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… BUT Lots of Opportunities & Some Challenges ;-)
3-Φ SiC/GaN Converter Systems
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Power 
Electronics

Cross-Disciplinary

Mechanical Eng., e.g.
Turbomachinery, Robotics

Microsystems
Medical Systems 

Actuators /
El. Machines

Research Scope

• Explore the Limits / Create New Concepts / Push the Envelope  
• Maximize Technology Utilization 
• Enable New Applications



Market Pull / Technology Push 



Required Performance Improvements

─ Power Density   [kW/dm3]
─ Power per Unit Weight  [kW/kg]
─ Relative Costs    [kW/$]
─ Relative Losses  [%]
─ Failure Rate    [h-1]

[kgFe /kW] 
[kgCu /kW]
[kgAl /kW]
[cm2

Si /kW]

►

►

Environmental Impact…

• Connected Cognitive Power Electronic Systems   Power Electronics 4.0  
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■ Power Electronics 1.0  Power Electronics 4.0
■ Identify  “X-Concepts” / “Moon-Shot” Technologies
■ 10 x Improvement NOT Only 10% !

S-Curve of Power Electronics

Power MOSFETs & IGBTs
Circuit Topologies

Microelectronics
Modulation Concepts

Control Concepts

Super-Junct. Techn. / WBG
Digital Power

Modeling &  Simulation

2025
2015

►

►
►

SCRs / Diodes 
Solid-State Devices

■

►

►

1958

4.0

3.0

2.0

1.0

Performance 
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State-of-the-Art
Future Requirements

3-Φ Variable Speed Drive 
Inverter Systems

Source:  
PowerAmerica



Variable Speed Drive (VSD) Systems 
■ Industry Automation / Robotics
■ Material Machining / Processing – Drilling, Milling, etc. 
■ Compressors / Pumps / Fans 
■ Transportation
■ etc., etc.                                    …. Everywhere !

● 60…70 % of All Electric Energy Used in Industry Consumed by VSDs   

Source:
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State-of-the-Art
■ Mains Interface / 3-Φ PWM Inverter / Cable / Motor  — Large Installation Space / Complicated
■ Conducted EMI / Radiated EMI / Reflections on Long Motor Cables / Bearing Currents 

● High Performance @ High Level of Complexity / High Costs (!)  

Source:  FLUKE
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Surge Voltage Reflections
■ Long Motor Cable lc ≥ ½ tr v
■ Short Rise Time of Inverter Output Voltage   
■ Impedance Mismatch of Cable & Motor   Reflect. @ Motor Terminals / High Insul. Stress

Source:  Bakran / ECPE 2019

 dv/dt- OR  Full-Sinewave Filtering / Termination & Matching Networks etc. 


SiC
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■ Switching Frequency CM Inverter Output Voltage  Motor Shaft Voltage
■ Electrical Discharge in the Bearing (“EDM”)

 Cond. Grease / Ceram. Bearings / Shaft Grndg Brushes / dv/dt- OR  Full-Sinewave Filters

Source: 
BOSCH

Motor Bearing Currents

Source: www.est-aegis.com

Source: 
Switchcraft
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● Main “Enablers”   SiC/GaN Power Semiconductors  & Adv. Inverter Topologies 

Source:

VSD Inverter - Future Requirements
■ “Non-Expert” Installation / “Sinus-Inverter” OR Motor-Integrated Inverter
■ Low Losses   &  Low HF Motor Losses
■ Low Volume & Weight
■ Wide Output Voltage Range
■ High Output Frequencies
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X-Technology #1 Wide Bandgap
Power Semiconductors



Si vs. SiC
■ Si-IGBT / Diode    Const. On-State Voltage, Turn-Off Tail Current  &  Diode Reverse Recovery Current  
■ SiC-MOSFET    Massive Loss Reduction @ Part Load  BUT  Higher Rth

1200V  100A
Die Size:  25.6mm2

1200V  100A
Die Size: 98.8mm2 + 39.4mm2

6x Si-IGBT 
6x Si-Diode 

Source:  Cree

Source:  
ATZ elektronik
2018

6x SiC-MOSFET 

● Space Saving of  >30% on Module Level (!)
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■ Higher Critical E-Field of SiC  Thinner Drift Layer
■ Higher Maximum Junction Temperature Tj,max

● Massive Reduction of Relative On-Resistance  High Blocking Voltage Unipolar Devices 






For 1kV:



Low RDS(on) High-Voltage Devices 

9/84



Si vs. SiC Conduction Behavior 

● Efficiency Characteristic Considering Only Conduction Losses 

■ Si-IGBT           Const. On-State Voltage Drop / Rel. Low Switching Speed, 
■ SiC-MOSFETs   Resistive On-State Behavior / Factor 10 Higher Sw. Speed

1200V  100A
Die Size:  25.6mm2

1200V  100A
Die Size: 98.8mm2 + 39.4mm2

Source:  CreeSource:  Infineon
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Si vs. SiC Switching Behavior 

● Extremely High  di/dt & dv/dt  Challenges in Packaging / EMI / Motor Insulation / Bearing Currents   

■ Si-IGBT           Const. On-State Voltage Drop / Rel. Low Switching Speed, 
■ SiC-MOSFETs   Resistive On-State Behavior / Factor 10 Higher Sw. Speed

1200V  100A
Die Size:  25.6mm2

1200V  100A
Die Size: 98.8mm2 + 39.4mm2

Source:  CreeSource:  Infineon

Source: Fuji Electric
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Challenges



■ Extremely High  di/dt
■ Commutation Loop Inductance LS
■ Allowed Ls Directly Related to Switching Time ts   




● Advanced Packaging  & Parallel Interleaving for Partitioning of Large Currents

Circuit Parasitics





Parallel
Connection
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Si vs. SiC EMI Emissions 
■ Higher dv/dt  Factor 10
■ Higher Switching Frequencies     Factor 10 
■ EMI  Envelope Shifted to Higher Frequencies

● Higher Influence of Filter Component Parasitics & Couplings   Advanced Design

fS= 10kHz    &    5 kV/us for (Si IGBT)
fS= 100kHz  &  50 kV/us for (SiC MOSFET)

VDC = 800V
DC/DC @ D= 50%

Si
SiC
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dv/dt-Filters
Full-Sinewave Filters

Inverter Output Filters



dv/dt-Control



■ Passive – Damped LC-Filter fC > fS
■ Hybrid  – Undamped LC-Filter  & Multi-Step Sw. Transition
■ Active  – Gate-Drive Based Shaping of Sw. Transients

Passive |Hybrid|Active dv/dt-Limitation 

fsw = 16kHz
tR= tF= 130ns
fC = 2.4 MHz 

14/84

● Connection to DC-Minus &  CM Inductor   Limit CM Curr. Spikes / EMI / Bearing Currents

!



■ Output Voltage Waveforms  — VDC = 800V, Pout = 10kW, 6kV/us 

Comparison of dv/dt-Filtering Techniques (1) 

■ Active Concept  ■ Passive Concept ■ Hybrid Concept (3fS) 
1.  Miller Capacitor
2.  Gate Curr. Control

1.  LCR-Filter
2.  Clamped LC-Filter

1.  LC-Filter
2.  Multi-Step Switching

1200V SiC / 16mΩ
CM = 120pF

L = 3.8uH
C = 2.7nF 
R = 19Ω

L = 4.1uH
C = 1.3nF
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■ Losses / Power Density – VDC = 800V, Pout = 10kW, fsw = 16kHz, 1200V SiC-MOSFETs (16mΩ)

● Comparative Evaluation of 
Passive & Active Concept  

16/84

Comparison of dv/dt-Filtering Techniques (2) 



Inverter Systems w/
Sinusoidal Output Voltages 



● Only 33% Increase of Transistor Conduction Losses Compared to CCM (!)
● Very Wide Switching Frequency Variation  

ZVS/TCM Operation 
■ Sinusoidal Output Voltage
■ ZVS of Inverter Bridge-Legs 
■ High Sw. Frequency & TCM  Low Filter Inductor Volume 
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TCM  B-TCM
■ Very Wide Switching Frequency Variation of TCM  B-TCM 

● TCM  B-TCM — 10% Further Increase of Transistor Conduction Losses 
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B-TCM  S-TCM
■ Sinusoidal Switching Boundaries  S-TCM
■ Adaption for Low Output Power Considering fsw,max= 140kHz

● TCM  S-TCM  ≈   10% Further Increase of Transistor Conduction Losses 
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Residual ZVS Losses 
■ Overlap of uDS & Channel Current ich @ High Isw > Ik
■ Temporary Turn-on Due to uGS,i > uth

● “Kink” Current IK Dependent on Inner & Outer Gate Resistance & ug,n

650V SiC, UDC = 400V
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CCM & 2-Stage Full-Sinewave Output Filter (1)  

 Evaluation of Optimized Inductors  — Soft Sat. Toroidal Iron Powder Cores
 L1=200uH (OD57S) / C1=2.5uF / L2=25uH (OD20S) / C2=2.5uF / Ld=33uH / Rd=5.6Ω

■ Sinewave Output &  IEC/EN 55011 Class-A 
■ Low-Loss Active Damping of 1st Filter Stage  — Neg. Cap. Current Feedback
■ 2kW / 400V DC-Link 3-Φ 650V GaN Inverter (IM=5A), fout,max = 500Hz 
■ Sw. Frequency  fS= 100kHz 

fC,1=7kHz

fC,2=20kHz

H. Ertl et al.
(2018)
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● Stationary Motor Phase Curr. /Voltage @ 2.5Nm & fout=250Hz
● Speed Increase from Standstill to n = 3000rpm in 60ms

■ Exp. Verification  — 650V E-Mode GaN Systems Transistors (50mΩ)
■ Sw. Frequency  fS= 100kHz, Efficiency  ≈98%
■ 200mm x 250mm

iC Measurement





22/84

CCM & 2-Stage Full-Sinewave Output Filter (2)  



● Modified Filter  Compliance to EMI Standard EN55011 Class-A 

■ Modification of Output Filter Structure 
■ Elimination of Direct Cap. Coupling Between Output and Noisy (!) DC+ (Due to RDC) 
■ For Opt. iC -Feedback C1 Realized Using ≈Linear Kemet KC-Link 

Symmetric Filter

Modified Filter

modified

symmetric

!
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CCM & 2-Stage Full-Sinewave Output Filter (3)  



Multi-Level / -Cell 
Converters & ModularityX-Technology #2



● D-FOM = D-FOM(Udc/N)   Results in  ML-Performance (X-FOM) Dependent on N  

Multi-Level (ML) Converter Scaling 
■ 1/N Reduction of Blocking Voltage   Lower RDS,(on) Semiconductors  (Ron‘~ UB

2)
■ Eff. Increase of Sw. Frequency      fsw,eff = N fsw (fsw … Individual Device)
■ Larger Chip Area  and/or  Smaller LO

# = 3

# =5

# =7

N= # of Levels -1 

24/84

# of Levels= 2



● Risk of Transistor Overvoltage for Steep Udc Changes  

Functional Principle of ML-Converters
■ 3-Level Flying Cap. (FC) Converter Requires No Connection to DC-Midpoint
■ Involves All Switches in Voltage Generation  Eff. Doubles Device Sw. Frequency 
■ FC Voltage Balancing Possible also for DC Output  
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Scaling of ML Bridge-Leg Concepts
■ Reduced Ripple @ Same (!) Switching Losses
■ Lower Overall On-Resistance @ Given Blocking Voltage  1+1=2 NOT 2 2 = 4 (!)
■ Application of LV Technology to HV

 





 !

● Scalability / Manufacturability / Standardization / Impedance Matching / Redundancy  

26/84

!
fsw



Psemi,min,ML ≈ 1/N1.2 Psemi,min,2L
Achip,ML ≈ N1.2Achip,2L

X-FOM of ML-Bridge-Legs
■ Quantifies Bridge-Leg Performance of N-Level FC Converters  
■ Identifies Max. Achievable Efficiency & Loss Opt. Chip Area @ Given Sw. Frequ. 

N= # of Levels -1 

● Compared to 2-Level Benchmark         
@ Same Filter Ind. Volt-Seconds

    
 
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7-Level Flying Cap. 200V GaN Inverter (1)
■ DC-Link Voltage  800V
■ Rated Power          2.2 kW / Phase 
■ 99% Efficiency  Natural Convection Cooling (!) 

● High Effective Sw. Frequency (6 x 30kHz = 180kHz)   Small Filter Inductor LO

260 W/in3
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● High Effective Sw. Frequency (6 x 30kHz = 180kHz)   Small Filter Inductor LO

29/84

■ DC-Link Voltage  800V
■ Rated Power          2.2 kW / Phase 
■ 99% Efficiency  Natural Convection Cooling (!) 

260 W/in3

7-Level Flying Cap. 200V GaN Inverter (2)



■ Realization of a 99%++ Efficient 10kW 3-Φ 400Vrms,ll Inverter System
■ 7-Level Hybrid Active NPC Topology  / LV Si-Technology 

99.35%
2.6kW/kg 
56 W/in3

30/84

● 200V Si  200V GaN Technology Results in 99.5% Efficiency

3-Φ Hybrid Multi-Level Inverter Demonstrator



Quasi-2L/3L
Flying Capacitor Inverter



■ Operation of N-Level Topology in 2-Level or 3-Level Mode 
■ Intermediate Voltage Levels Only Used During Sw. Transients  
■ Applicability to All Types of Multi-Level Converters     

Q3L  Q2L  

31/84

Quasi-2L & Quasi-3L Inverters (1)

● Reduced Average dv/dt Lower EMI / Lower Reflection Overvoltages
● Clear Partitioning of Overall Blocking Voltage   &   Small Flying Capacitors  
● Low Voltage/Low RDS(on)/Low $ MOSFETs  High Efficiency / No Heatsinks / SMD Packages  

- Schweizer (2017)



Quasi-2L & Quasi-3L Inverters (2)

- Schweizer (2017)

EMI Filter

3.5kW/dm3

Eff. ≈ 99%

3.3kW @ 230Vrms /50Hz
Equiv. fS= 48kHz

■ Operation of 5L Bridge-Leg Topology in Quasi-3L Mode 
■ Intermediate Voltage Levels Only Used During Sw. Transients  
■ Applicability to All Types of Multi-Level Converters     

● Reduced Average dv/dt Lower EMI / Lower Reflection Overvoltages
● Clear Partitioning of Overall Blocking Voltage   &   Small Flying Capacitors  
● Low Voltage/Low RDS(on)/Low $ MOSFETs  High Efficiency / No Heatsinks / SMD Packages  
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- Schweizer (2017)

Operation @ 3.2kW

— Conv. Output Voltage 
— Sw. Stage Output Voltage
— Flying Cap. (FC) Voltage
— Q-FC Voltage (Uncntrl.)

— Output Current   
— Conv. Side Current

33/84

Quasi-2L & Quasi-3L Inverters (3)
■ Operation of 5L Bridge-Leg Topology in Quasi-3L Mode 
■ Intermediate Voltage Levels Only Used During Sw. Transients  
■ Applicability to All Types of Multi-Level Converters     

● Reduced Average dv/dt Lower EMI / Lower Reflection Overvoltages
● Clear Partitioning of Overall Blocking Voltage   &   Small Flying Capacitors  
● Low Voltage/Low RDS(on)/Low $ MOSFETs  High Efficiency / No Heatsinks / SMD Packages  



650V GaN E-HEMT Technology
fS,eff= 4.8MHz
fout = 100kHz

Ultra-Compact
Power Module with
Integrated Filter



Integrated Filter GaN Half-Bridge Module  

 Target:  Best Combination of Multiple Levels (M) & Parallel Branches (N) 

■ Minimization of Filter Volume by Series & Parallel Interleaving & Extreme Sw. Frequency 
■ Handling of DC Output Requires Flying Capacitor Approach for Series Interleaving

fS,eff= (M-1) ∙ fS

fS,eff= N ∙ fS

M=5

N=4
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● Operation @ fout=100kHz / fS,eff= 4.8MHz, 10kW, Udc=800V 

■ Combination of Series & Parallel Interleaving

— 600V GaN Power Semiconductors, fsw= 800kHz
— Volume of ≈180cm3 (incl. Control etc.)
— H2O Cooling Through Baseplate

≈ 820 W/in3

35/84

4.8MHz GaN Half-Bridge Phase Module  
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High-BW High-CMRR Current Measurement

● Hall Sensor Bandwidth fHall = 1.6MHz
● Rogowski Coil High-Pass Corner Frequency fint=1kHz 
● Low/High-Pass Filter Cross-Over Network ffilter = 24kHz

■ Extension of  Commercial Hall Sensor DC … fHall≈ 500kHz  DC …20MHz
■ Low-Pass & High-Pass Filter Network Combining HF-Sensor & LF Hall-Sensor



Motor-Integrated 
Inverter Systems



Stacked-Multi-Cell (SMC) Inverter
■ Fault-Tolerant VSD
■ Low-Voltage Inverter Modules
■ Very-High Efficiency / Power Density  
■ Automated Manufacturing

■ Rated Power         45kW  / fout = 2kHz
■ DC-Link Voltage   1 kV 

● Smart Motor / Plug & Play  | Connected / Intelligent VSD 4.0
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Motor-Integrated SMC 200V GaN-Inverter

● Main Challenge  — Thermal Coupling/Decoupling of Motor & Inverter 

■ Rated Power         9kW @ 3700rpm
■ DC-Link Voltage   650V…720V
■ 3-Φ Power Cells   5+1
■ Outer Diameter    220mm

— Axial Stator Mount
— 200V GaN e-FETs
— Low-Capacitance DC-Links
— 45mm x 58mm / Cell
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U

1
2 U

210 W/in3

98  W/in3
● Advantages   — Lower Sw. Losses & Lower # of Filter Inductors  

■ Comparison to Conv. 
2-Level Inverter + Front-End
DC/DC Boost-Stage

Double-Bridge (DB) Inverter  

Ub = 40V…120V
P = 1.0kW
fs = 300kHz (200V EPC GaN)
fo = 5kHz
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Cooling water inlet

Cooling water outlet

Electrical 

connector

RotorImpeller

Journal gas bearing

Thrust 

bearing

Cooling water 

channels

Compressor 

inlet

Compressor 

outlet

Control 

electronics

Power 

electronics

Motor - power 

electronics  

connection

Power electronics - 

electronical connector 

connection

Control electronics –  

power electronics

connection

Output 

filter

Motor 

stator

Battery start 

switch (not 

visible)Power 

semiconductors
Battery start 

diode
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Turbo-Compressor-Integrated DB GaN-Inverter
■ E-Mobility 5…15kW Fuel Cell Pressurized Air Supply
■ 1kW Rated Power, fsw=300kHz  | n= 280‘000rpm / fout= 4.6kHz 
■ Low EMI / Low Cabling Effort 

● Integration  2x System Power Density | 97%  98.5% Inverter Efficiency   

ULV

UFC

ia ib ic

dq
abc

iq* uq*

ud*
ω*

ω

id*=0

ε 

id

iq

dq

abc

Modulator

ua*
ub*
uc*

battery start circuit

speed 
controller

current 
controller

Observer

PMSM



Cabinet

3-Φ 650V GaN Motor-Integrated Inverter  Source: 

■ Sigma-7F Servo Drive — Motor Integration of DC/AC Stage (TO-220 GaN) 
■ Distributed DC-Link System — Single AC/DC Converter / Smaller Cabinet  
■ 0.1 – 0.4kW  / 270…324V Nominal DC-Link Voltage

Inverter
Stage

DC Power
Network

● Small Size (0.4 kW  @ 70 x 70x 170mm)
● Massive Saving in Cabling Effort / Simplified Installation  
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Overload  | Thermal Limit



● 200V GaN vs. Si (Multi-Level Inverter) Comparison  

■ Highly Dynamic Robotics VSDs   3x … 5x Rated Torque for Seconds
■ Small Chip Area  Low Thermal Time Constant of GaN HEMTs 
■ Trade-Off  Between Overload Rating & Rated Power Efficiency 

Overload Capability
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Functional Integration &
Synergetic AssociationX-Technology #3



■ General / Wide Applicability 

● No Add. Converter for Voltage Adaption  Single-Stage Energy Conversion

Source: magazine.fev.com

Motivation

— Adaption of (Load-Dependent) Supply Voltage  &  Motor Voltage 
— Wide Speed Range   Wide Output Voltage Range
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Buck-Boost
Y-Inverter



Derivation of Buck-Boost Y-Inverter

● Switch-Mode Operation of Buck OR Boost Stage  Single-Stage Energy Conversion (!)
● 3-Φ Continuous Sinusoidal Output / Low EMI  No Shielded Cables / No Insul. Stress
● Standard Bridge-Legs / Building Blocks  1.2kV SiC MOSFETs

■ Generation of  AC-Voltages  Using Unipolar  Bridge-Legs 


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Sinusoidal Modulation  

■ Y-Inverter 

■ Motor Phase Voltages  



● Const. DC Offset   Strictly Positive Output Voltages uaN, ubN, ucN
● Mutually Exclusive Operation of the Half-Bridges  Low Switching Losses
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Boost-Operation uan > Ui 

■ Phase-Module 

■ Motor Phase Voltages  

● Current-Source-Type Operation 
● Clamping of Buck-Bridge High-Side Switch   Quasi Single-Stage Energy Conversion 
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Buck-Operation uan < Ui

■ Motor Phase Voltages  

■ Phase-Module 

● Voltage-Source-Type Operation 
● Clamping of Boost-Bridge High-Side Switch   Quasi Single-Stage Energy Conversion 
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Discontinuous  Modulation  

■ Y-Inverter 

■ Motor Phase Voltages  

● Clamping of Each Phase for 1/3 of the Fund. Period  Low Switching Losses (!)
● Non-Sinusoidal Module Output Voltages  / Sinusoidal Line-to-Line Voltages
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Control Structure 
● Motor Speed Control  

■ Cascaded Current / Voltage / Current Control Loops
■ Seamless Transition between Boost- & Buck-Mode   “Democratic” Control
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● Max. Output Power   6…11 kW
● Output Frequency Range    0…500Hz
● Output Voltage Ripple            3.2V Peak @ Output of Add. LC-Filter 

● Wide DC Input Voltage Range   400…750VDC
● Max. Input Current              ± 15A

■ Demonstrator Specifications

Y-Inverter VSD
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■ Dimensions   160 x 110 x 42 mm3 (245W/in3)

Control 
Board

Main 
Inductors

3Φ Output

● DC Voltage Range  400…750VDC
● Max. Input Current ± 15A
● Output Voltage        0…230Vrms (Phase)
● Output Frequency   0…500Hz
● Sw. Frequency      100kHz
● 3x SiC (75mΩ)/1200V per Switch 
● IMS Carrying Buck/Boost-Stage Transistors & Comm. Caps & 2nd Filter Ind.  

Output Filter
Inductors

DC Input

Y-Inverter Demonstrator  
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● Line-to-Line Output Voltage Ripple < 3.2V   

100V/div
10A/div

■ Stationary Operation

uDC

iL

uS,a

200V/div
1V/div

uab

∆uab

UDC=   400V
UAC=   400Vrms (Motor Line-to-Line Voltage) 
fO =   50Hz
fS =   100kHz / Discontinuous PWM

P  =   6.5kW

Y-Inverter - Measurement Results 
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 Multi-Level Bridge-Leg Structure for Increase of Power Density @ Same Efficiency 

Efficiency Measurements
● Dependency on Input Voltage  &  Output Power Level   

UDC=   400V / 600V
UAC=   230Vrms (Motor Phase-Voltage)
fS =   100kHz
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EMI-Limits (VSD Product Standard)

■ EMI-Filter Design for Unshielded Cables > 2m and Resid. Applications (Cond. & Rad.) 

● IEC 61800-3  Product Standard for Variable-Speed Motor Drives
● EMI Emission Limits  Grid Interface (GI) and Power Interface (PI)
● Application  Residential (C1) or Industrial (C2)
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● Separate Cond. DM & CM EMI-Filter on DC-Side & DC-Minus Ref. EMI-Filter on AC-Side

Lf2

Cf2 (on the back)

 Low Add. EMI Filter Volume — 74cm3 for Each Filter (incl. Toroid. Rad. EMI Filter) 
 Total Power Density Reduces  — 15kW/dm3 (740cm3)  12kW/dm3 (890cm3) 

Conducted EMI-Filter  

LCM LDM CDM = C0
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Conducted EMI - Experimental Results
● Measurements of the Cond. EMI Noise on the AC-Side (QP, with 50Hz AC-LISN) 

 Small 80uH CM-Ind. Added on AC-Side - (3cm3 of Add. Volume = 0.5% of Converter Vol.)
 Conducted EMI with Unshielded Motor Cable Fulfilled
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Measurement of Radiated EMI-Noise (1)

■ Either Open-Area Test Site (OATS) or Special Semi-Anechoic Chamber (SAC) Needed
■ Alternative Pre-Compliance Measurement Method

● Equipment Under Test (EUT) Placed on Wooden Table with Specified Arrangement
● CM Absorption Devices (CMAD) Terminate All Cables on AC- & DC-Side (Total lcable ≈ 1.5m)
● Measurement of Radiated Noise with Antenna in 3m Distance 

[IEC 61800-3]
[Schwarzbeck]
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[Electromagnetic Compatibility Engineering, H. Ott]

[Fischer FCC F-33-1]
up to 250MHz
Znom = 6.3Ω

Measurement of Radiated EMI-Noise (2)
● CM-Currents NOT Returning IN THE CABLE are Dominant Source of Radiation
● Relation Between Radiated Electric Field and CM-Currents (!)

■ Max. Allow. El. Field Strength of 40dBuV/m  Max. CM-Current of 3.5uA (11dBuA)
■ Current Probe Impedance of 6.3Ω (F-33-1)  Max. Noise Volt. of 26dBuV @ Test Receiver 
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Radiated EMI-Filter Design  

LHF LHF

Cf2 (on the back)CY2,DC (on the back)

 Additional EMI Filter Volume Already Considered with Conducted EMI Filter
 Total Power Density Slightly Reduces — 15kW/dm3

 12kW/dm3

● Single-Stage HF CM-Filter on DC-Side and AC-Side 
● Plug-On CM-Cores (NiZn-Ferrites)  Low Parasitics & Good HF-Att. up to 1GHz
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Experimental Results - Radiated EMI
● Y-Inverter Placed in Metallic Enclosure  Emulate Housing, but UNshielded Cables (!)
● Measurement Setup  According IEC 61800-3
● Alternative Measurement Principle  Conducted CM-Current Instead of Radiation

 Already Noticeable Noise Floor
 HF-Emissions Well Below Equivalent EMI-Limit  Next Step: Verification Using Antenna
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Current Source Inverter (CSI) Topologies   
■ Phase Modular Concept   Y-Inverter (Buck-Stage / Current Link / Boost-Stage)  
■ 3-Φ Integrated Concept  Buck-Stage & Current DC-Link Inverter

 Low Number of Ind. Components   &   Utilization of Bidir. GaN Semicond. Technology 




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■ Bidirectional/Bipolar Switches  Positive DC-Side Voltage for Both Directions of Power Flow

● Monolithic Bidir. GaN Switches  Factor 4 Reduction of Chip Area Comp. to Discrete Realization

Source:

3-Φ Integrated Buck-Boost CSI
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63/40

■ Power America Project — Based on Infineon’s CoolGaN™ HEMT Technology (RDS(on)= 70mΩ)
■ Dual-Gate Device / Controllability of Both Current Directions 
■ Bipolar Voltage Blocking Capability  |  Normally On or Off

● Analysis of 4-Quardant Operation of RDS(on)= 140mΩ Sample @ ± 400V

600V GaN Monolithic Bidir. Switch (M-BDS)



■ “Synergetic” Control of Buck-Stage & CSI Stage 
■ 6-Pulse-Shaping of DC Current by Buck-Stage   Allows Clamping of a CSI-Phase 



3-Φ-Integrated Buck-Boost CSI

● Switching of Only 2 of 3 Phase Legs  Reduction of Sw. Losses by ≈ 86% (!)
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● Operation for 30°Phase Shift of AC-Side Voltage & Current

3-Φ Integrated Buck-Boost CSI    



■ “Synergetic” Control of Buck-Stage & CSI Stage 
■ 6-Pulse-Shaping of DC Current by Buck-Stage   Allows Clamping of One CSI-Phase 
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● Partial Use of “Normally-On” Switches for Freewheeling in Case of Auxiliary Power Loss  

■ Advanced DC/AC Topologies  incl. CM-Filtering  
■ Extension of  2/3-PWM to Bipolar DC-Link Voltage 3-Φ AC/AC Converter
■ Multi-Objective Design & Comparative Evaluation

Future Research 
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3-Φ AC/AC Matrix Converter

■ Indirect Matrix Converter (IMC)

67/84

■ Direct Matrix Converter (CMC)
● CSI GaN M-BDS AC/DC Front-End 
● ZCS Commutation of CSI Stage @ iDC=0  
● No 4-Step Commutation

— Higher # of Switches Compared to CMC
— Lower Cond. Losses @ Low Output Voltage
— Thermally Critical @ fout  0

● 4-Step Commutation 
● Exclusive Use of GaN M-BDSs 

— Thermally Critical @ fout ≈ fin



Synergetic Control
Matrix-Type Isolated Topology

3-Φ PFC Rectifier System

Source: Porsche 
Mission-E Project



Selected EV Charger Topology

Source: SIEMENS

■ Isolated Controlled Output Voltage 
■ Buck-Boost Functionality & Sinusoidal Input Current  
■ Applicability of 600V GaN M-BDSs   
■ High Power Density / Low Costs

 Conventional / Independent  OR “Synergetic Control” of Input & Output Stage 
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Conventional  vs. “Synergetic” Control 

 Operating Point Dependent Selection of  1/3-PWM OR 3/3-PWM  for  Min. Overall Losses  

■ 1/3-Modulation  Significant Red. of Losses of the Power Switches Comp. to 3/3-PWM

■ Conduction Losses   ≈ -80%
■ Switching Losses     ≈ -70%
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AC/DC Stage Transition to Full-Boost Operation 

■ Different Operating Regimes    Synergetic Partial-Boost                 Full-Boost

 Intermediate 2/3-Operation for Limiting DC-Link Center Point Current (Low DC-Cap.)  
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Isolated Matrix-Type  Rectifier



■ Based on Dual Active Bridge (DAB) Concept
■ Opt. Modulation (t1…t4) for Min. Transformer RMS Curr. &  ZVS or ZCS
■ Allows Buck-Boost Operation

► Equivalent Circuit ► Transformer Voltages / Currents

Isolated 3-Φ Matrix-Type PFC Rectifier (1)  
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► 900V / 10mΩ SiC Power MOSFETs 
► Opt. Modulation Based on 3D Look-Up Table

PO= 8 kW
UN= 400VAC UO= 400VDC
fS  = 36kHz

■ Efficiency η = 98.9% @ 60% Rated Load (ZVS)
■ Mains Current THDI ≈ 4% @ Rated Load 
■ Power Density ρ ≈ 4kW/dm3

10A/div
200V/div
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≈ 99%

Isolated 3-Φ Matrix-Type PFC Rectifier (2)  



3D-Packaging
Automated ManufacturingX-Technology #4



3D-Packaging / Heterogeneous Integration 
■ System in Package (SiP) Approach
■ Minim. of Parasitic Inductances / EMI Shielding / Integr. Thermal Management
■ Very High Power Density (No Bond Wires / Solder / Thermal Paste)
■ Automated Manufacturing 

● Future Application Up to 100kW (!)
● New Design Tools   &   Measurement Systems (!)
● University / Industry Technology Partnership (!)





Source:   
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Monolithic 3D-Integration 
■ GaN 3x3 Matrix Converter Chipset with Drive-By-Microwave (DBM) Technology 

– 9 Dual-Gate GaN AC-Switches
– DBM Gate Drive Transmitter Chip  & Isolating Couplers
– Ultra Compact  25 x 18 mm2 (600V, 10A – 5kW Motor)

Source:                               ISSCC 2014

5.0GHz Isolated (5kVDC) Dividing Coupler
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– Future Experimental Analysis

► Convergence of  Measurement & Simulation “Augmented Reality” Oscilloscope
► Measured Signals &  Simulated Inner Voltages/Currents/Temp. Displayed Simultaneously
► Automatic Tuning of Simulation Parameter Models for Best Fit of Simulated/Measured Waveforms

■ No Access to Inner Details  / Only Terminal Waveforms Available for Measurement (!)
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PCB-Based 3-Port Resonant GaN DC/DC Converter 
■ Single Transformer & Decoupled Power Flow Control 
■ Charge Mode PFC  HV  (250…500V)  SRC DCX / Const. fsw , Min. Series Inductance / ZVS 
■ Drive Mode    HV  LV   (10.5…15V)  2 Interleaved Buck-Converters / Var. fsw / ZVS
■ P = 3.6kW

● Peak Efficiency  of 96.5% in Charge Mode / 95.5% in Drive Mode

≈ 16 kW/dm3



X-Technology  #5 Ceramic Capacitors 
HF (NiZn) Magnetics 
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HF Magnetic Materials & Ceramic Capacitors
■ High Performance Factor of Low Permeability Magnetic Materials for 2…20MHz  
■ Volumetric Efficiency (uF/cm3) Improvement of MLCCs Exceeds Moore´s Law (!)
■ Hybrid Ind./Cap. Converter Concepts for Min. Magnetic Energy Storage Requirements

● Performance Factor B• f  Indicates Power Handling Capability @ Const. Loss Density & Core Volume

Source: A.J. Hanson, 2016

Source: R. Pilawa, 2017



X-Technology  #6 Automated Design
Digital Twin / Industry 4.0 



Digital Signal & Data Processing 

■ Exponentially Improving uC / Storage Technology (!)

— Extreme Levels of Density / Processing Speed
— Software Defined Functions / Flexibility 
— Cont. Relative Cost Reduction

● Fully Digital Control of Complex Systems
● Massive Computational Power  Fully Automated Design & Manufacturing  / Industrial IoT (IIoT)

Source:  Ostendorf & König /DeGruyter
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State-of-the-Art
– User Defined Models 

and Simulation / 
Fragmented  

Assisted Design
– Support of the User with 

Abstracted Database of 
Former Designs

Augmented Design
– Suggestion of Design 

Details Based on
Previous Designs

Autonomous Design Design 4.0
– Independent Generation 

of Full Designs for Final 
Expert Judgement  

■ End-to-End Horizon of Modeling & Simulation 
■ Design for Cost / Volume / Efficiency Target / Manufacturing / Testing / Reliability / Recycling  

● AI-Based Summaries  No Other Way to Survive in a World of Exp. Increasing # of Publications (!)

Automated Design Roadmap 
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■ Metcalfe's Law

Scaling Law – Power Electronics 4.0  



– Moving from Hub-Based Concept
to Community Concept Increases
Value Exponentially (~n(n-1)  or
~n log(n) )

ValueSource:
Pixabay

● Automated Design / Digital Control / Digital Twin 
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─ Low On-Resistance & High Sw. Speed SiC / GaN
─ Monolithic Bidirectional GaN
─ Integration of Switch / Gate Drive / Sensing / Monitoring 
─ SiC/GaN 4.0

─ S-TCM Full ZVS Inverters
─ Multi-Level/Cell Inverter Topologies 
─ Buck-Boost Inverter w/ Integrated Output Filter
─ Inverter Motor Integration

Summary
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#1  WBG Semiconductors 
#2  Multi-Cell/Level Concepts
#3  Functional Integration
#4  3D-Packaging/Integration
#5  MLCC & HF Mag. Materials
#6  Digitalization / IIoT

■ Power Electronics 1.0  Power Electronics 4.0
■ Identify  “X-Concepts” / “Moon-Shot” Technologies
■ 10 x Improvement NOT Only 10% !

S-Curve of Power Electronics

Power MOSFETs & IGBTs
Circuit Topologies

Microelectronics
Modulation Concepts

Control Concepts

Super-Junct. Techn. / WBG
Digital Power

Modeling &  Simulation

2025
2015

►

►
►

SCRs / Diodes 
Solid-State Devices

■

►

►

1958

4.0

3.0

2.0

1.0
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Comparison to “Moores Law”

► Definition of “η*,ρ*,σ*,fP*–Node” Must Consider Conv. Type / Operating Range etc. (!)

■ “Moore´s Law” Defines Consecutive Techn. Nodes Based on Min. Costs per Integr. Circuit (!)
■ Complexity for Min. Comp. Costs Increases approx. by Factor of 2 / Year

Gordon Moore: The 
Future of Integrated 
Electronics, 1965  
(Consideration of Three 
Consecutive Technology
Nodes)

Lower
Yield

Economy of
Scale

>2015: Smaller 
Transistors but Not 
any more Cheaper

►
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● Key Importance of Technology Partnerships of Academia & Industry

■ Commoditization / Standardization
■ Extreme Cost Pressure (!)

Future Development   

“There is Plenty of..
Room at the Bottom”

“There is Plenty of. 
Room at the Top”  Medium Voltage/Frequency 

Solid-State Transformers  

Power-Supplies on Chip 
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Thank you!



Accurate Measurement of 
SiC/GaN Power Semiconductor 
On-State & Switching Losses 

Appendix A



■ Device / Load Current / Gate Voltage / Junction Temp.  On State-Resistance RDS(on)

On-State Voltage Measurement (1)

● Decoupling High Blocking Voltage and (Very) Low On-State Voltage (≈1V << BVDS)

RDS(on) = vDS(on) / iL

A-1



■ High Accuracy  Compensation of Decoupling Diode Forward Voltage
■ Fast Dyn. Response    Valid Measurement 50ns After Turn-On 

● Example — Dyn. RDS(on) of GaN HEMTs   2x RDS(on) @ 100kHz - 0.6BVDS

A-2

On-State Voltage Measurement (2)



■ Heat-Sink Temp.-Based Transient Calorim. Method  15 min / Measurement

Switching Loss Measurement

■ Case Temp.-Based Ultra-Fast Method  15 sec / Measurement
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Example Measurement Results
■ 200V Si vs. GaN (Hard-Sw. & ZVS)■ 650V GaN (ZVS)

■ 1.2kV SiC (Hard-Sw.)
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T-Type M-BDS Topology
Integr. Active Filter PFC Rectifier

Swiss Rectifier 

Appendix B



T-Type PFC Rectifier Topology

B-1

■ Application of 600V M-BDSs @ Upn= 800V in Combination w/ 1200V SiC MOSFETs  
■ Hard-Switching Cont. Cond. Mode (CCM) or  ZVS TCM Operation 

● Max. Power Density | 98.4% Efficiency @ CCM w/ fsw= 550kHz



■ Non-Sinusoidal Mains Current

 PO= const. Required
 3-Φ Unfolder Front End 
 3rd Harmonic Injection in Middle Phase
 Basic Idea: M. Jantsch, 1997 (for PV Inv.)

Integr. Active Filter (IAF) Rectifier
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IAF Rectifier Demonstrator
■ Efficiency η > 99.1% @ 60% Rated Load
■ Mains Current THDI ≈ 2% @ Rated Load
■ Power Density ρ ≈ 4kW/dm3

► SiC Power MOSFETs & Diodes
► 2 Interleaved Buck Output Stages

PO= 8 kW
UN= 400VAC UO= 400VDC
fS  = 27kHz

►
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SWISS  Rectifier



B-4

IAF Rectifier  Swiss Rectifier
■ Controlled Output  Voltage
■ Sinusoidal Mains Current
■ iy Def. by KCL: E.g. ia- ic

► Low Complexity



Swiss Rectifier Demonstrator 
■ Efficiency η = 99.26% @ 60% Rated Load
■ Mains Current THDI ≈ 0.5% @ Rated Load 
■ Power Density ρ ≈ 4kW/dm3

► SiC Power MOSFETs & Diodes
► Integr. CM Coupled Output Inductors (ICMCI)

PO= 8 kW
UN= 400VAC UO= 400VDC
fS  = 27kHz

►
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— The END —


