

3-Ф SiC/GaN Converter Systems

Johann W. Kolar et al.

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Feb. 23, 2021

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Feb. 23, 2021

3-Ф SiC/GaN Converter Systems

... BUT Lots of Opportunities & Some Challenges ;-)

Johann W. Kolar | Jonas E. Huber | David Menzi

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Feb. 23, 2021

Outline

► Introduction

- Performance Trends
 10x -Technologies / Concepts
 Research Results
- **Conclusions**

M. Antivachis J. Azurza D. Bortis D. Cittante M. Guacci M. Haider F. Krismer S. Miric J. Miniböck N. Nain P. Niklaus G. Rohner J. Schäfer D. Zhang

Acknowledgement

ETH zürich

Power Electronic Systems @ ETH Zurich

20 Ph.D. Students 1 PostDoc 3 Research Fellows

Research Scope

- Explore the Limits / Create New Concepts / Push the Envelope
 Maximize Technology Utilization
 Enable New Applications

——— Market Pull / Technology Push ———

Required Performance Improvements

• Connected Cognitive Power Electronic Systems \rightarrow Power Electronics 4.0

S-Curve of Power Electronics

- **Power Electronics 1.0** \rightarrow **Power Electronics 4.0**
- Identify "X-Concepts" / "Moon-Shot" Technologies
 10x Improvement NOT Only 10% !

3-Ф Variable Speed Drive Inverter Systems

State-of-the-Art Future Requirements

:Source PowerAmerica

Variable Speed Drive (VSD) Systems

- Industry Automation / Robotics
- Material Machining / Processing Drilling, Milling, etc.
 Compressors / Pumps / Fans
- Transportation
- etc., etc.

.... Everywhere !

• 60...70 % of All Electric Energy Used in Industry Consumed by VSDs

State-of-the-Art

- Mains Interface / 3-Ф PWM Inverter / Cable / Motor Large Installation Space / Complicated
 Conducted EMI / Radiated EMI / Reflections on Long Motor Cables / Bearing Currents

• High Performance @ High Level of Complexity / High Costs (!)

Surge Voltage Reflections

- Long Motor Cable $l_c \ge \frac{1}{2} t_r v$ Short Rise Time of Inverter Output Voltage Impedance Mismatch of Cable & Motor \rightarrow Reflect. @ Motor Terminals / High Insul. Stress

 \rightarrow *dv/dt-* OR Full-Sinewave Filtering / Termination & Matching Networks etc.

Motor Bearing Currents

- Switching Frequency CM Inverter Output Voltage \rightarrow Motor Shaft Voltage
- Electrical Discharge in the Bearing ("EDM")

→ Cond. Grease / Ceram. Bearings / Shaft Grndg Brushes / dv/dt- OR Full-Sinewave Filters

VSD Inverter - Future Requirements

- "Non-Expert" Installation / "Sinus-Inverter" OR Motor-Integrated Inverter
- **Low Losses** & Low HF Motor Losses
- **Low Volume & Weight**
- Wide Output Voltage Range
- High Output Frequencies

● Main "Enablers" → SiC/GaN Power Semiconductors & Adv. Inverter Topologies

8/84

Si vs. SiC

Si-IGBT / Diode → Const. On-State Voltage, Turn-Off Tail Current & Diode Reverse Recovery Current
 SiC-MOSFET → Massive Loss Reduction @ Part Load BUT Higher R_{th}

• Space Saving of >30% on Module Level (!)

Low R_{DS(on)} High-Voltage Devices

- Higher Critical E-Field of SiC \rightarrow Thinner Drift Layer Higher Maximum Junction Temperature $T_{i,max}$

• Massive Reduction of Relative On-Resistance \rightarrow High Blocking Voltage Unipolar Devices

Si vs. SiC Conduction Behavior

Si-IGBT → Const. On-State Voltage Drop / Rel. Low Switching Speed,
 SiC-MOSFETs → Resistive On-State Behavior / Factor 10 Higher Sw. Speed

• Efficiency Characteristic Considering Only Conduction Losses

Si vs. SiC Switching Behavior

Si-IGBT → Const. On-State Voltage Drop / Rel. Low Switching Speed,
 SiC-MOSFETs → Resistive On-State Behavior / Factor 10 Higher Sw. Speed

• Extremely High di/dt & dv/dt \rightarrow Challenges in Packaging / EMI / Motor Insulation / Bearing Currents

Circuit Parasitics

- **Extremely High di/dt Commutation Loop Inductance** L_s Allowed L_s Directly Related to Switching Time $t_s \rightarrow$

Advanced Packaging & Parallel Interleaving for Partitioning of Large Currents

Si vs. SiC EMI Emissions

- Higher dv/dt → Factor 1 Higher Switching Frequencies → Factor 1 EMI Envelope Shifted to Higher Frequencies \rightarrow Factor 10
- \rightarrow Factor 10

• Higher Influence of Filter Component Parasitics & Couplings \rightarrow Advanced Design

Inverter Output Filters

dv/dt-Filters —— Full-Sinewave Filters ———

dv/dt-Control

Passive | Hybrid | Active dv/dt-Limitation

- **Passive** Damped LC-Filter $f_c > f_s$ Hybrid Undamped LC-Filter & Multi-Step Sw. Transition Active Gate-Drive Based Shaping of Sw. Transients

• Connection to DC-Minus & CM Inductor \rightarrow Limit CM Curr. Spikes / EMI / Bearing Currents

Comparison of dv/dt-Filtering Techniques (1)

ETH zürich

Comparison of dv/dt-Filtering Techniques (2)

• Losses / Power Density – V_{DC} = 800V, P_{out} = 10kW, f_{sw} = 16kHz, 1200V SiC-MOSFETs (16m Ω)

Inverter Systems w/ Sinusoidal Output Voltages —

ZVS/TCM Operation

- Sinusoidal Output Voltage
- ZVS of Inverter Bridge-Legs
- High Sw. Frequency & TCM \rightarrow Low Filter Inductor Volume

- Only 33% Increase of Transistor Conduction Losses Compared to CCM (!)
- Very Wide Switching Frequency Variation

$TCM \rightarrow B-TCM$

■ Very Wide Switching Frequency Variation of TCM → B-TCM

• TCM \rightarrow B-TCM — 10% Further Increase of Transistor Conduction Losses

$B-TCM \rightarrow S-TCM$

- Sinusoidal Switching Boundaries → S-TCM
 Adaption for Low Output Power Considering f_{sw,max}= 140kHz

• TCM \rightarrow S-TCM \approx 10% Further Increase of Transistor Conduction Losses

Remark *Residual ZVS Losses*

• "Kink" Current I_K Dependent on Inner & Outer Gate Resistance & u_{a.n}

ETH zürich

CCM & 2-Stage Full-Sinewave Output Filter (1) PERFECTION IN AUTOMATION Sinewave Output & IEC/EN 55011 Class-A
 Low-Loss Active Damping of 1st Filter Stage — Neg. Cap. Current Feedback $2kW / 400V DC-Link 3-\Phi 650V GaN Inverter (I_M=5A), f_{out,max} = 500Hz$ Sw. Frequency $f_s = 100 kHz$ GaN Power Stage $L_d R_d$ L_2 $f_{C_1}=7kHz$ ΡI l_{C1} GaN Power Stage Active-Damped Filter

 \rightarrow Evaluation of Optimized Inductors — Soft Sat. Toroidal Iron Powder Cores \rightarrow L₁=200uH (OD57S) / C₁=2.5uF / L₂=25uH (OD2OS) / C₂=2.5uF / L_d=33uH / R_d=5.6 Ω

em

CCM & 2-Stage Full-Sinewave Output Filter (2)

- Exp. Verification 650V E-Mode GaN Systems Transistors (50mΩ)
 Sw. Frequency f_s= 100kHz, Efficiency ≈98%
- 200mm x 250mm

- Stationary Motor Phase Curr. /Voltage @ 2.5Nm & f_{out}=250Hz
 Speed Increase from Standstill to n = 3000rpm in 60ms

M7ms

CCM & 2-Stage Full-Sinewave Output Filter (3)

- Modification of Output Filter Structure Elimination of Direct Cap. Coupling Between Output and Noisy (!) DC+ (Due to R_{DC}) For Opt. i_c -Feedback C_1 Realized Using ≈Linear Kemet KC-Link

Modified Filter \rightarrow Compliance to EMI Standard EN55011 Class-A

Multi-Level (ML) Converter Scaling

- 1/N Reduction of Blocking Voltage → Lower $R_{DS,(on)}$ Semiconductors $(R_{on} \sim U_B^2)$ Eff. Increase of Sw. Frequency → $f_{sw,eff} = N f_{sw}$ $(f_{sw} \dots Individual Device)$ Larger Chip Area and/or Smaller L_0

• D-FOM = D-FOM(U_{dc}/N) \rightarrow Results in ML-Performance (X-FOM) Dependent on N

Functional Principle of ML-Converters

- 3-Level Flying Cap. (FC) Converter Requires No Connection to DC-Midpoint Involves All Switches in Voltage Generation \rightarrow Eff. Doubles Device Sw. Frequency
- FC Voltage Balancing Possible also for DC Output

• *Risk of Transistor Overvoltage for Steep U_{dc} Changes*

Scaling of ML Bridge-Leg Concepts

- **Reduced Ripple @ Same (!) Switching Losses Lower Overall On-Resistance** @ Given Blocking Voltage \rightarrow 1+1=2 NOT 2² = 4 (!) Application of LV Technology to HV

• Scalability / Manufacturability / Standardization / Impedance Matching / Redundancy

X-FOM of ML-Bridge-Legs

- *Quantifies Bridge-Leg Performance of N-Level FC Converters Identifies Max. Achievable Efficiency & Loss Opt. Chip Area @ Given Sw. Frequ.*

Power Electronic Systems Laboratory

7-Level Flying Cap. 200V GaN Inverter (1)

- DC-Link Voltage Rated Power
- DC-Link Voltage 800V Rated Power 2.2 kW / Phase 99% Efficiency → Natural Convection Cooling (!)

• High Effective Sw. Frequency (6 x 30kHz = 180kHz) \rightarrow Small Filter Inductor L₀

7-Level Flying Cap. 200V GaN Inverter (2)

- DC-Link Voltage
- DC-Link Voltage 800V Rated Power 2.2 kW / Phase 99% Efficiency → Natural Convection Cooling (!)

• High Effective Sw. Frequency (6 x 30kHz = 180kHz) \rightarrow Small Filter Inductor L_0

Power Electronic Systems Laboratory

3-Φ Hybrid Multi-Level Inverter Demonstrator

- Realization of a 99%++ Efficient 10kW 3-Φ 400V_{rms,ll} Inverter System
 7-Level Hybrid Active NPC Topology / LV Si-Technology

• 200V Si \rightarrow 200V GaN Technology Results in 99.5% Efficiency

Quasi-2L/3L —— Flying Capacitor Inverter ——

Quasi-2L & Quasi-3L Inverters (1)

- Operation of N-Level Topology in 2-Level or 3-Level Mode
 Intermediate Voltage Levels Only Used During Sw. Transients
- Applicability to All Types of Multi-Level Converters

- Reduced Average dv/dt → Lower EMI / Lower Reflection Overvoltages
 Clear Partitioning of Overall Blocking Voltage & Small Flying Capacitors
 Low Voltage/Low R_{DS(on)}/Low \$ MOSFETs → High Efficiency / No Heatsinks / SMD Packages

Quasi-2L & Quasi-3L Inverters (2)

- Operation of 5L Bridge-Leg Topology in Quasi-3L Mode
 Intermediate Voltage Levels Only Used During Sw. Transients
- Applicability to All Types of Multi-Level Converters

- Reduced Average dv/dt → Lower EMI / Lower Reflection Overvoltages
 Clear Partitioning of Overall Blocking Voltage & Small Flying Capacitors
 Low Voltage/Low R_{DS(on)}/Low \$ MOSFETs → High Efficiency / No Heatsinks / SMD Packages

- Operation of 5L Bridge-Leg Topology in Quasi-3L Mode
 Intermediate Voltage Levels Only Used During Sw. Transients
- Applicability to All Types of Multi-Level Converters

Operation @ 3.2kW

- *Conv. Output Voltage*
- Sw. Stage Output Voltage
- Flying Cap. (FC) Voltage
- Q-FC Voltage (Úncntrl.)

- Output Current — - Conv. Side Current

- Reduced Average dv/dt → Lower EMI / Lower Reflection Overvoltages
 Clear Partitioning of Overall Blocking Voltage & Small Flying Capacitors
 Low Voltage/Low R_{DS(on)}/Low \$ MOSFETs → High Efficiency / No Heatsinks / SMD Packages

33/84

Ultra-Compact Power Module with **Integrated Filter** 650V GaN E-HEMT Technology $f_{S,eff}$ = 4.8MHz f_{out} = 100kHz

Integrated Filter GaN Half-Bridge Module

- Minimization of Filter Volume by Series & Parallel Interleaving & Extreme Sw. Frequency
- Handling of DC Output Requires Flying Capacitor Approach for Series Interleaving

 \rightarrow Target: Best Combination of Multiple Levels (M) & Parallel Branches (N)

_ 35/84

4.8MHz GaN Half-Bridge Phase Module

- Combination of Series & Parallel Interleaving
- 600V GaN Power Semiconductors, f_{sw} = 800kHz Volume of ~180cm³ (incl. Control etc.) H₂0 Cooling Through Baseplate

• Operation @ f_{out}=100kHz / f_{S,eff}= 4.8MHz, 10kW, U_{dc}=800V

Remark High-BW High-CMRR Current Measurement

Extension of Commercial Hall Sensor DC... $f_{Hall} \approx 500 \text{kHz} \rightarrow DC...20 \text{MHz}$ Low-Pass & High-Pass Filter Network Combining HF-Sensor & LF Hall-Sensor

- Hall Sensor Bandwidth f_{Hall} = 1.6MHz
 Rogowski Coil High-Pass Corner Frequency f_{int}=1kHz
 Low/High-Pass Filter Cross-Over Network f_{filter} = 24kHz

Motor-Integrated Inverter Systems

Stacked-Multi-Cell (SMC) Inverter

- Low-Voltage Inverter Modules
- Very-High Efficiency / Power Density
- Automated Manufacturing
- Rated Power
 DC-Link Voltage
 45kW / f_{out} = 2kHz
 1 kV

• Smart Motor / Plug & Play | Connected / Intelligent VSD 4.0

Motor-Integrated SMC 200V GaN-Inverter

Rated Power
DC-Link Voltage
3-Ф Power Cells
0uter Diameter
9kW @ 3700rpm
650V...720V
5+1
220mm

- Axial Stator Mount
- 200V GaN e-FETs
- Low-Capacitance DC-Links
- 45mm x 58mm / Cell

• Main Challenge — Thermal Coupling/Decoupling of Motor & Inverter

Double-Bridge (DB) Inverter

Turbo-Compressor-Integrated DB GaN-Inverter

- E-Mobility 5...15kW Fuel Cell Pressurized Air Supply
 1kW Rated Power, f_{sw}=300kHz | n= 280'000rpm / f_{out}= 4.6kHz
 Low EMI / Low Cabling Effort

• Integration \rightarrow 2x System Power Density | 97% \rightarrow 98.5% Inverter Efficiency

3-Φ 650V GaN Motor-Integrated Inverter Source: YASKAWA

- Sigma-7F Servo Drive Motor Integration of DC/AC Stage (TO-220 GaN)
 Distributed DC-Link System Single AC/DC Converter / Smaller Cabinet
 0.1 0.4kW / 270...324V Nominal DC-Link Voltage

------ Overload | Thermal Limit ------

- **Highly Dynamic Robotics VSDs** \rightarrow 3x ... 5x Rated Torque for Seconds
- **Small Chip Area** \rightarrow Low Thermal Time Constant of GaN HEMTs
- Trade-Off Between Overload Rating & Rated Power Efficiency

• 200V GaN vs. Si (Multi-Level Inverter) Comparison

Motivation

- General / Wide Applicability
- Adaption of (Load-Dependent) Supply Voltage & Motor Voltage Wide Speed Range \rightarrow Wide Output Voltage Range

No Add. Converter for Voltage Adaption \rightarrow Single-Stage Energy Conversion

ETH zürich

Derivation of Buck-Boost Y-Inverter

Generation of AC-Voltages Using Unipolar Bridge-Legs

- Switch-Mode Operation of Buck OR Boost Stage
 3-Φ Continuous Sinusoidal Output / Low EMI
 Standard Bridge-Legs / Building Blocks
 Standard Bridge-Legs / Building Blocks
 Standard Bridge-Legs / Building Blocks
 Standard Bridge-Legs / Building Blocks

Sinusoidal Modulation

• Y-Inverter

 φ_{0}

Const. DC Offset \rightarrow Strictly Positive Output Voltages $u_{aN'}$, $u_{bN'}$, u_{cN} Mutually Exclusive Operation of the Half-Bridges \rightarrow Low Switching Losses

Boost-Operation $u_{an} > U_i$

Phase-Module

 $\varphi_{\rm o}$

- Current-Source-Type Operation
 Clamping of Buck-Bridge High-Side Switch → Quasi Single-Stage Energy Conversion

Buck-Operation $u_{an} < U_i$

Phase-Module

 $\varphi_{\rm o}$

 $-\varphi_{\rm o}$

- Voltage-Source-Type Operation
 Clamping of Boost-Bridge High-Side Switch → Quasi Single-Stage Energy Conversion

Discontinuous Modulation

• Y-Inverter

 φ_{0}

Clamping of Each Phase for 1/3 of the Fund. Period → Low Switching Losses (!)
 Non-Sinusoidal Module Output Voltages / Sinusoidal Line-to-Line Voltages

Control Structure

• Motor Speed Control

Y-Inverter VSD

Demonstrator Specifications

- Max. Output Power
- Output Frequency Range
- Output Voltage Ripple
- \rightarrow 6...11 kW \rightarrow 0...500Hz
- → 3.2V Peak @ Output of Add. LC-Filter

ETH zürich

Y-Inverter Demonstrator

- DC Voltage Range 400...750V_{DC}
- Max. Input Current ± 15A
- Output Voltage
 Output Frequency
 O...230V_{rms} (Phase)
 O...500Hz
- 100kHz • Sw. Frequency
- $3 \times \text{SiC} (75 \text{m} \Omega) / 1200 \text{V}$ per Switch
- IMS Carrying Buck/Boost-Stage Transistors & Comm. Caps & 2nd Filter Ind.

Dimensions \rightarrow 160 x 110 x 42 mm³ (245W/in³)

Y-Inverter - Measurement Results

100V/div

Stationary Operation

• Line-to-Line Output Voltage Ripple < 3.2V

Efficiency Measurements

• Dependency on Input Voltage & Output Power Level

DSP / Fans / PCB

Auxiliaries

Boost(Cond)

 $U_{DC} = \frac{400V}{600V}$ $U_{AC} = \frac{230V_{rms}}{100kHz}$ (Motor Phase-Voltage) $f_{S} = 100kHz$

Semiconductors

Buck(SW)

Buck(Cond)

Filter

Inductors

Filter

Capacitors

Buck-Boost

Inductors

Multi-Level Bridge-Leg Structure for Increase of Power Density @ Same Efficiency \rightarrow

Filter

Capacitors

EMI-Limits (VSD Product Standard)

- IEC 61800-3
- \rightarrow Product Standard for Variable-Speed Motor Drives
- EMI Emission Limits \rightarrow
- Application

EMI-Filter Design for Unshielded Cables > 2m and Resid. Applications (Cond. & Rad.)

Conducted EMI-Filter

• Separate Cond. DM & CM EMI-Filter on DC-Side & DC-Minus Ref. EMI-Filter on AC-Side

→ Low Add. EMI Filter Volume — 74cm³ for Each Filter (incl. Toroid. Rad. EMI Filter) → Total Power Density Reduces — $15kW/dm^3$ (740cm³) → $12kW/dm^3$ (890cm³)

Conducted EMI - Experimental Results

• Measurements of the Cond. EMI Noise on the AC-Side (QP, with 50Hz AC-LISN)

→ Small 80uH CM-Ind. Added on AC-Side - (3cm³ of Add. Volume = 0.5% of Converter Vol.)
 → Conducted EMI with Unshielded Motor Cable Fulfilled

Measurement of Radiated EMI-Noise (1)

- Equipment Under Test (EUT) Placed on Wooden Table with Specified Arrangement
 CM Absorption Devices (CMAD) Terminate All Cables on AC- & DC-Side (Total l_{cable} ≈ 1.5m)
 Measurement of Radiated Noise with Antenna in 3m Distance

- Either Open-Area Test Site (OATS) or Special Semi-Anechoic Chamber (SAC) Needed
- Alternative Pre-Compliance Measurement Method

Measurement of Radiated EMI-Noise (2)

- CM-Currents NOT Returning IN THE CABLE are Dominant Source of Radiation
- Relation Between Radiated Electric Field and CM-Currents (!)

- Max. Allow. El. Field Strength of $40dBuV/m \rightarrow Max$. CM-Current of 3.5uA (11dBuA) Current Probe Impedance of 6.3Ω (F-33-1) $\rightarrow Max$. Noise Volt. of 26dBuV @ Test Receiver

ETH zürich

Radiated EMI-Filter Design

- Single-Stage HF CM-Filter on DC-Side and AC-Side
 Plug-On CM-Cores (NiZn-Ferrites) → Low Parasitics & Good HF-Att. up to 1GHz

→ Additional EMI Filter Volume Already Considered with Conducted EMI Filter → Total Power Density Slightly Reduces — $15kW/dm^3 \rightarrow 12kW/dm^3$

Experimental Results - Radiated EMI

- Measurement Setup
 Alternative Measurement Principle
- Y-Inverter Placed in Metallic Enclosure
 Measurement Setup
 Alternative Measurement Principle
 → Emulate Housing, but UNshielded Cables (!)
 → According IEC 61800-3
 → Conducted CM-Current Instead of Radiation

 \rightarrow Already Noticeable Noise Floor

 \rightarrow HF-Emissions Well Below Equivalent EMI-Limit \rightarrow Next Step: Verification Using Antenna

Current Source Inverter (CSI) Topologies

- **Phase** Modular Concept \rightarrow **Y-Inverter** (Buck-Stage / Current Link / Boost-Stage) 3- \oplus Integrated Concept \rightarrow Buck-Stage & Current DC-Link Inverter

→ Low Number of Ind. Components & Utilization of Bidir. GaN Semicond. Technology

$3-\Phi$ Integrated Buck-Boost CSI

Bidirectional/Bipolar Switches \rightarrow Positive DC-Side Voltage for Both Directions of Power Flow

• Monolithic Bidir. GaN Switches \rightarrow Factor 4 Reduction of Chip Area Comp. to Discrete Realization

- Power America Project Based on Infineon's CoolGaN^M HEMT Technology ($R_{DS(on)} = 70m\Omega$) (infineon Dual-Gate Device / Controllability of Both Current Directions
- **Bipolar Voltage Blocking Capability** | Normally On or Off

• Analysis of 4-Quardant Operation of $R_{DS(on)} = 140m\Omega$ Sample @ ±400V

63/40

3-Φ-Integrated Buck-Boost CSI

- "Synergetic" Control of Buck-Stage & CSI Stage
- 6-Pulse-Shaping of DC Current by Buck-Stage → Allows Clamping of a CSI-Phase

• Switching of Only 2 of 3 Phase Legs \rightarrow Reduction of Sw. Losses by \approx 86% (!)

3-Φ Integrated Buck-Boost CSI

- "Synergetic" Control of Buck-Stage & CSI Stage 6-Pulse-Shaping of DC Current by Buck-Stage \rightarrow Allows Clamping of One CSI-Phase

Operation for 30° Phase Shift of AC-Side Voltage & Current

Future Research

- Advanced DC/AC Topologies incl. CM-Filtering
 Extension of 2/3-PWM to Bipolar DC-Link Voltage 3-Φ AC/AC Converter
 Multi-Objective Design & Comparative Evaluation

• **Partial Use of "Normally-On" Switches** for Freewheeling in Case of Auxiliary Power Loss

ETH zürich

Remark 3-Ф AC/AC Matrix Converter

- Indirect Matrix Converter (IMC)
- CSI GaN M-BDS AC/DC Front-End ZCS Commutation of CSI Stage @ i_{DC} =0
- No 4-Step Commutation

- Direct Matrix Converter (CMC)
- 4-Step Commutation Exclusive Use of GaN M-BDSs

- **Higher # of Switches Compared to CMC**
- Lower Cond. Losses @ Low Output Voltage Thermally Critical @ $f_{out} \rightarrow 0$
- ____

- Thermally Critical @ $f_{out} \approx f_{in}$

3-Ф PFC Rectifier System

Synergetic Control ——— Matrix-Type Isolated Topology ——

Source: Porsche Mission-E Project

Selected EV Charger Topology

- Isolated Controlled Output Voltage
- Buck-Boost Functionality & Sinusoidal Input Current Applicability of 600V GaN M-BDSs High Power Density / Low Costs

 \rightarrow Conventional / Independent <u>OR</u> "Synergetic Control" of Input & Output Stage

Power Electronic Systems Laboratory

Conventional vs. "Synergetic" Control 11/ 1/3-Modulation \rightarrow Significant Red. of Losses of the Power Switches Comp. to 3/3-PWM *Conduction Losses* ≈ -80% Sector I Sector I 600 Switching Losses ≈ *-70%* u_{xz} \geq 400 200Voltage U. -200 q Duty Cycle Voltage (V) 2! -25 i_x x Current (A) 2! $u_{xy} \longrightarrow P_{xy}$ + -25 ¹D_{zā} $i_{\mathrm{D}_{\mathrm{z}\bar{\mathrm{a}}}}$ 50Current (A) 25 $u'_{yz} \downarrow P_{yz}$ + -25 D. -50 0 60 120180240300360 060 120180240300360 \mathbf{Z} ωt (°) ωt (°) → Operating Point Dependent Selection of 1/3-PWM OR 3/3-PWM for Min. Overall Losses

ETH zürich

AC/DC Stage Transition to Full-Boost Operation

→ Intermediate 2/3-Operation for Limiting DC-Link Center Point Current (Low DC-Cap.)

Isolated Matrix-Type Rectifier

Isolated 3- Φ Matrix-Type PFC Rectifier (1)

- Based on Dual Active Bridge (DAB) Concept Opt. Modulation $(t_1...t_4)$ for Min. Transformer RMS Curr. & ZVS or ZCS Allows Buck-Boost Operation

Transformer Voltages / Currents

Isolated 3- Φ Matrix-Type PFC Rectifier (2)

ETH zürich

3D-Packaging / Heterogeneous Integration

- System in Package (SiP) Approach Minim. of Parasitic Inductances / EMI Shielding / Integr. Thermal Management

0.91'

0.97

- Very High Power Density (No Bond Wires / Solder / Thermal Paste)
- Automated Manufacturing

- Future Application Up to 100kW (!)
 New Design Tools & Measurement Systems (!)
 University / Industry Technology Partnership (!)

Monolithic 3D-Integration

Source: Panasonic ISSCC 2014

- **Gan 3x3 Matrix Converter Chipset with Drive-By-Microwave (DBM) Technology**
- 9 Dual-Gate GaN AC-Switches
- DBM Gate Drive Transmitter Chip & Isolating Couplers
- Ultra Compact \rightarrow 25 x 18 mm² (600V, 10A 5kW Motor)

No Access to Inner Details / Only Terminal Waveforms Available for Measurement (!)

Measured Signals & Simulated Inner Voltages/Currents/Temp. Displayed Simultaneously
 Automatic Tuning of Simulation Parameter Models for Best Fit of Simulated/Measured Waveforms

PCB-Based 3-Port Resonant GaN DC/DC Converter

- Single Transformer & Decoupled Power Flow Control Charge Mode PFC \rightarrow HV (250...500V) SRC DCX / Const. f_{sw} , Min. Series Inductance / ZVS Drive Mode HV \rightarrow LV (10.5...15V) 2 Interleaved Buck-Converters / Var. f_{sw} / ZVS

P = 3.6 kW

• Peak Efficiency of 96.5% in Charge Mode / 95.5% in Drive Mode

HF Magnetic Materials & Ceramic Capacitors

- High Performance Factor of Low Permeability Magnetic Materials for 2...20MHz
 Volumetric Efficiency (uF/cm³) Improvement of MLCCs Exceeds Moore's Law (!)
 Hybrid Ind./Cap. Converter Concepts for Min. Magnetic Energy Storage Requirements

Performance Factor B.f Indicates Power Handling Capability @ Const. Loss Density & Core Volume

Digital Signal & Data Processing

- Exponentially Improving uC / Storage Technology (!)

- Fully Digital Control of Complex Systems
- Massive Computational Power \rightarrow Fully Automated Design & Manufacturing / Industrial IoT (IIoT)

Automated Design Roadmap

- **End-to-End Horizon** of Modeling & Simulation
- Design for Cost / Volume / Efficiency Target / Manufacturing / Testing / Reliability / Recycling

• AI-Based Summaries → No Other Way to Survive in a World of Exp. Increasing # of Publications (!)

Scaling Law – Power Electronics 4.0

- Metcalfe's Law
- Moving from Hub-Based Concept to Community Concept Increases Value Exponentially (~n(n-1) or ~n log(n))

• Automated Design / Digital Control / Digital Twin

S-Curve of Power Electronics

- Power Electronics $1.0 \rightarrow$ Power Electronics 4.0
- Identify "X-Concepts" / "Moon-Shot" Technologies
- 10x Improvement NOT Only 10% !

ETH zürich

Comparison to "Moores Law"

- "Moore's Law" Defines Consecutive Techn. Nodes Based on Min. Costs per Integr. Circuit (!)
- **Complexity for Min. Comp. Costs Increases approx. by Factor of 2 / Year**

Definition of " $\eta^*, \rho^*, \sigma^*, f_{P}^*$ -Node" Must Consider Conv. Type / Operating Range etc. (!)

Future Development

- **Commoditization / Standardization**
- **Extreme Cost Pressure (!)**

• Key Importance of Technology Partnerships of Academia & Industry

Thank you!

Appendix A ——

Accurate Measurement of SiC/GaN Power Semiconductor On-State & Switching Losses

On-State Voltage Measurement (1)

Device / Load Current / Gate Voltage / Junction Temp. \rightarrow **On State-Resistance** $R_{DS(on)}$

• Decoupling High Blocking Voltage and (Very) Low On-State Voltage (≈1V << BV_{DS})

On-State Voltage Measurement (2)

High Accuracy

→ Compensation of Decoupling Diode Forward Voltage
 → Valid Measurement 50ns After Turn-On

Fast Dyn. Response \rightarrow Valid Measurement 50ns After Turn

• Example – Dyn. $R_{DS(on)}$ of GaN HEMTs $\rightarrow 2x R_{DS(on)} @ 100 kHz - 0.6 BV_{DS}$

Switching Loss Measurement

■ Heat-Sink Temp.-Based Transient Calorim. Method → 15 min / Measurement

■ Case Temp.-Based Ultra-Fast Method → 15 sec / Measurement

Example Measurement Results

■ 650V GaN (ZVS)

■ 1.2kV SiC (Hard-Sw.)

ETH zürich

— Appendix B —

T-Type M-BDS Topology Integr. Active Filter PFC Rectifier Swiss Rectifier

- Application of 600V M-BDSs @ U_{pn}= 800V in Combination w/ 1200V SiC MOSFETs
 Hard-Switching Cont. Cond. Mode (CCM) or ZVS TCM Operation

• Max. Power Density | 98.4% Efficiency @ CCM w/ f_{sw}= 550kHz

Integr. Active Filter (IAF) Rectifier

Non-Sinusoidal Mains Current

- → P₀= const. Required
 → 3-Φ Unfolder Front End
 → 3rd Harmonic Injection in Middle Phase
 → Basic Idea: M. Jantsch, 1997 (for PV Inv.)

IAF Rectifier Demonstrator

- Efficiency η > 99.1% @ 60% Rated Load
- Mains Current $THD_I \approx 2\%$ @ Rated Load Power Density $\rho \approx 4$ kW/dm³

 $\begin{array}{l} P_0 = 8 \text{ kW} \\ U_N = 400 \text{V}_{AC} \rightarrow U_0 = 400 \text{V}_{DC} \\ f_S = 27 \text{ kHz} \end{array}$

400

200

-200

-400 20

0

Voltage in V

 $u_{\rm b}$

 $u_{\rm c}$

240

300

360

ETH zürich

ETH zürich

Swiss Rectifier Demonstrator

- Efficiency η = 99.26% @ 60% Rated Load
- Mains Current $THD_I \approx 0.5\%$ @ Rated Load Power Density $\rho \approx 4kW/dm^3$

SiC Power MOSFETs & Diodes Integr. CM Coupled Output Inductors (ICMCI)

- The END -

