach and Ĵ is calculated
from the thermal (cooling) considerations, which, as shown
later, significantly influence the achievable torque and force.

A. Interior Rotor
1) Torque Scaling Law: According to the fundamental ex-

pression for 3-phase electric machines, the torque magnitude
Tint is proportional to the product of the flux linkage Ψ̂ and
the current amplitude Îint of the symmetric 3-phase winding
system, i.e. Tint ∼ Ψ̂Îint. The flux linkage Ψ̂ is the total flux
linked with the N turns of the stator winding. Therefore, the flux
Φ̂ that penetrates the stator from the air gap is N times smaller,
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Fig. 4: (a) Cross section of the Interior Rotor actuator with outer and
inner radii, R and r, of the actuator stator winding volume, and (b) the
assumed lumped-parameter steady-state thermal model of the actuator
with interior rotor.

i.e. Ψ̂ = N Φ̂, and consequently the torque is proportional to
Tint ∼ Φ̂ · NÎint. Furthermore, Φ̂ is proportional to the flux
density in the air gap Bag and the air gap area Aag, while NÎint
represents the magnetomotive force, which can be written as the
product of the current density amplitude Ĵint and the winding
area Aw, i.e. NÎint = ĴintAw. Finally, the torque is proportional
to Tint ∼ AagAwBagĴint.

The air gap and winding areas, Aag and Aw, can be further
expressed by the geometrical parameters R and r (the outer
and inner radii of the winding volume) shown in Fig. 4(a). For
the air gap area the expression Aag ∼ rL is applied, where
L equals the assumed stator length, and for the winding area
the expression Aw ∼ (R2− r2) is used. Since in the conducted
analysis, the air gap flux density Bag is assumed to be constant,
the torque can be scaled as Tint ∼ r(R2 − r2)L · Ĵint which
corresponds with the scaling law deduced in [6]. If a relative
parameter xr = r/R is introduced, the torque is obtained as

Tint = KT ·R3L · xr(1− x2r ) · Ĵint, (1)

where KT is an absolute torque constant that is given in Tab. III
for the analyzed LiRAs.

As already mentioned, in contrast to the constant current
density amplitude Ĵint assumed in [6], in the following a loss-
dependent current density Ĵint = Ĵint(Pcu) is considered, which
is given by the maximum allowed copper losses Pcu in the stator
windings. Based on the Pcu = 1/2RcuÎ

2
int, the current density

TABLE II: Parameters used in FEM simulations.

Parameter Name Value/Expression
Geometrical

Length (L) 100 mm
Outer Radius (R) 100 mm
Rotor Back Iron Thickness 2 mm
Stator Back Iron Thickness 2 mm
PM Thickness 2 mm
Number of Rotor Poles for Rotation 16(8)*
Number of Rotor Poles for Linear Motion 16(8)*
Number of Stator Teeth for Rotation 6
Number of Stator Teeth for Linear Motion 12
Total LiRA Volume (V ) πR2L
Stator Volume (Vstator) π(R2 − r2)L
Relative Winding Radial Size (xr) r/R

Magnetic / Electrical
PM Remanent Flux Density 1.3 T
Rotor/Stator Core Relative Permeability 10 000
Copper Specific Electric Resistance at Tw (ρcu) 2.36× 10−8 Ω m
Relative Copper Volume (kcu = Vcu/Vstator) 0.36

Current Density Constant (KJ) 2
√

∆T/(ρcukcu)
Thermal

Winding Temperature (Tw) 120 ◦C
Ambient Temperature (Tamb) 40 ◦C
Temperature Difference (∆T ) Tw − Tamb

Heat Transfer Coefficient (h) 10 W K−1 m−2

Winding Thermal Conductivity (λw)** 2 W K−1 m−1

Iron Core Thermal Conductivity (λfe) 22 W K−1 m−1

*Pole number values for S-{Rotor} are in brackets.
**Measured value, see [17].

can be expressed as Ĵint =
√

(2Pcu)/(ρcuVcu), where ρcu is
the specific resistance of copper and Vcu the copper volume of
the stator, which is given as Vcu = kcuVstator (cf. Tab. II).

The allowed copper losses Pcu are deduced from the actua-
tor’s thermal properties, whereby the two heat transfer modes
are considered: (1) radial heat flow through the windings by
thermal conduction, modelled by the thermal resistance Rth

in and
(2) radial heat convection on the outer surface of the actuator
to the environment, modelled by the thermal resistance Rth

out,
which assumes a certain loss per surface area. The two thermal
resistances can be obtained as

Rth
in =

1

λw

ln(R/r)

2πL
, Rth

out =
1

h

1

2πRL
, (2)

where λw is the specific thermal conductivity of the winding
and h is the heat transfer coefficient from the actuator’s outer
surface to the environment (cf. Tab. II). The assumed thermal
model is shown in Fig. 4(b). The allowed copper losses are
obtained as Pcu = ∆T/(Rth

in +Rth
out).

The copper volume can be calculated as Vcu = kcu · π(R2 −
r2)L, where kcu is considering the amount of copper volume
relative to the total stator volume. Assuming a winding fill factor
equal to 0.6 and winding volume to stator volume ratio of 0.6,
i.e. 60% while 40% is iron), kcu is calculated as kcu = 0.6·0.6 =
0.36 (cf. Tab. II).

Accordingly, the current density amplitude is calculated as

Ĵint = KJ ·
1

R

1√
1− x2r

1√
ln(1/xr)

λw
+

1

hR

, (3)

where KJ is given in Tab. II.
The loss- and geometry-dependent current density Ĵint can

now be used in (3), in order to obtain the expression for the
loss- and geometry-dependent torque Tint of the interior rotor
actuator. Another important quantity is the torque density tint =
Tint/V , which equals the torque Tint divided by the total rotary
actuator volume V (cf. Tab. II) and results in the following
expression

tint =
KTKJ

π
· xr

√
1− x2r ·

1√
ln(1/xr)

λw
+

1

hR

. (4)

The first factor is constant, while the second term only depends
on the relative quantity xr. The last factor, which comes from the
thermal considerations, depends on both, the relative parameter
xr and the absolute parameter R. Additionally, the last factor
depends on the thermal parameters λw and h. In order to
examine the influence of these two thermal parameters, the
extreme cases when λw → ∞ or h → ∞ are analyzed. Both
cases can be physically interpreted and are shown in Fig. 5(a).

If λw →∞, then Rth
in → 0, which means that the temperature

drop inside the windings can be neglected. This can be related
to the scenario in which the heat transfer coefficient h is low
(e.g. natural air cooling), i.e. heat transfer to the ambient is so
low such that the temperature drop inside the winding becomes
negligible. In this scenario, the torque density tint depends on
the absolute value of the outer radius as tint ∼

√
R and its

maximum is achieved for xr = 0.707 (maximum of the function
xr
√

1− x2r , cf. red curve in Fig. 5(a)).
If h→∞, then Rth

out → 0, which means the case temperature
of the actuator is fixed. This corresponds to the scenario where
the heat transfer coefficient h would be very high (e.g. water
cooling), such that the main temperature drop occurs inside the
machine. This is represented with the green curve in Fig. 5(a),
which is a monotonically increasing function, since in case the
windings get thinner (increasing xr), the thermal resistance Rth

in
of the winding in radial direction is decreasing. Consequently,
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Fig. 5: Scaling law of the achievable torque density for the Interior
Rotor actuator. (a) Overall torque density tint (blue), and for the cases
where either λw → ∞ (red) or h → ∞ (green). (b) Verification of
the analytically derived torque density tint with FEM simulations. The
parameters used in the simulation are given in Tab. II.
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parameters used in the simulation are given in Tab. II.

more copper losses can be dissipated and a higher torque can
be generated.

The curve that considers both, inner and outer thermal resis-
tances, is always below the curves of the discussed scenarios (cf.
Fig. 5(a)), as it is limited by both thermal resistances. This curve
is also verified with FEM simulations as shown in Fig. 5(b).

2) Thrust Force Scaling Law: Similar to the torque, the thrust
(axial or drive) force Fint is proportional to the flux linkage and
the 3-phase current amplitude, Fint ∼ Ψ̂Îint and therefore is
proportional to Fint ∼ AagAwBagĴint. The air gap and winding
areas, Aag and Aw, can be deduced by using the geometrical
parameters R and r from Fig. 4(a). Similar to the derivation
from Sec. III-A1, Aag ∼ rL, while in the case of a linear
actuator, the winding area only depends linearly on the radii
and further is independent of the length L, i.e. Aw ∼ (R− r).
Assuming the air gap flux density Bag to be constant, the force
is proportional to Fint ∼ r(R − r)L · Ĵint, and by using the
same relative parameter xr, can be written as

Fint = KF ·R2L · xr(1− xr) · Ĵint, (5)

where KF is an absolute axial force constant that is given in
Tab. III for the analyzed LiRAs.

The cooling properties are assumed to be the same as in the
case of the rotary actuator, thus the current density Ĵint is also
given with (3) and can be inserted into (5). Similar to the torque
density, the force density fint can be derived by dividing the
force Fint by the total linear actuator volume V (cf. Tab. II),
which results in

fint =
KFKJ

π
· 1

R
· xr

√
1− xr
1 + xr

· 1√
ln(1/xr)

λw
+

1

hR

. (6)

Compared to the torque density in (4), the force density has
a factor 1/R, which means that the force density is increasing
with a decreasing actuator’s outer radius. Hence, linear actuators
(motors) are typically build with rather high length over radius
(L/R) ratios.

The last factor in (6), which considers the thermal properties
of the machine, is the same as the one in (4), therefore a
discussion similar to Sec. III-A1 is conducted here.
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Fig. 7: Tubular linear-rotary actuator with Exterior Rotor with (a) radial
and (b) axial cross sections. Based on the axial mounting of the interior
stator, only axial heat flow is assumed and denoted with the red arrows.
(c) Corresponding lumped parameter steady-state thermal model.

If λw →∞, the force density depends on the absolute outer
radius as fint ∼ 1/

√
R. The influence of the relative parameter

xr is reduced to fint ∼ xr
√

(1− xr)/(1 + xr), which is shown
in Fig. 6(a) with the red curve fint(λ→∞, h). In this scenario,
the maximum force density is achieved for xr = 0.618.

If h → ∞, the force density depends on the absolute outer
radius as fint ∼ 1/R, and in addition is again monotonically
increasing with the relative parameter xr. Again, the curve that
considers both heat transfer coefficients λw and h is always
smaller than the curves where only one of these parameters is
considered. The verification with FEM simulations is shown in
Fig. 6(b).

B. Exterior Rotor
1) Torque Scaling Law: In analogy to the actuator with inte-

rior rotor, the torque Text of the actuator with exterior rotor is
proportional to Text ∼ AagAwBagĴext. Based on the geometric
dimensions given in Fig. 7, the air gap area can be expressed
by Aag ∼ RL, and the winding area by Aw ∼ (R2 − r2).
Moreover, with a constant air gap flux density Bag, the torque
is calculated as Text ∼ R(R2 − r2)L · Ĵext. Finally, using the
relative parameter xr = r/R, the torque becomes

Text = KT ·R3L · (1− x2r ) · Ĵext, (7)

where KT is again the absolute torque constant given in
Tab. III.

For the exterior rotor actuator, i.e. interior stator actuator,
the stator can only be mechanically fixed at one of the axial
ends, therefore leading to an axial heat flow in the actuator (cf.
Fig. 7(b)). The end with the mechanical fixation is assumed to
have a heatsink with an area equal to πR2 and a heat transfer
coefficient h, which results in an outer thermal resistance Rth

out
(cf. Fig. 7(c)). Accordingly, due to the axial heat flow, the
hot spot temperature is on the opposite axial end, with the
temperature Tw (cf. Fig. 7(b)). It is assumed that the axial
heat flow occurs only in the stator back iron (cylinder with
the radius r), while it is neglected through the winding volume,
since the thermal conductivity in the winding is mainly inhibited
by the poor conductance of the wire isolation and potting
material (λfe/λw ∼ 10). Furthermore, as the copper losses Pcu

are distributed in the winding volume, the heat generation is
also spatially distributed along the stator, resulting in an inner
thermal resistance Rth

in to be half of the total back iron’s thermal
resistance Rth

fe , i.e. Rth
in = Rth

fe /2. Accordingly, the thermal
resistances for the tubular actuator with the exterior rotor can
be calculated as

Rth
in =

1

2λfe

L

πr2
, Rth

out =
1

h

1

πR2
, (8)

where λfe is the thermal conductivity of iron given in Tab. II.
Applying the same considerations as in Sec. III-A1, the allowed
current density is obtained as

Ĵext = KJ ·
1√
L
· 1√

1− x2r
· 1√

1

λfe

L

x2r
+

2

h

, (9)
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(b) Torque density text verified with FEM simulation with parameters
given in Tab. II.
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Fig. 9: Scaling law of the achievable force for the Exterior Rotor
actuator (a) Overall force density fext (blue), and influence of the
thermal parameters λfe (red) and h (green) onto the force density fext.
(b) Force density fext verified with FEM simulations with parameters
given in Tab. II.

where KJ is given in Tab. II. Inserting this equation into (7)
and dividing it by the rotary actuator volume V (cf. Tab. II),
the following expression is obtained for the torque density

text =
KTKJ

π
· R√

L
·
√

1− x2r ·
1√

1

λfe

L

x2r
+

2

h

. (10)

As can be noticed, the torque density text depends on the ratio
of the absolute outer dimensions R and L, which means that
making the actuator longer, reduces the torque density due to the
worse axial heat flow. Similarly to Sec. III-A1, the two extreme
scenarios h→∞ or λfe →∞ can be analyzed (cf. Fig. 8(b)).

Again, the scaling law considering both thermal parameters
is verified with FEM simulations as shown in Fig. 8(b).

2) Thrust Force Scaling Law: In analogy to the derivation
done for the interior rotor, the thrust force Fext is given as
Fext ∼ AagAwBagĴext. The air gap and the winding areas are
again proportional to Aag ∼ RL and Aw ∼ (R − r) and with
the assumption of a constant air gap flux density Bag, the force
is proportional to Fext ∼ R(R−r)L · Ĵext. By using xr = r/R,
the previous expression can be written as

Fext = KF ·R2L · (1− xr) · Ĵext, (11)

where KF is the force constant and the current density is given
with (9). Hence, the force density for the tubular actuator with
exterior rotor is obtained as

fext =
KFKJ

π
· 1√

L
·
√

1− xr
1 + xr

· 1√
1

λfe

L

x2r
+

2

h

. (12)

The force density fext only depends on the absolute length
L and decays when the length L of the actuator increases.
This effect is pronounced due to the axial heat flow in the
actuator. The influence of the thermal parameters λfe and h is
analyzed and shown in Fig. 9(a), while the verification by FEM
simulation is shown in Fig. 9(b).

In general, for the tubular actuator with exterior rotor and
therefore internal axial heat flow, the consideration of the ther-
mal aspects is very important, since they influence the actuator
geometry significantly as shown in Fig. 8(a) and Fig. 9(a).

TABLE III: Scaling law constants determined by FEM simulations.

Rotor Stator KT KF

(N A−1 m−3) (N A−1 m−2)
Interior Rotor

R R 0.83 -
S R 0.35 -
L L - 0.93
S L - 0.48

Exterior Rotor
R R 0.71 -
L L - 0.99

C. Scaling Law Constants
In this section, the absolute values of the scaling law con-

stants KT and KF are given and briefly discussed. Tab. III
summarizes the constants for the actuators with {R,L,S}-Rotor
and {R,L}-Stator for the interior rotor and with {R,L}-Rotor
and {R,L}-Stator for the exterior rotor. The actuator constants
for the rest of the actuator arrangements from Fig. 3 will be
analyzed in future work.

As intuitively expected, the actuator constants for the S-Rotor
are around 2 times lower compared to the R-Rotor and L-Rotor.
This is the consequence of the 2 times lower PM cross section
area, and therefore around 2 times lower flux linkage. More
detailed analysis of the S-Rotor and its application in high
dynamic positioning systems is explained in [10].

IV. DESIGN EXAMPLE DISCUSSION

As an example, in this section, the two possible realization
options of the LiRA-1 (MB, L, R, MB) with interior rotor are
compared, i.e. where either a combination of an L- and R-Rotor
or a S-Rotor is used (cf. Fig. 1 and Fig. 3). In a first step, the
magnetic bearings are not considered, since on the one hand
the MBs are not yet considered in the scaling laws, and on the
other hand the scaling laws are also applicable to machines with
conventional bearings. Furthermore, the design discussion is
conducted for the dimensions also used for the FEM simulations
as given in Tab. II. Thereby, the length L equals the total length
of the complete actuator, which means that the axial stroke (∆z),
the rotary actuator length LR and the linear actuator length LL

have to be accommodated in the total length L. As already
discussed, for the combined LR-Rotor the distance ∆z between
the linear and rotary machines must be at least as large as the
specified maximum stroke zstroke, while for the S-Rotor no
distance between the machines is needed (∆z = 0). However,
it also must be mentioned that with the S-Rotor lower torque
and force constants are achieved (cf. Tab. III), and therefore
the volumes of the rotary machine VR and linear machine
volume VL are bigger in order to achieve the same absolute
torques and forces. Hence, considering the volume between the
machines defined by ∆z as additional actuator volume Vz , the
question arises for which range of stroke zstroke which machine
realization results in a smaller overall actuator volume VA if
a given absolute torque T and force F must be achieved. The
total actuator volume is actually defined as VA = VR +VL+Vz ,
which, based on the assumption of a constant outer radius R for
all machines, corresponds to L = LR+LL+∆z. Accordingly, in
case of the RL-Rotor with increasing ∆z, the remaining length
for LR and LL is reduced, which in consequence also leads
to a reduction of the maximum achievable force and torque
performance, while for the S-Rotor always the full actuator
length L can be shared between the two machines. Moreover,
for both actuator realizations, the length distribution between
LR and LL can be selected arbitrarily. E.g. in the extreme case,
where LL = 0 and LR = L − ∆z, the actuator achieves the
maximum torque but no axial force is obtained, i.e. only a rotary
machine. However, if now LR is decreased, also the maximum
achievable torque decreases linearly, since T = t · VR ∼ t ·LR,
and the axial force linearly increases, since F = f ·VL ∼ f ·LL.
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Fig. 10: (a) Achievable absolute forces and torques of the LiRA-1 with
interior rotor arrangement for different lengths of stroke zstroke. The
performance of the LiRA-1 with combined LR-Rotor depends on the
stroke (solid lines), while it it is independent from the stroke when
realized with a S-Rotor. (b) Determining the relative parameter xr by
using the normalized torque and force densities trelint = tint/max(tint)
and f rel

int = fint/max(fint). For the LR-rotor the optimum radius ratios
are found at xr = 0.711 for rotary machine and at xr = 0.624 for the
linear machine. For the S-Rotor a sub-optimal value of xr = 0.67 is
selected, which however for the given dimensions hardly decreases the
achievable torque and force densities.

This behavior is visualized in Fig. 10(a) for different stroke
lengths zstroke. As can be clearly noticed, for the LR-Rotor, the
achievable torque-force-ratio decreases with increasing zstroke
and for a maximum stroke of zstroke = 100 mm neither an
axial force nor a torque can be achieved. On the other hand, for
the S-Rotor, a stroke-independent torque-force-ratio is obtained.
In this case, the break even in performance is roughly found
at the half of the total actuator length L/2 = 50 mm, which
means that for axial strokes smaller than L/2 the LR-Rotor
performs better, while for zstroke > L/2 the S-Rotor should
be used (cf. yellow shaded area in Fig. 10(b)). The factor 1/2
actually comes from the ratio of the torque and force constants
KT and KF, which for the two rotor type roughly differs by
this factor. Hence, zstroke of the break-even point can easily be
estimated by writing LR,LR+LL,LR+∆z = LR,S+LL,S+∆z,
where KT,LR · LR,LR = KT,S · LR,S and KF,LR · LF,LR =
KF,LR ·LR,S must be guaranteed in order to achieve the same
absolute torque and force values. For the sake of completeness,
it must be mentioned that also the relative parameter xr can
strongly influence this break-even point, since for the combined
LR-Rotor both machines can be designed independently, which
means that the rotor radius r can be optimized for each machine,
i.e. always the optimum xr can be selected, while for the S-
Rotor the same xr for both machine must be used. This is
explained by Fig. 10(b), where the two normalized torque and
force densities, achievable for the specifications given Tab. II,
in are shown. Accordingly, the LR-rotor would be realized
with two different diameters, where for the rotary machine
the optimum radius ratio is xr = 0.711 and for the linear
machine xr = 0.624. For the S-rotor a compromise between
torque and force has to be made, which for the given actuator
dimensions is found at xr = 0.67. As can be noticed, this sub-
optimal radius ratio is hardly decreasing the achievable force and
torque densities, however, for other actuator dimensions can be
much larger, which means that the break-even point concerning
achievable performance is shifted to even larger strokes zstroke.

CONCLUSIONS

This paper gives an overview of possible realization concepts
to build a linear-rotary actuator (LiRAs) with magnetic bearings
(MB), i.e. a self-bearing electric machine that can realize cou-
pled linear and rotary movements. In order to help the designer
to easily compare different realization options and to simplify
the selection of the appropriate actuator concept for a given
application, general scaling laws concerning torque and forces
considering also the heat flow inside and outside the actuator
are deduced for interior and exterior rotor arrangements. All
the findings are verified with FEM simulations. The scaling
laws are also applicable to special actuators (checkerboard
or double-stator) as well as to standard rotary and/or linear

actuators with conventional bearings, as was also done for
a design example in this paper. The comparison of linear-
rotary actuator realized with either separate linear and rotary
machines or a combined linear-rotary machine showed, that
the separate realization outperforms the combined actuator with
respect to the total actuator volume as long as the linear stroke
is smaller than half the length of the total actuator. Furthermore,
depending on the outer dimensions given by the underlying
application, this break-even point can be even shifted to larger
stroke values, since for the separate realization both machines
can be optimized independently, while for the combined actuator
a compromise has to be made. The future work will focus onto
further development of the scaling laws and the comparison of
the further LiRA arrangements.
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