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Novel Hybrid Modulation Schemes Significantly
Extending the Reactive Power Control Range of

All Matrix Converter Topologies With
Low Computational Effort

Frank Schafmeister, Member, IEEE, and Johann W. Kolar, Fellow, IEEE

Abstract—A novel approach based on indirect modulation,
which significantly extends the reactive power control range for
three-phase ac–ac matrix converters (MCs; applicable to all ma-
trix topologies) and which is implementable with lowest compu-
tational effort, is proposed. This new method denoted as hybrid
modulation facilitates the formation of reactive input current also
for purely reactive load. The derivation of the modulation schemes,
which rely on a decoupling of the output voltage and the reactive
input current formation, is described in detail. Furthermore, the
operating limits, i.e., the maximum reactive input current that
could be formed for the given output voltage amplitude and
load current amplitude, are determined. Finally, all theoretical
considerations are verified by measurements taken on a 6.5-kW
Very Sparse MC.

Index Terms—AC–AC power conversion, matrix converter
(MC), modulation, reactive power control.

I. INTRODUCTION

S PARSE MATRIX converters (SMCs [1]; cf., Fig. 1) are
functionally equivalent to Conventional MCs (CMCs) but

are characterized by a lower realization effort and a lower
control complexity. Consisting of two stages connected via
a dc-link, SMCs are a topological variant of Indirect MCs
(IMCs). By proper control of the input stage within each pulse
half period, two line-to-line voltages are switched into the
dc-link of the IMC. When the input stage is commutated at
zero current (cf., i in Fig. 5) [1], [2], a multistep commutation
scheme which has to be performed in dependence on the sign
of the commutating voltage or current can be avoided. This
results in low switching losses and high reliability, and it also
enables operation of the Very Sparse MC [VSMC; Fig. 1(b)].
To commonly address CMC, IMC, SMC, and VSMC, the
abbreviation MC is used.

In general, modulation schemes for MC can be classified into
direct and indirect schemes [3], where the latter, being based
on the assumption of a (virtual) dc-link, offer more simple
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Fig. 1. Topology of (a) CMC and (b) VSMC according to [1].

modulation calculations and are the natural method for mod-
ulating IMC/SMCs containing physical dc-links. Traditionally,
the maximization of the reactive input power that an MC could
provide over the whole load range was not in the common
focus of research. Indeed, conventional indirect modulation
shows limited reactive input power generation capabilities in
case of reactive load (cf., Fig. 2(a); Φ2 > π/4). Based on
direct modulation, a method for maximizing the control range
of a CMC was proposed in [4]. That method defines the
control range reference but requires 24 equation systems to
be solved online during each modulation period. Alternatively,
an indirect-modulation-based hybrid scheme was introduced
in [5]. This hybrid modulation principle that needs far less
computational effort will be extended and further analyzed in

0278-0046/$26.00 © 2011 IEEE



SCHAFMEISTER AND KOLAR: NOVEL HYBRID MODULATION SCHEMES 195

Fig. 2. Maximum control range of indirectly modulated MC. (a) Conventional indirect modulation. (b) Proposed hybrid modulation.

this paper, which also compiles the findings from [6] and [7],
finally leading to an increased control range.

II. BASIC CONSIDERATIONS

The expressions in Fig. 1 describe the converters input and
output voltages, as well as currents. Therefore, the input dis-
placement angle is given implicitly with

Φ1 = ϕu1 − ϕ1. (1)

Basically, Φ1 and/or the input current vector position ϕ1 can
be freely adjusted to a desired reference by the modulation
algorithm. The actual method of influencing Φ1 is the core
subject of this publication. On the one hand, the conventional
indirect modulation [3] can be used. This used to be the only
viable option so far—in the following, it will be referred to as
basic modulation (index: bas). On the other hand, in [5], [6],
and [8], the authors introduced a novel modulation approach
which manipulates Φ1 in a different and independent way
compared to the basic modulation. Since the output voltage
and the reactive input current formation are treated separately
within this approach, the proposed scheme, which is still based
on indirect modulation, will be denoted as hybrid modulation
(index: hyb) in the following. Considering the previous state-
ments, we can write Φ1 = Φ1,bas + Φ1,hyb, with Φ1,hyb = 0
for conventional basic modulation (abbreviation is Q1,bas) and
with Φ1,bas = 0 for hybrid modulation (abbreviation is Q1,hyb).

A. Conventional Modulation as Basic Scheme (Φ1,hyb = 0)

For conventional modulation (being equivalent to indirect or
virtual dc-link modulation of a CMC [3]), we have, for the
relative turn-on times of the single switching states [5], e.g.,
for ϕ1 in −π/6, . . . ,+π/6 and ϕ2 in 0, . . . ,+π/3 (as shown in
Fig. 4)

dab = cos(ϕ1 + π/3)/ cos(ϕ1)

dac = cos(ϕ1 − π/3)/ cos(ϕ1)

δ(100) = MU · 1/ cos(Φ1,bas) · cos(ϕ1) · cos(ϕ2 + π/6)

δ(110) = MU · 1/ cos(Φ1,bas) · cos(ϕ1) · sin(ϕ2) (2)

δ(100),ac = dac · δ(100)

δ(110),ac = dac · δ(110)

δ(110),ab = dab · δ(110)

δ(100),ab = dab · δ(100) (3)

with the normalized voltage transfer ratio defined as

MU :=
2√
3

Û2

Û1

∈ [0, . . . , 1]. (4)

For the sum δΣ of relative turn-on times of active states within
one representative switching cycle (1/2 Tp; cf., Fig. 5), it has to
be fulfilled

δΣ = δ(100),ac + δ(110),ac + δ(110),ab + δ(100),ab

=
MU

cos(Φ1,bas)
· cos(ϕ1) · cos(ϕ2−π/6) !=[0, . . . , 1]. (5)

The global modulation index M shall be defined as the maxi-
mum of δΣ over the ϕ1–ϕ2 plane

M := max(δΣ)|ϕ1,ϕ2 =
MU

cos(Φ1,bas)
∈ [0, . . . , 1] (6)

yielding

MU = M · cos(Φ1,bas). (7)

From power considerations, one gets analogously [7]

MI = M · cos(Φ2) (8)

for the normalized current transfer ratio, being defined as

MI :=
2√
3

Î1

Î2

∈ [0, . . . , 1]. (9)
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Fig. 3. Conventional indirect modulation (Q1,bas) can be applied to adjust Φ1,bas to a certain reference as long as active power is transferred. (a) Φ1,bas = 0
yields the maximum possible output voltage amplitude (MUmax = 1). (b) Φ1,bas ≈ π/5 to compensate the capacitive current drawn by the input filter, thus
leading to mains currents iNa,b,c being in phase with mains voltages uNa,b,c. Since the local average of the dc-link voltage u is reduced in this case, the
maximum output voltage amplitude is also reduced (MUmax < 1).

Therefore, the control range of basic indirect modulation is
directly given by (7) and (8) or is expressed in nonnormalized
form [1], [3] by

Û2 =
√

3
2

Û1 · M · cos(Φ1,bas) (10)

Î1 =
√

3
2

Î2 · M · cos(Φ2). (11)

• For purely reactive input power, it follows with (7), (10):

Φ1,bas = ± π/2 ⇒ P = 0
⇒ Û2 = 0 ⇒ Q2 = 0.

• For purely reactive output power, it follows with (8), (11):

Φ2 = ± π/2 ⇒ P = 0
⇒ Î1 = 0 ⇒ Q1 = 0.

Hence, it can be summarized (also, cf., [17]):
As long as one converter side (input or output) operates

with pure reactive power, the other converter side does not
facilitate any power—neither active power nor reactive power.
Conventional indirect modulation strictly requires active power
to facilitate reactive power components at the converter input
and output.

This situation is graphically described in Fig. 2(a). Based on
(9), which can be rewritten as

Î1 =
√

3
2

Î2 · MI (9b)

the amplitude Î1q of the reactive input current component is

Î1q = Î1 · sin(Φ1,bas)

=
√

3
2

Î2 ·
√

M2 − MU2 · cos(Φ2)︸ ︷︷ ︸
MIq

bas

(12)

whereas (7), which is equivalent to Φ1,bas = arccos(MU/M),
and (8) are used to gain the final expression in (12).

In order to get the formulation of the reactive input power
Q1, shown in Fig. 2(a), (12) just has to be scaled with a constant
input voltage value

Q1 =
3
2
Û1 · Î1q. (13)

According to (12) and Fig. 2(a), the reactive input current/
power is not just strongly dependent on Φ2; it, moreover,
vanishes at full output voltage (MU = 1) since the modulation
index is limited to M = 1.

Exemplary operation (measurements on VSMC prototype)
of the conventional indirect modulation is shown in Fig. 3.
In Fig. 3(b), a reactive input current component equivalent
to Φ1,bas ≈ π/5 (35◦) is provided to exactly compensate the
capacitive current drawn from the input filter (cf., Fig. 1) which
normally (i.e., for Φ1,bas = 0) leads to an effective phase dis-
placement between mains voltages and currents [cf., Fig. 3(a)].
Obviously, the formation of the dc-link voltage u is affected
when operating with Φ1,bas �= 0—with increasing |φ1,bas|, the
local average of u decreases, which finally results in ū = 0
and, as a consequence, in Û2 = 0 for |Φ1,bas| = π/2 [cf., (7)
and (10)].

Furthermore, it has to be noted that operating an IMC/SMC
with |Φ1,bas| > π/6 [like in Fig. 3(b)] requires an additional
measure in the modulation algorithm. For |Φ1,bas| > π/6, the
line-to-line voltages being switched into the dc-link start to
get negative segments, but for IMC/SMC, we have the restric-
tion to always provide positive dc-link voltages u ≥ 0 since,
otherwise, u will be shorted via the freewheeling diodes of
the output stage. Considering the example situation in Fig. 4,
one would normally choose the two discrete input stage space
vectors (bc) and (ba) for the input current formation since the
continuous input current reference i1 lies in between those two.
With the output voltage reference u2, here given between (100)
and (110), the original CMC switching cycle would be [1]

(110), bc → (100), bc → (000), bc →
(000), ba → (100), ba → (110), ba.

However, since (ba) in this case leads to a negative
dc-link voltage u = uba < 0, which is equivalent to the fact



SCHAFMEISTER AND KOLAR: NOVEL HYBRID MODULATION SCHEMES 197

Fig. 4. Space vector diagrams of the (a) input and (b) output stage for purely reactive input and output powers. The formation of the local average value i1q of
the reactive input current from discrete vectors (ba) and (ac) shown in (a) characterizes the “two-vector scheme.”

that the projection of u1 onto the (ba)-axis is negative, the
affected switching states of both converter stages have to be
inverted, i.e.,

(100), ba ⇒ (011), ab and (110), ba ⇒ (001), ab.

This fulfils u = uab ≥ 0 and keeps the original input–output
behavior. Accordingly, the adapted IMC/SMC switching
cycle is

(110), bc → (100), bc → (000), bc →
(000),ab → (001),ab → (011),ab.

B. Hybrid Modulation (Φ1,bas = 0 and Φ1,hyb �= 0)

When comparing (12) with (9b), it becomes obvious that the
underbraced expression of (12) can be interpreted as a specific
reactive current transfer ratio MIq

bas that characterizes the basic
indirect modulation (Q1,bas).

In analogy to voltage and (active) current transfer ratio, it
seems functional to define a general reactive current transfer
ratio MIq as

MIq :=
2√
3

Î1q

Î2

∈ [0, . . . , 1] (14)

which will be used in the following to describe the operating
limits of the hybrid modulation in normalized form.

Knowing the conventional transfer characteristic MIq
bas [cf.,

(12) and Fig. 2(a)], it seems a desirable target to strive via
hybrid modulation for a different characteristic

MIq
hyb �= f(Φ2) (15)

being as less as possible dependent on Φ2.
As the numerical results in Fig. 2(b) (cf., 3-D surface) show,

the proposed hybrid modulation indeed meets quite well that
target specification, with just a weak dependence of MIq

hyb on
Φ2. Moreover, in contrary to conventional modulation, for large
load displacement angles Φ2, it is even possible to facilitate a
certain amount of reactive input current/power (15% at Φ2 =

±π/2) while at the same time supplying full output voltage
[MU = 1; cf., dashed circle marking in Fig. 2(b)].

These two remarkable features of hybrid modulation, which
relies on a decoupling of the output voltage and the input re-
active current formation, allow some new practical applications
of MCs, e.g., the purely reactive current of an asynchronous
machine in mechanical no load operation could be used by the
MC for the compensation of the reactive input filter capacitor
current—even near full speed, i.e., full back EMF. Moreover,
the idea to operate the MC as a FACT device [9] to compensate
reactive power within the grid benefits from the possibilities
hybrid modulation offers, as well as MC-based wind-energy
conversion [10] does.

The control range characteristic of hybrid modulation
MIq

hyb, unlike (12), cannot yet be formulated by an analytically
closed expression over the entire load range 0 < Φ2 < π/2.
The approach of this paper is to provide a detailed analysis of
the following two extreme cases (lateral faces of Fig. 2).

1) Φ2 = π/2, i.e., P = 0 plane in Fig. 2(b)
⇒ the hybrid principle of pulse merging applies.

2) Φ2 = 0, i.e., Q2 = 0 plane in Fig. 2(b)
⇒ the hybrid principle of pulse compensation applies.

The hybrid modulation schemes for both aforementioned
cases (Φ2 = π/2 in Section III and Φ2 = 0 in Section IV)
are derived, and they can be combined for application of
hybrid modulation with an arbitrary load condition 0 < Φ2 <
π/2. In addition, for both aforementioned cases, the operating
range limits will be given in the form of accurate analyti-
cal equations—as mentioned, the variation over Φ2 is minor
anyway.

Within Sections III-A and IV-A, the two-vector schemes
utilizing two input stage switching states are discussed before
Sections III-B and IV-B will derive the three-vector schemes
(three input stage switching states). Finally, in Sections III-C
and IV-C, the optimum combination of the two- and three-
vector schemes is documented, which allows an extension of
the operating limit especially at larger voltage transfer ra-
tios MU > 0.6. The experimental verification of the proposed
methods will be presented in Section V and will be compared
to digital simulations.
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The additional computational effort in comparison to conven-
tional indirect modulation (Q1,bas) is limited to evaluating two
(or three) sine functions, two divisions, and, moreover, various
distinctions of cases.

Since Φ1,bas = 0 applies to hybrid modulation, the parameter
ϕ1 in all following equations is given by the input voltage
position: ϕ1 = ϕu1.

III. REACTIVE INPUT CURRENT FORMATION FOR PURELY

REACTIVE LOAD (Φ1 = ±π/2 AND Φ2 = π/2)

A. Two-Vector Modulation Scheme for Purely Reactive Load

Fig. 4(a) shows the construction of the dc-link voltage for
conventional modulation, which is used for each first half
of a hybrid pulse period and utilizes always the two highest
positive line-to-line input voltages uac and uab. Furthermore, it
illustrates the separate formation of the reactive current vector
i1q from the two corresponding discrete input current vectors
(ba) and (ac) within the second half of each hybrid switching
cycle. Thereby, both discrete current vectors are formed by that
output stage phase current, which is showing the maximum
instantaneous value (here, −iB ; cf., Fig. 4(b); maximum pro-
jection of i2). The effectively required input current vector (ba)
would lead to negative dc-link voltage u = uba < 0—for an
implementation on SMC/IMC, this fact requires a switching
state inversion of both converter stages (cf., Section II-A),
i.e., by impressing the maximum negative output phase current
(here, iB) obtained by inverting the state of the output stage [to
(010)], the admissible input stage state (ab) yielding u > 0 can
be applied.1

The resulting pulse pattern is shown in Fig. 5. The output
voltage and the reactive input current formation performed in
the first and second halves of the pulse period are obvious.
The independent character of both formation steps expresses
in the fact that, during voltage formation (first half in Fig. 5), no
local average values of the input currents ia,b,c are generated.
Analogously, when a reactive input current is formed (second
half in Fig. 5), no local average of the output line–line voltages
uAB,BC,CA is built. Since the modulation employs only two
discrete input current vectors (and/or dc-link voltage levels), it
is denoted as the “two-vector scheme.”

To gain the relative turn-on times for the reactive input
current formation, the geometrical relations of Fig. 4(a) are
formulated as

sin(π
3 + ϕ1)

2√
3
(−i2,max) · dq

(010),ab

=
cos(ϕ1 − π

6 )
2√
3
iB · dq

(010),ab

=

√
3

2︷ ︸︸ ︷
sin

(π

3

)
Î1q

sin(π
3 − ϕ1)

2√
3
i2,max · dq

(101),ac

=
cos(ϕ1 + π

6 )
2√
3
(−iB) · dq

(101),ac

=
sin(π

3 )

Î1q

(16)

1Considering a CMC, the switching state inversion of both virtual converter
stages would effectively not change the resulting switch matrix (input to output
connections), and therefore, it does not need to be performed. Nevertheless,
to formally obtain consistent pulse patterns and naming conventions derived
therefrom, the switching state inversion should be virtually considered also for
the CMC in the following.

Fig. 5. Modulation scheme comprising an output voltage and a reactive input
current forming pulse half period. In both intervals, only two different input
current vectors [(ac) and (ab)] and/or line-to-line input voltages (dc-link
voltages uac and uab) are applied. Accordingly, the modulation method is
denoted as the “two-vector scheme.” Obviously, the volt seconds added to the
output voltage (e.g., uAB = 0) during the second half of the pulse period are
equal to zero, while during the first half of the pulse period, no local current
average value is generated in any of the input phases (e.g., ib).

with the maximum output phase current [cf., Fig. 4(b)] as

(−iB) = −Î2 · cos(ϕ2 − 2π/3 − π/2) = Î2 · cos(ϕ2 − π/6).
(17)

With the definition (14), the reactive input current forming
relative turn-on times follow as

dq
(010),ab =

√
3

2
MIq · cos(ϕ1 − π/6)

cos(ϕ2 − π/6)

dq
(101),ac =

√
3

2
MIq · cos(ϕ1 + π/6)

cos(ϕ2 − π/6)
. (18)

In order not to influence the formation of the output voltage by
inserting additional current pulses, the decouple condition

0 != dq
(101),ac · uac − dq

(010),ab · uab (19)

has to be fulfilled. With

uab =
√

3Û1 · cos(ϕ1 + π/6) (20)

uac =
√

3Û1 · cos(ϕ1 − π/6) (21)

the validity of (19) is inherently given (cf., Fig. 5; local averages
of uAB and ib). Hence, the output voltage and the input current
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Fig. 6. Resulting final pulse pattern for the “two-vector scheme” after merging
the output voltage and the input reactive current forming halves of the original
pulse period (cf., Fig. 5).

formation are decoupled, which verifies the basic principle
of the hybrid modulation method. The first half of a pulse
period forms the output voltage (and active input current in
case Φ2 �= π/2) by conventional modulation, and the second
pulse half period independently builds the reactive input current
by utilizing the largest output phase current (and applying
switching state inversions in case of SMC/IMC usage).

The voltage and current pulses resulting from the separate
voltage and current formations (cf., Fig. 5) can be combined
into a single pulse pattern of lower total duration, leading to
an increased modulation range (input reactive current versus
output voltage). This final pulse pattern is shown in Fig. 6,
merging the dc-link current pulses i occurring for the same
dc-link voltage level u, where the relation iA + iB + iC = 0
of the output phase currents is considered and the sum of two
pulses (two segments of the output phase currents) is expressed
by the third phase current level. This principle will be denoted
as pulse merging.

In determining the operating limit of the two-vector scheme
as well as that of all other schemes of hybrid modulation, we
again can use the left-hand side definition in (6) of the global
modulation index M , being defined as the maximum of the
summed relative turn-on times δΣ within the ϕ1–ϕ2 plane.
M = 1 represents the operating limit.

In fact, for the final pulse pattern shown in Fig. 6, we get
the total relative turn-on time δΣ,2V of the active switching
states as

δΣ,2V =
∣∣∣δ(110),ac − dq

(101),ac

∣∣∣
+ δ(100),ac + Min

(
δ(110),ac, d

q
(101),ac

)
+

∣∣∣δ(100),ab − dq
(010),ab

∣∣∣
+ δ(110),ab + Min

(
δ(100),ab, d

q
(010),ab

)
. (22)

Fig. 7. Analytically derived and numerically calculated (dotted line) reactive
current transfer limit of the two-vector scheme. MULim,2V marks the transi-
tion from the current-limiting to the voltage-limiting operating range. Remark:
even at full output voltage (MU = 1), a reactive input current ratio of up to
MIq = 0.151 can still be realized.

Fig. 8. Critical angle ϕ1,crit,2V which represents the position within a mains
period where overmodulation concerning reactive input current formation
occurs first. The analytical expressions (26) are clearly verified by the numerical
results shown by a dotted line. ϕ2,crit,2V = 0 is independent from MU .

The total turn-on time (22) with (2), (3), and (18) depends
on four variables: ϕ1, ϕ2, MU , and MIq. The modulation
limit (M = 1) is reached when δΣ,2V = 1 occurs for a certain
combination of critical angles ϕ1,crit and ϕ2,crit, which are
associated with the maximum of δΣ,2V and/or with the posi-
tion within a mains/load period where overmodulation appears
first. Therefore, after maximum determination, we finally get a
dependence of MIq on MU , shown in Fig. 7, describing the
general operating limit of the two-vector scheme for Φ2 = π/2.
The limit is found by numerical calculations, but it can also be
verified analytically [3], [11]. With reference to (12), it has to
be pointed out that the two-vector scheme allows the formation
of a reactive input current up to a ratio of MIq = 0.15 at full
output voltage (MU = 1).

The dependence of the critical angle ϕ1,crit,2V on the voltage
transfer ratio MU is shown in Fig. 8. Starting from zero,
ϕ1,crit,2V increases until π/6 is reached for MU = 2/3. For
2/3 < MU < 0.966, the critical angle remains constant at π/6.
The critical position in the output period is independent from
MU and is fixed to ϕ2,crit,2V = 0.

A brief explanation of the physical reasons for the operating
limits that the MC shows in hybrid modulation shall be given.
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The following statements are of general nature and apply to
all modulation schemes proposed in this paper. The expression
(22) for the total turn-on time δΣ,2V of a merged pulse period
contains absolute and minimum functions, and therefore, it
is—when intended to be solved analytically—variable in its
structure. As a consequence, the solution is not a single expres-
sion but a piecewise defined set of expressions. Most proposed
hybrid modulation schemes show a similar expression like (22)
as their specific total turn-on time (in general, pulse merging or
pulse compensation leads to this kind of expressions). They all
have in common basically two physical restrictions resulting in
two (or three) different intervals within the formulation of the
operating limit.

1) Current-limited operating range—I
For smaller voltage transfer ratios MU (< 0.6), the

reactive current forming pulses dominate the merged
pulse period and/or the total turn-on time. Those pulses
typically start to cause overmodulation at characteristic
critical angle positions (ϕ1,crit, ϕ2,crit), which indeed
get plausible when doing in-depth analysis. Accordingly,
this also leads to a specific operating limit dependence
MIq = f(MU). Within the following diagrams (transfer
limits and critical angles), this operating range is indi-
cated by “I”.

2) Voltage-limited operating range—II
For larger voltage transfer ratios MU (> 0.7), the

output voltage forming pulses dominate the pulse period
and total turn-on time. When they start causing over-
modulation, this happens at different angle positions
(ϕ1,crit, ϕ2,crit) as occurring for the reactive current
forming pulses. As a consequence, this means a different
operating limit dependence MIq = f(MU). Within the
following diagrams, the voltage-limited operating range
is indicated by “II”.

For the two-vector schemes, there exists a further voltage-
limited operating interval for MU ≈ 1, which will be marked
as “IIb.”

In general, the specific conditions leading to the different
operating ranges are very plausible and well understood. For
the sake of brevity, they will not be explained here. Based on
them, the analytical expressions describing all of the following
transfer limits and critical angles were derived in a direct way.
The basic approach is to always eliminate two of the four free
parameters in (22) (cf., [6] and [7]).

Finally, it is worthy to mention that optimum combination
(Section III-C) of the two- and three-vector schemes transfers
the piecewise defined operating limit dependences into a single

dependence MIq = f(MU) being valid over the whole range
of MU .

Reactive Current Transfer Limit

MIq
max,2V

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
12 (

√
48−27MU2−3MU) :0≤MU ≤MULim,I

2
3

(
1− 3

4MU
)

:MULim,I ≤MU

≤MULim,II

1
4 (
√

16−3MU2−3MU) :MULim,II ≤MU ≤1

(23)

with the ranges being determined by

MULim,I,2V =
2
3
≈0.667 MULim,II,2V =

2
3
(
√

6−1)≈0.966.

(24)

The maximum reactive input current ratio at full voltage trans-
fer is given as

MIq
max,2V (MU = 1) =

√
13 − 3

4
≈ 0.151. (25)

Critical Angle Positions
Given as (26) and (27) at the bottom of the page.

B. Three-Vector Modulation Scheme for Purely Reactive Load

The three-vector scheme employs input current space vectors
for the current formation, which are directly neighboring the
desired reactive input current vector i1q (formed in the average
over a pulse period), e.g., (bc) and (ba), as shown in Fig. 9(a).
Accordingly, in contrast to the two-vector scheme, for the three-
vector scheme, the sign of ϕ1 has to be considered. Based on
the geometrical relations of Fig. 9, we have, for the additional
turn-on times for ϕ1 ≥ 0

dq
(010),ab =

√
3

2
MIq · sin(ϕ1)

cos(ϕ2 − π/6)

dq
(101),bc =

√
3

2
MIq · cos(ϕ1 + π/6)

cos(ϕ2 − π/6)
(28)

where the negative current pulse iB has to be assigned to (ab).

ϕ1,crit,2V =

⎧⎪⎨
⎪⎩

arccos
(

1
4

√
16 − 9MU2

)
: 0 ≤ MU ≤ MULim,I

π/6 : MULim,I ≤ MU ≤ MULim,II

− arccos
(√

3
8 (MU +

√
16 − 3MU2)

)
: MULim,II ≤ MU ≤ 1

(26)

ϕ2,crit,2V = 0 (27)
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Fig. 9. Space vector diagrams of the (a) input and (b) output stage for purely reactive input and output powers. The formation of the reactive input current vector
i1q (local average value) using the vectors (ba) and (bc), as shown in (a), characterizes the “three-vector scheme” (for the output voltage formation, (ac) and
(ab) are employed, so, in total, three different vectors are utilized within each pulse period).

In analogy for ϕ1 < 0

dq
(101),ac =

√
3

2
MIq · sin (|ϕ1|)

cos(ϕ2 − π/6)

dq
(010),cb =

√
3

2
MIq · cos (|ϕ1| + π/6)

cos(ϕ2 − π/6)
(29)

is valid where the negative current pulse iB has to be assigned to
(cb). The corresponding decouple condition for the three-vector
scheme

0 != dq
(101),bc · ubc − dq

(010),ab · uab (30)

(exemplary for ϕ1 ≥ 0) is fulfilled with (20) and

ubc =
√

3Û1 · sin(ϕ1) (31)

which basically verifies the functionality also of this hybrid
scheme.

As shown in Figs. 10 and 11 for the “three-vector scheme”,
a merging of current and voltage pulses is possible only for
that input stage switching state appearing in both pulse half
intervals (in the case at hand (ab)). Since one reactive current
forming pulse (−iB) has to stay fully unmerged in the final
pulse pattern (Fig. 11), this, in the end, leads to the fact that,
at full output voltage (MU = 1), no reactive input current can
be formed (MIq = 0) by the three-vector scheme. On the other
hand, the total turn-on time of the two reactive current forming
pulses is minimized due to the more advantageous alignment of
the two employed discrete current space vectors that are both
located directly next to the desired reference vector i1q. Latter
argument translates into an increased reactive current transfer
ratio (up to MIq = 1) for small output voltages (cf., Fig. 12)
when compared to the two-vector scheme.

Fig. 10. Modulation based on the “three-vector scheme” for ϕ1 ≥ 0. In total,
three different dc-link voltage levels (ac), (ab), and (bc) and/or input current
vectors are employed within each pulse period for the output voltage and the
input current formation. The local average values of the output voltage (e.g.,
uAB) and the input reactive current (e.g., ib) are decoupled from each other.

The total turn-on time of the active switching states then
results as

δΣ,3V =δ(110),ab+Min
(
δ(100),ab, d

q
(010),ab

)
+

∣∣∣δ(100),ab−dq
(010),ab

∣∣∣+δ(100),ac+δ(110),ac+dq
(101),bc. (32)
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Fig. 11. Resulting final pulse pattern for the “three-vector scheme” after
merging the input current pulses occurring for u = uab, being present in both
halves of the original pulse period shown in Fig. 10. Remark: changing the
sequence of the voltage pulses forming u as compared to Fig. 10 allows us to
reach a subsequent level of u by changing only the switching state of either
the upper or the lower half of the converter input stage, and therefore, it does
minimize the control complexity in case an SMC/IMC is used.

Fig. 12. Analytically derived and numerically calculated (dotted line) transfer
limits of the three-vector scheme. The transition from the current-limited to
the voltage-limited operating range takes larger influence on maximum reactive
current transfer ratio than that for the two-vector scheme.

Numerically and analytically evaluating (32) (including the
foregoing determination of the maxima within the ϕ1–ϕ2

plane) results in the transfer limit shown in Fig. 12. Again,

the analytically determined transfer limit coincides with the
numerical solution.

Reactive Current Transfer Limit

MIq
max,3V

=
{

1
4 (
√

16−3MU2−3MU) : 0≤MU ≤MULim,I
4
3 (1−MU) : MULim,I <MU ≤1

(33)

with the transition between the operating ranges being de-
fined by

MULim,I,3V =
28 − 6

√
7

19
≈ 0.638. (34)

Critical Angle Positions
Given as (35) and (36) at the bottom of the page.
Graphically visualized and compared to the numerically

gained results are (35) and (36) in Fig. 13(a) and (b).

C. Optimum Combination of the Two- and
Three-Vector Schemes

In Section III-A and B, the two- or three-vector scheme has
been applied within the whole mains and load period, i.e.,
within the whole ϕ1–ϕ2 plane. However, as shown in the fol-
lowing, within a certain range of MU , advantageously different
schemes could be used for defined areas of the ϕ1–ϕ2 plane.

Aiming for a maximum MIq, the modulation scheme with
the lower associated total turn-on time can be denoted as
optimal, i.e.,

δΣ,opt =
{

δΣ,2V : δΣ,2V < δΣ,3V

δΣ,3V : δΣ,2V ≥ δΣ,3V .
(37)

The evaluation of (37) is graphically shown in Fig. 14 for
varying voltage transfer ratios MU . In the figure, dark area
marks indicate δΣ,2V = δΣ,3V and, therefore, the boundaries
of the optimum domains of the two schemes. In addition, the
maxima of δΣ,2V , δΣ,3V , and δΣ,opt are identified. Starting with
MU = 0.65, the three-vector scheme resides in the voltage-
limiting operating range [Fig. 14(a)]. The global application of
this scheme is still optimal. However, with increasing MU , the
utilization of the two-vector scheme around the plane center
becomes advantageous [Fig. 14(b) and (c)]. Due to the fact
that the maximum of δΣ,3V , which was formerly defining full
modulation (M = 1) and determining the operating limit, is
located at the plane center point (ϕ1,crit,3V = 0, ϕ2,crit,3V =
π/6) where the two-vector scheme provides lower total turn-on

ϕ1,crit,3V =

{
arccos

(√
3

8

(
MU +

√
16 − 3MU2

))
: 0 ≤ MU ≤ MULim,I

0 : MULim,I < MU ≤ 1
(35)

ϕ2,crit,3V =
{

0 : 0 ≤ MU ≤ MULim,I

π/6 : MULim,I < MU ≤ 1 (36)
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Fig. 13. Dependence of the critical angle values (a) ϕ1,crit,3V and (b) ϕ2,crit,3V of the three-vector scheme on MU . Changing from the current-limited
operating range (MU = 0, . . . , 0.638) to the voltage-limited range (MU = 0.638, . . . , 1) clearly affects both angle values representing a maximum of δΣ,3V

in the ϕ1–ϕ2 plane. The analytical expression (35) for ϕ1,crit,3V coincides with the numerical results (dotted line).

Fig. 14. Domains within the ϕ1–ϕ2 plane defining the optimum application
areas of the two- or three-vector modulation scheme with respect to minimum
δΣ for different values of MU . The dark color marks areas where δΣ,2V =
δΣ,3V is valid. Remark: the maxima of δΣ for the two-vector, three-vector,
and optimum schemes are occurring symmetrically to the plane center point.
For the sake of clarity, the maxima are only marked in the positive ϕ1 half
plane. Legend: x is the maximum of δΣ,2V , � is the maximum of δΣ,3V , and
◦ is the maximum of δΣ,opt.

times, the operating limit will be extended by using this scheme.
This can be clearly seen in Fig. 15. As shown in Fig. 14(b)–(d),
in the vicinity of the maximum of the three-vector scheme, the
two-vector scheme showing a lower δΣ,2V is applied and vice
versa.

When approaching full output voltage [Fig. 14(d)], the do-
main of the three-vector scheme vanishes, and for MU ≈ 1, the
two-vector scheme constitutes the optimum modulation scheme.

As shown in Fig. 16, the numerical analysis confirms that the
operating limit of the optimum combination modulation coin-
cides within the entire output voltage range MU = [0, . . . , 1],
with the favorable limit defined by (33a) for the three-vector
scheme in the current-limited operating range only (cf., Fig. 12).
Below (38) expresses this fact.

Reactive Current Transfer Limit

MIq
max,opt =

1
4
(
√

16−3MU2−3MU) : 0≤MU ≤1. (38)

Fig. 15. Comparison of the operating limits of the modulation schemes. Up to
MULim,2V , the three-vector scheme results in the maximum value of MIq .
From there, MIq can be increased by changing to the two-vector scheme within
sections of the ϕ1–ϕ2 plane, as shown in Fig. 14. For full output voltage
(MU = 1), the MIq limit is defined by the two-vector scheme.

Fig. 16. Numerical analysis proves the maximum reactive current transfer
limit achieved by optimum modulation to stay for the entire output voltage
range MU = [0, . . . , 1] on the limit (33a) valid for the three-vector scheme
in the current-limited operating range. Furthermore, shown is the theoretical
limit of the reactive current transfer for the CMC according to [4].

Moreover, (38) is identical to (23c), describing the limit
of the two-vector scheme in the voltage-limited operating
range (IIb) and, hence, verifying formally that both modula-
tion schemes provide exactly the same reactive input current
MIq = 0.151 at MU = 1.

In Fig. 16, additionally marked (bold dashed line) is the
theoretical reference limit of the reactive current transfer as
presented in [4], which can be achieved with the more complex
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direct modulation applied on the CMC. Particularly, in the
upper output voltage region (MU > 0.5), both modulation
methods show very similar limits.

Finally, it should be pointed out that the implementation of
the proposed optimum combination modulation scheme could
be achieved with just marginally increasing the realization
effort since all turn-on times (i.e., only (3) and (28) since
(18) can be derived from (28) by summation) have to be
calculated within the modulation algorithm. Therefore, just the
sums (22) and (32) have to be compared, and the modulation
scheme showing the lower total turn-on time has to be selected
[cf., (37)].

IV. REACTIVE INPUT CURRENT COMPONENT FORMATION

FOR PURELY ACTIVE LOAD (Φ2 = 0)

A. Two-Vector Modulation Scheme for Purely Active Load

For the following considerations, the load is assumed to
draw a purely active current, i.e., Φ2 = 0. Considering this zero
displacement angle at the output stage, the space vector diagram
Fig. 4 is still valid.

Contrary to Φ2 = π/2, now the current in the output phase
(−C) shows the largest positive instantaneous value. Accord-
ingly, in the formulas for the additional turn-on times, only the
phase shift of ϕ2 in the cosine terms of the denominator has to
be adapted

dq
(001),ab =

√
3

2
MIq · cos(ϕ1 − π/6)

cos(ϕ2 − π/3)

dq
(110),ac =

√
3

2
MIq · cos(ϕ1 + π/6)

cos(ϕ2 − π/3)
. (39)

Fig. 17 shows a pulse period of the hybrid modulation
scheme for an active load comprising an output voltage/active
input active current forming half period and a subsequent half
period dedicated to the formation of a reactive input current
component. This scheme is largely equivalent to the two-vector
scheme employed for purely reactive load (cf., Fig. 5). As the
main difference here, in total, only two different output phase
currents are switched into the dc-link. Therefore, the merging
of current pulses results in (partial) pulse compensation.

For example, in Fig. 17, the pulse iC occurring for u = uab in
the second pulse half period overcompensates the neighboring
pulse (−iC) of the first half period and reduces the total turn-on
time. The second pulse of the reactive current forming interval
(−iC) occurring for u = uac cannot be compensated, but it
has to be added to the pulse (−iC) of the voltage forming
interval, thereby increasing the total turn-on time. This, in the
end, results in the final pulse pattern shown in Fig. 18.

Considering Fig. 18, we have, for the total turn-on time of
the active switching states

δΣ,2V,act = δ(110),ac + dq
(110),ac + δ(100),ac

+ δ(100),ab +
∣∣∣δ(110),ab − dq

(001),ab

∣∣∣ . (40)

For geometrical reasons, (40) is asymmetric in ϕ1 =
[−π/6, . . . , π/6] and shows a clear minimum in the negative

Fig. 17. Hybrid modulation for reactive input current formation in case of
purely active load. The first half of each pulse period is dedicated to the forma-
tion of the output voltage and the active input current component. Subsequently,
the reactive input current component is formed in the second pulse half period.
In both half intervals, only two different input current vectors [(ac) and (ab)
in the case at hand] are applied, and/or two line-to-line input voltages are
switched into the dc-link (u = uac, uab). Accordingly, the modulation scheme
is denoted as “two-vector scheme for purely active load.” No volt seconds are
added to the output voltage (e.g., uBC ) within the second half of the pulse
period.

Fig. 18. Resulting final pulse pattern for the “two-vector scheme for purely
active load” after merging the output voltage and the input reactive current
forming halves of the pulse period shown in Fig. 17.
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Fig. 19. Analytically derived and numerically calculated (dotted line) transfer
limits of the two-vector scheme for purely active load. There is a clear transition
within the voltage-limited operating range at MU = 0.996.

Fig. 20. Critical mains phase angle ϕ1,crit,2V,act. After the transition to
the voltage-limiting range (MU > 1/

√
3), the critical mains angle stays

constant at ϕ1,crit,2V,act = π/6 until MU = 0.996 is reached. Thereafter,
at full output voltage, finally, negative angle values [−5.26◦, . . . , 0] limit the
modulation.

ϕ1 half plane. The numerical and analytical analysis of (40)
yields the operating limit of the two-vector scheme for purely
active load shown in Fig. 19 and the critical positions ϕ1,crit,2V

within a mains period shown in Fig. 20. The critical angle
in the output period is independent from MU and is fixed to
ϕ2,crit,2V = π/6

Reactive Current Transfer Limit
MIq

max,2V,act

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
√

3
(
√

4−3MU2−MU) : 0≤MU ≤MULim,I

2
3

(
1−

√
3

2 MU
)

: MULim,I

<MU ≤MULim,II√
1−MU2 : MULim,II <MU ≤1

(41)

with the ranges defined by

MULim,I,2V,act =
1√
3
≈ 0.577

MULim,II,2V,act =
1 +

√
6

2
√

3
≈ 0.996. (42)

It should be pointed out that the transfer limit (41c) valid
in the voltage-limited operating range IIb (i.e., MU > 0.996)

Fig. 21. Hybrid modulation denoted as “three-vector scheme for purely active
load.” In total, three different input current vectors and/or dc-link voltage levels
(ac), (ab), and (bc) are employed within each pulse period. Remark: the pulse
pattern shown is valid for ϕ1 > 0. In order to point out the main difference
in case of ϕ1 < 0, the dc-link current pulses are also shown with inverse
polarity. Moreover, in this case, the dc-link voltage labels uac and uab have
to be exchanged, and ubc has to be replaced by ucb (cf., Fig. 22).

is identical with that limit of conventional indirect modulation
(Q1,bas) for Φ2 = 0 (cf., Figs. 19 and 25).

Critical Angle Positions

ϕ1,crit,2V,act

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arccos
(

1
2

√
4−3MU2

)
: 0≤MU ≤MULim,I

π/6 : MULim,I <MU
≤MULim,II

− arctan
(√

1−MU2

MU

)
: MULim,II <MU ≤1

(43)

ϕ2,crit,2V,act =π/6. (44)

B. Three-Vector Modulation Scheme for Purely Active Load

Considering Φ2 = 0, again, the space vector diagram in
Fig. 9 is basically valid and yields the additional turn-on times:
for ϕ1 ≥ 0

dq
(001),ab =

√
3

2
MIq · sin(ϕ1)

cos(ϕ2 − π/3)

dq
(110),bc =

√
3

2
MIq · cos(ϕ1 + π/6)

cos(ϕ2 − π/3)
(45)
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Fig. 22. Resulting final pulse pattern for the “three-vector scheme for purely active load.” For ϕ1 > 0, (a) input current and/or output voltage pulses occurring
for u = uab in the first and second halves of the pulse period shown in Fig. 21 with inverse polarity are compensating each other. In contrast, for ϕ1 < 0,
(b) pulses occurring for the common dc-link voltage level u = uac show the same polarity. In consequence, no reduction of the total turn-on time can be achieved.
Remark: the sequence of dc-link voltage levels has changed compared to Fig. 21. This is done for the same reasons as mentioned in Fig. 11.

Fig. 23. Three-vector scheme for Φ2 = 0. (a) Reactive current transfer limit and (b) critical position ϕ1,crit,3V,act within a mains period. As the modulation
scheme does not facilitate a reduction of the total turn-on time for ϕ1 < 0, the maximum of δΣ,3V,act associated with ϕ1,crit,3V,act is located in the negative
ϕ1 half plane. The critical load angle remains constant at ϕ2,crit,3V,act = π/6.

for ϕ1 < 0 instead

dq
(110),ac =

√
3

2
MIq · sin (|ϕ1|)

cos(ϕ2 − π/3)

dq
(001),cb =

√
3

2
MIq · cos (|ϕ1| + π/6)

cos(ϕ2 − π/3)
. (46)

Fig. 21 shows a hybrid pulse period of the three-vector
scheme for purely active load. Considering the (partial) pulse
compensation, Fig. 21 is finally transferred to the pulse pattern
shown in Fig. 22. It has to be pointed out that the pulse
compensation is not possible at all for ϕ1 < 0. Therefore, in
this case, no reduction of the total turn-on time results [cf.,
(47)]. Accordingly, only the worst-case situation ϕ1 < 0 has to
be analyzed further (numerically and analytically) in order to
determine the associated operating limit.

From Fig. 22(b) it follows for ϕ1 < 0 and/or for the larger
total turn-on time:

δΣ,3V,act = δ(110),ac + dq
(110),ac + δ(100),ac

+ δ(100),ab + δ(110),ab + dq
(001),cb. (47)

Since no turn-on time reduction is possible for ϕ1 < 0, a
pronounced maximum of δΣ,3V,act is located in the negative
ϕ1 half plane. This asymmetry is also documented by the
dependence of ϕ1,crit,3V , shown in Fig. 23(b).

The current transfer limit in Fig. 23(a) is determined by the
pulse pattern in Fig. 22(b), allowing no pulse compensation for
ϕ1 < 0.

Accordingly, (47) contains just continuous terms, finally
resulting in operating limit characteristics, as shown in Fig. 23,
not showing any discontinuous transitions over the entire output
voltage range MU = [0, . . . , 1] [cf., (48)–(50)].

Reactive Current Transfer Limit

MIq
max,3V,act =

1
2
(
√

4 − MU2 −
√

3 · MU)

: 0 ≤ MU ≤ 1. (48)
Critical Angle Positions

ϕ1,crit,3V,act = − arccos
(

1
4
(MU +

√
12 − 3MU2)

)
: 0 ≤ MU ≤ 1 (49)

ϕ2,crit,3V,act = π/6. (50)
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Fig. 24. Comparison of the operating limits of the modulation schemes. The
optimum combination modulation is identical to the three-vector scheme up to
MULimI,2V,act. From there, the reactive input current formation capability is
increased by locally employing the two-vector scheme.

Fig. 25. Operating limit of optimum combination modulation for Φ2 = 0. For
full output voltage (MU > 0.99), the optimum hybrid modulation is limited
to the reactive input current formation capability of the conventional Q1,bas

modulation scheme (i.e., MIq = 0 for MU = 1). Obviously, when operating
with purely active load (Φ2 = 0), the conventional Q1,bas scheme (dashed
gray curve) seems superior to the hybrid modulation.

C. Optimum Combination of the Two- and Three-Vector
Schemes for Purely Active Load

Due to the asymmetry of both schemes, i.e., the low values of
δΣ,2V,act occurring for the two-vector scheme for ϕ1 < 0 and
the low values of δΣ,3V,act given for the three-vector scheme
for ϕ1 > 0, the optimum combination allows a larger extension
of the operating range as compared to operation with purely
reactive load (cf., Section III-C). This is clearly documented by
Fig. 24 (cf., [6, Fig. 20]). Analytically derived operating limits
(51) are visualized in Fig. 25 and are compared to the numerical
results also shown in Fig. 24.

Reactive Current Transfer Limit

MIq
max,opt,act

=

⎧⎪⎪⎨
⎪⎪⎩

1
2

(√
4−MU2−

√
3MU

)
: 0≤MU ≤MULim,I

1−
√

3
2 MU : MULim,I <MU

≤MULim,II√
1−MU2 : MULim,II <MU ≤1

(51)

with (cf., Fig. 25)

MULim,I,2V,act =
1√
3
≈ 0.577

MULim,II,opt,act =
4
√

3
7

≈ 0.990. (52)

V. SIMULATION AND EXPERIMENTAL VERIFICATION

The proposed hybrid modulation schemes and the calcu-
lated operating limits have been verified by digital simulation
[Fig. 26(a) and (c)] and by experimental results (Figs. 26(b)
and (d) and 27). Therein, Fig. 26 shows the two-vector scheme
at Φ2 = π/2. Measurements from the three-vector scheme at
Φ2 = π/2 are shown in Fig. 27 for an operating point being
marked within the identified operating limit of Fig. 15. All
experimental results are taken from a 6.5-kW VSMC.

The simulation of the two-vector scheme (at Φ2 = π/2)
with the same operating parameters as that for the VSMC
prototype when taking the measurements shows exactly [shown
in Fig. 26(c)] the expected amplitude Î1q of the input current ia.
Generally, in both measurements, the capacitive current of the
input filter capacitor has to be taken into account. This current
component (which cannot be avoided in a real system) increases
the measured amplitude in Fig. 26(d) by ΔÎ1q ≈ 350 mA
compared to the simulation. Accordingly, that portion can also
be roughly seen when the MC does not operate at all or when it
operates with purely reactive output power and with Φ1 = 0.

Exactly, this situation is shown in Fig. 27(c) and (d) for
reference. When considering this capacitor-caused bias current
component, we do also see, for the three-vector scheme (at
Φ2 = π/2) in Fig. 27(a) and (b), the expected reactive input
current amplitude Î1q theoretically resulting from the marked
operating point in Fig. 15 (which is close to the operating limit).
Fig. 27(e) and (f) shows the basic option in compensating the
capacitive filter current by an intentionally modulated inductive
input current (Φ1,hyb = π/2). As can be clearly noticed in
Fig. 27(a) and (e), the three-vector scheme is characterized by
the dc-link voltage (envelope) being switched between all three
positive line–line input voltage levels.

In general, the simulation and experimental analysis verify
very well the hybrid modulation schemes.

VI. CONCLUSION

In this paper, a new—indirect modulation based—approach
to significantly extend the reactive input power operating range
of an MC has been proposed. This modulation principle, de-
noted as hybrid modulation, enables a set of new modula-
tion schemes (two-vector, three-vector, and optimum schemes)
being applicable to purely reactive load (Φ2 = π/2; pulse
merging applies) and to purely active load (Φ2 = 0; pulse com-
pensation applies). Therefore, in total, six new single schemes
were described and analyzed in detail, where all of them are
implementable with very low additional calculation effort (two
sine functions, two divisions, and several distinctions of cases).
With the pulse merging principle (presented for Φ2 = π/2)
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Fig. 26. (a) and (c) Digital simulation and (b) and (d) measurements of the VSMC modulated by the two-vector scheme with purely reactive current at the
output and input stage (Φ1 = −π/2 and Φ2 = π/2). MU = 0.2, and MIq = 0.44. Further parameters: Û1 = 170 V, LLoad = 25 mH, f1 = 50 Hz, and
f2 = 100 Hz.

Fig. 27. Experimental verification of the three-vector scheme with VSMC (Φ2 = π/2 and MU = 0.2). (a) and (b) Conditions like the ones marked in Fig. 15
(MIq = 0.79). (c) and (d) For reference: conventional modulation with MIq = 0 (over 50 ms). (e) and (f) MIq = 0.4 and Φ1,hyb = +π/2 approximately
compensates the capacitive current drawn by the input filter (over 50 ms). Further parameters: the same as those in Fig. 26.
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Fig. 28. Maximized control range of an indirectly modulated MC achieved
by optimum mixed mode modulation, i.e., basic scheme (Q1,bas) or hybrid
scheme (Q1,hyb) (cf., Fig. 2(a) to notice improvement in comparison to
conventional modulation). For Φ2 > π/3, the proposed hybrid modulation is
superior.

and the pulse compensation (shown for Φ2 = 0), the hybrid
modulation can be generalized to an arbitrary load condition
0 < |Φ2| < π/2.

As the results show, the optimum combination modulation
gives the best transfer performance for very low additional
effort. From Section IV, it can be concluded that the hy-
brid modulation for a purely active load (Φ2 = 0) is in an
inferior position compared to conventional indirect modu-
lation (Q1,bas). However, for increasing load displacements
Φ2 and smaller output voltages or generally for Φ2 > π/3,
hybrid modulation becomes superior to conventional indirect
modulation (cf., Fig. 28). The largest reactive power control
range (over 0 < |Φ2| < π/2 by indirect modulation) seems
achievable by an optimum mixed mode modulation, i.e., either
conventional modulation (Φ1,bas �= 0,Φ1,hyb = 0) or hybrid
modulation (Φ1,bas = 0,Φ1,hyb �= 0).

Considering the resulting extended MC control range in
Fig. 28, the usage of hybrid (indirect) modulation seems attrac-
tive for a couple of new MC applications ([9]–[11]), e.g., in
the field of wind-energy conversion, and is also, in this respect,
highly competitive to the more complex direct modulation
approach [12]–[15].
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