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Ivana Kovačević-Badstübner, Ralph Burkart, Cédric Dittli
and Johann W. Kolar

Power Electronic Systems Laboratory
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Abstract

This paper introduces a new two-dimensional (2D) modeling approach for the fast calculation of inductor
and transformer foil winding losses. The proposed modeling procedure is derived from the Partial Ele-
ment Equivalent Circuit (PEEC) method, which is originally a full three-dimensional (3D) electromag-
netic solution technique. With the presented modifications, the PEEC method can take into account the
influence of an air gap fringing field and core material boundaries as well as skin- and proximity effect.
A comparison to 2D Finite Element Method (FEM) simulations shows that the developed PEEC-based
approach exhibits similar accuracy but shorter calculation times than the classical FEM modeling tech-
niques typically employed for the calculation of non-uniform current distribution within foil windings.
The new modeling approach is experimentally verified by calorimetric loss measurements of a gapped
foil winding E-core inductor. Due to the fast calculation speed of the new approach, optimizations of
inductive components with foil windings over a wide design space are finally possible.

Introduction

The recent development of power power electronic converters is mainly focused towards higher energy
efficiency and higher power density at lower costs and reduced R&D time. A major requirement for
achieving these targets is the optimization of magnetic components. CAD tools based on the Finite Ele-
ment Method (FEM) have so far been used for loss calculation of power inductors and transformers.
However, the model set-up and parametrization effort of valid FEM models is a time-consuming task.
Additionally, FEM is not the best choice for a fast calculation over a design space of hundreds of different
samples. The calculation time for a sample should be in the range of a few seconds in order to allow the
examination of many different designs within a reasonable time.
Depending on the application, an optimized design choice for inductors and transformers is performed
in the direction of minimizing the volume, total loss of the component, or unit cost. Understanding
and control of the generation of heat dissipation is, however, always of major importance. The total
losses of magnetic components can be subdivided into core losses and winding losses. A novel approach
for the calculation of the core losses taking into account non-sinusoidal current waveforms and the DC
magnetization field (HDC) was presented in [1]. In this paper, [1] will be extended with a fast and accurate
calculation of foil winding losses. The attractiveness of the proposed electromagnetic modeling method
is based on its straightforward mathematical principle; only a small set of simple equations is required.
This enables the reader to easily reproduce the approach in any computation environment as e.g. Matlab.
The origin of high frequency winding losses in magnetic components is due to eddy currents produced
by magnetic fields, which are in turn generated by alternating currents of conductors or other external
field sources such as the air gap fringing field. The alternating conductor current produces a magnetic
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Figure 1: 2D FEM model of an inductor built on a gapped E-core with foil windings illustrating (a) non-
homogeneous H-field distribution within the foil closest to the air gap and (b) non-uniform current distribution
J(x,y) in the foils (only one winding window is presented).

field, which influences the current distribution within the conductor itself (skin effect), and on the current
distribution of the surrounding conductors (proximity effect). Foil winding loss calculations are typically
converted into one-dimensional (1D) or two-dimensional (2D) models, where all magnetic field contri-
butions of the conductors and air gaps need to be considered.
In the literature, the 1D calculation methods of proximity effect losses in foil windings are mostly based
on the Dowell method, as e.g. described in [2]. Here, the magnetic field ~H at the position of the winding
layers is assumed to have only a single non-zero field component tangential to the winding layers. A more
accurate approach is to take into account both H-field components (2D field approach) that influence the
current distribution on the actual cross-section of the windings, as shown in Fig. 1(a).
For 2D methods, the main difficulty arises with the calculation of the transversal magnetic field in the
windings induced by the air gap. Specifically, the fringing field around the air gap penetrates the windings
causing eddy currents that produce additional losses. Neglecting these losses introduces large calculation
errors, which in turn can lead to poor designs. The 2D modeling of the fringing flux around the air gap
represents the main difficulty for developing a general applicable analytic equation for foil winding
losses. Therefore (semi-) numerical methods like FEM have to be applied for this calculation task, e.g.
as presented in [3]. Nowadays, the 2D loss calculations are often integrated into overall optimization
procedures, which is not straightforward with FEM-based software.
The calculation of losses based on 2D methods in solid round wires and Litz wire windings under the
influence of non-homogeneous magnetic field distributions, as generated by air gap(s), was analyzed in
[4, 5, 6] and [7], respectively. Foil windings can be used to achieve better thermal properties compared
to solid round and Litz windings since they have a higher copper fill factor. However, due to their
geometry, foil windings are highly exposed to the effect of the air gap fringing field. Hence, they exhibit
worse AC properties caused by increased eddy current losses and a non-uniform current distribution in
the winding layer cross-section area. In order to calculate the winding losses, the current distribution in
foils has to be determined as illustrated in Fig. 1(b). Air-gapped magnetic components are often used
for the design of PFC, resonant and flyback power converters to avoid core saturation and to achieve the
specified inductance value. Therefore, the availability of a fast and accurate calculation method for the
foil winding losses of air-gapped inductors and transformers is necessary.
State-of-the-art approaches for the calculation of the 2D current distribution within foil windings employ
FEM solvers, which are time-consuming and not efficient enough for the overall design optimization.
The existing analytical methods, however, are based on rough simplifications. For example in [2], all
foils are unified into a solid conductor. This approach returns accurate results only up to a certain fre-
quency; at higher frequencies it was shown that the eddy current distribution is not comparable to the
case of separate foils. In [8], the foils were replaced by line current densities, assuming that the copper
foil winding acts as a shield to the fringing field. The air gap was replaced by a line current density
characterized by a sum of spacial Fourier harmonics. Both analytical approaches [2] and [8] assume that
there are no additional conductors in the space between the core and the foil windings.



In [9] a new semi-numeric/analytic method was presented based on an iterative procedure to calculate
the non-uniform foil winding current distribution. The authors showed a good agreement between simu-
lations and measurement results. The proposed loss model is not restrictive with respect to the geometry
of windings and air gap. However, the iteration procedure has to be performed for each frequency step,
which is very time consuming. In this paper, a novel 2D calculation approach using the Partial Element
Equivalent Circuit (PEEC)-based modeling methodology for the fast calculation of the losses in foil
windings is introduced. In contrast to [9], the non-uniform current distribution in the windings is directly
calculated, which enables a faster calculation over a wide frequency range.

A PEEC-based Method for Foil Winding Loss Modeling

The Partial Element Equivalent Circuit method is a numerical technique derived from the integral form
of Maxwell’s equations [10]. It allows the coupling between the field and circuit domains, and thus is
generally very useful for solving electromagnetic problems. The PEEC method reduces 3D geometrical
representations of conductors into a set of circuit elements: resistances, partial inductances and partial
capacitances. The conductor resistances model ohmic losses, whereas magnetic effects are represented
by a partial inductance matrix L and partial capacitances can be used to model the electric field coupling
between conductors. Thus, based on the actual connectivity of the conductors, the 3D geometry is finally
represented as an electric circuit consisting of R, L, and C elements. This PEEC-based circuit is finally
solved via the Kirchhoff’s voltage and current laws in a matrix equation.
The model discretization of a 3D structure leads to a set of sub-conductors. Each sub-conductor is
defined as a circuit cell carrying an initially unknown volume current between two nodes of unknown
potentials. The PEEC system is solved for these currents and voltages represented by the vectors i and v,
respectively. For simple cell geometries, as rectangular or cylindrical cells, R, L, and C elements can be
calculated analytically. An RLC circuit is finally defined by a system matrix and can be solved for the
currents and voltages of the conductors in frequency- or time-domain. A general PEEC system matrix in
the frequency domain is represented by a matrix of the form[

A −(R+ jωL)
( jωP−1 +YL) AT

][
v
i

]
=

[
vS

iS

]
. (1)

The matrix A is the connectivity matrix defining the connections between the sub-conductors, R is the
resistance diagonal matrix, L is the symmetric positive definite partial inductance matrix consisting of
partial self inductances Lselfi on the matrix diagonal, and off-diagonal partial mutual inductances Lmi j.
The capacitance matrix C (= P−1) is neglected in the remainder of this paper, since electric field couplings
are not further considered. The admittance matrix YL consists of matrix stamps of additional circuit
elements connected between PEEC nodes, and the vectors iS and vS represent current and voltage sources
for the model excitations [10].

The PEEC Method and 2D Modeling of Foil Windings

Besides the simplification of the geometry, reducing the modeling problem from 3D to 2D allows an
efficient calculation of the core boundary influence on the winding current distribution similar to [4].
The 3D geometry of a foil winding is shown in Fig. 2(a). The first step from 3D to 2D in Fig. 2(b) is
to assume the foil length l in z-direction to be large compared to the dimensions in x- and y-direction.
Further, a rectangular foil of the dimensions w and h is discretized into a set of N smaller conductors of
the area ∆A = ∆w ·∆h carrying a current density Jsi, i = 1 . . .N, as shown in Fig. 2(c). In the next step,
resistances per unit length are used, and partial inductances for 2D will be derived. The 2D resistance
per unit length of the i-th rectangular conductor is calculated as

Ri2D =
Ri

l
=

1
σ ·∆A

, (2)
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Figure 2: 2D PEEC modeling of a rectangular foil.

where σ is the electric conductivity and l is the length of the conductor. The partial self-inductance of a
straight rectangular bar is calculated using equation (3) from [11],

Lself = Li =
µ0

2π
· l ·
[
log
(2 · l

R

)
−1+

R
l

]
, (3)

where l is the length of the conductor and R is the geometric mean distance [12] of the conductor cross
section, marked with red colour in Fig. 2. Additionally, l� R has to be fulfilled for (3) to be accurate.
The 2D inductance formula given by (3) is then rewritten by applying l� R (l→ ∞) as

Li2D ≈
µ0

2π
·
[
log(2)+ log(l)− log(R)−1

]
=

µ0

2π
· [log(2)−1]− µ0

2π
· log(R)+∆L, (4)

where ∆L = µ0
2π
· log(l) denotes the only term in (4) depending on the length l. The expression ∆L makes

the calculation of Li2D and its application in equation (1) for 2D a non-trivial task, since ∆L diverges
for l → ∞. Descriptively, an inductor with infinite length has an infinite self inductance value per unit
length. But, as shown later, the calculation of ∆L can be eliminated from the system matrix assuming
l → ∞ without any influence on the calculation results. The possibility to eliminate ∆L is plausible,
since a solution of the 2D electromagnetic problem is well-defined and finally existing. The 2D mutual
inductance between two parallel conductors with rectangular cross section as in Fig. 2(d) calculates as

Li j2D =
1

w1h1w2h2

1
4
·

1

∑
i1=0

1

∑
k1=0

1

∑
i2=0

1

∑
k2=0

(−1)i1+k1+i2+k2 ·A2
i1,k1,i2,k2

·Lself(i1,k1, i2,k2), (5)

which is based on the 3D formula for the mutual inductance given in [13]. Here, i1, k1, i2 and k2 represent
the indices of the corners of two observed conductors with rectangular cross section, as shown in Fig.
3. According to (5), the 2D mutual inductance between two conductors can be interpreted as a sum
of self-inductances of 16 conductors defined by the corners of two original conductors, as illustrated in
Fig. 3. Other analytic formulations for a mutual inductance calculation of rectangular cells can be found
in the literature [10]. However, (5) seems to give more accurate and numeric stable results for the 2D
application, especially when the used sub-cell sizes differ significantly in their dimensions. Finally, (5)
results in a weighted sum and application of the self-inductance formula (4) in two dimensions. After
some calculations, it can be shown that the sum of weighting factors in (5) is equal to

1

∑
i1=0

1

∑
k1=0

1

∑
i2=0

1

∑
k2=0

(−1)i1+k1+i2+k2 ·A2
i1,k1,i2,k2

= 4 ·w1h1w2h2, (6)

so that the following expression holds for the 2D mutual inductance (5)

Li j2D =∆L+
1

w1h1w2h2

1
4
·

1

∑
i1=0

1

∑
k1=0

1

∑
i2=0

1

∑
k2=0

(−1)i1+k1+i2+k2 ·A2
i1,k1,i2,k2

· [Lself(i1,k1, i2,k2)−∆L]. (7)
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Figure 3: Calculation of the mutual inductance between two parallel conductors with rectangular cross section.

The remaining problem of the divergence of ∆L = µ0
2π
· log(l) can now be eliminated. By assuming

that the length l of all foils is the same, and since the mutual inductance calculation (7) is based on
a weighted sum of self inductance calculations (4), then the limit l → ∞ is nothing else than adding
a matrix with identical (constant) entries ∆L = [ µ0

2π
· log(l)]i j to the inductance matrix L. By a simple

reasoning, it becomes clear that the constant Matrix ∆L can be subtracted from the 2D inductance matrix
in the system equation (1). This subtraction has finally no effect on the calculated current distribution,
since only PEEC node potential differences determine the current distributions in the PEEC cells, and not
their absolute value. Similarly, partial inductances are mathematically useful for the PEEC aproach, but
only loop inductances of a geometrically closed current loop have a valid physical interpretation. The
loop inductance is not altered by adding a constant value to the inductance matrix. This fact can also be
validated with a minimalistic 2-cell PEEC model example. Finally, the 2D PEEC system matrix (1) can
be evaluated in the limit l→ ∞ and results in[

A −(R2D + jω(L2D−∆L))
0 AT

][
v
i

]
=

[
0
iS

]
. (8)

Here, A is the Ntot×Nfoil connectivity matrix that assures the sum of the currents of all foil sub-conductors
to be equal to the total excitation current of the foil. The vector iS represents the model excitation current
sources.

2D Modeling of Losses in the Presence of an Air Gap

For the complete modeling of losses in gapped magnetic inductors, the influence of the fringing field
around an air gap and the influence of the magnetic core have to be taken into account.

Modeling the Magnetic Core Boundary

The influence of the core boundary is modeled via the mirroring method, similar as described in [1]. In
particular, new additional virtual currents that are the mirrored version of the original currents need to be
considered for modeling the influence of the magnetic material to the total magnetic field in the winding
window. The magnetic field lines are ensured to enter perpendicular to the magnetic material boundary,
thus an infinite core permeability is assumed, see Fig. 4(a). The addition of mirror currents to the PEEC
model is simply performed by adding additional mutual inductances of the mirrored PEEC cells to the
2D inductance matrix L2D in (8). For instance, for a 2-cell PEEC model with a single mirror plane as
shown in Fig. 4(b), the resulting inductance matrix is

L∗ = L2D +Lmirror =

[
Lii Li j

Li j L j j

]
+

[
Lin Lim

Lim L jm

]
. (9)

The inductance matrix is symmetric, i.e. Lim = L jn in (9) applies. Since this approach is not introducing
new variables into the PEEC model, the system matrix size is not changed and the matrix solution
complexity does not increase with the number of introduced mirror planes. The computational overhead
to include cell mirroring is solely the calculation of additional inductances between the original cells and
their mirrored counterparts; the previously derived analytic expression (7) can be reused here.
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Figure 4: a) Illustration of the mirroring method to model the influence of the magnetic core material with the
assumption µ→ ∞. In case the 2D model is surrounded with permeable material, multiple mirror images can be
used for increasing the calculation accuracy. The mirroring approach applied with the PEEC approach b) results
in a modified inductance matrix.

Air Gap Modeling

The air gap is finally modeled as a fictitious conductor at the air gap position carrying the current equal
to the magneto-motive force across the air gap [4]. The influence of the core and the air gap(s) is thus
completely modeled via imaginary conductors. The air gap current has to be considered in the mirroring
procedure, too. The accuracy of the presented approach is based on two assumptions: (1) the length of
the air gap is small compared to the distance between the winding and the gap (which allows to replace
the gap by a conductor) and (2) the relative permeability of the core is very high (µr � 1), implying
that the field lines are perpendicular to the walls of the core which allows the usage of the mirroring
technique.

Foil Loss Modeling: 2D PEEC Method vs. 2D FEM

The 2D PEEC-based calculation of the winding losses is first verified by a 2D FEM simulation of an
E-core inductor with the foil winding of four turns, as illustrated in Fig. 5. The 2D FEM simulation
is performed using the software tool ANSYS Maxwell2D v16. The 2D PEEC simulation of the non-
uniform current density distribution JPEEC (x, y) within the foils is shown in Fig. 6(a).
The 2D PEEC simulation of J(x, y) is verified by the 2D FEM simulation comparing the calculated
JFEM(x,y) and JPEEC(x,y) for x = x1 and x = x2 defined by two field probe lines through the first foil
closest to the gap. Good matching between the 2D PEEC and the 2D FEM simulations is shown in Fig.
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Figure 5: Example of an E-core inductor with a foil winding of 4 turns built on a high permeability core:
a = 15mm, c = 7mm, d = 11mm, lg = 0.5mm, dw−c = 0.3mm, df−f = 0.2mm, df = 0.5mm, hf = 10mm.



Table I: 2D PEEC-based vs. 2D FEM calculation of
winding losses for the inductor in Figure 5.

PPEEC [mW/mm] PFEM [mW/mm]
Foil 1 69.077 69.353
Foil 2 10.461 10.259
Foil 3 3.140 3.110
Foil 4 2.086 2.077
Total 84.69 84.799

Rel. error -0.12 %
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Figure 6: (a) Current density in the winding calculated based on the proposed 2D PEEC method. (b) Comparison
between the 2D PEEC and 2D FEM simulations for the current density along (b) line x = x1 (L1) and (c) line x =
x2 (L2) passing through the first foil closest to the air gap.

6(b) and (c). For the line x = x1 closer to the gap, the maximum mismatch between two simulations is
about 8% for the points in proximity to the air gap. Possible reasons for this deviation are inaccuracies
due to the virtual conductor air gap model, discretization errors or the influence of the finite core perme-
ability, since we assume µr → ∞. However, an agreement of 0.12% between the total power losses in
four foils calculated via 2D PEEC and FEM is achieved, see Table I. A refined discretization of 40×9
sub-conductors is used for the first foil that is the most exposed to the fringing field, while the other three
foils are discretized by 20×9 sub-conductors. The 2D PEEC simulation time of the given example was
around 10s, while for the 2D FEM simulation using ANSYS Maxwell2D v16, a simulation time of 1min
was required.

Experimental Verification

The proposed 2D PEEC approach was implemented in the software tool GeckoMAGNETICS [14], which
is further used to calculate the total losses of an actual E-core inductor with foil windings. In the fol-
lowing sections, the software GeckoMAGNETICS and the experimental verification setup are presented.
The specifications of the modeled inductor, as shown in Fig. 7(a), are given in Table II.

Table II: Inductor specifications for the experimental verification.

Core material Ferrite (EPCOS N87)
Core size 3 × E42/21/15 E-core sets (stacked)
Air gap length [mm] 3.18
Winding type Copper foil winding, 20 turns
Winding size [mm] df = 0.1, hf = 25, df-f = 0.165, dw-c = 1.05
DC resistance 20.8 mΩ @ Twind =23 ◦C
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Figure 7: a) Photo of the inductor used for the experimental verification of the developed PEEC-based approach
for the calculation of foil winding losses. b) Measurement setup with a full bridge converter that is used to excite
the inductor under test, with a triangular current. After reaching the setpoint-dependent steady-state ambient
temperature Tamb,ss inside of the calorimeter, the full bridge is turned off while turning on the calibration circuit.
Adjusting Pcal = IcalVcal in order to keep the calorimeter ambient temperature constant at Tamb,ss yields a good
measure of the total inductor losses, i.e., PLtest ≈ Pcal.

GeckoMAGNETICS

GeckoMAGNETICS [14] enables fast and accurate modeling of inductive power components, such as
inductors and transformers, in a user-friendly way. As input, the winding properties, core material data,
current and voltage waveforms and thermal properties have to be specified. The software enables to
separately evaluate core losses and winding losses of the inductor design. Additionally, it allows to
optimize the design towards either lower power losses or lower inductor volume, for instance by selecting
a different core material, or using a different winding geometry. GeckoMAGNETICS employs the loss
map approach described in [15] for the calculation of the core losses. For the calculation of the total
winding losses, the foil sections inside the winding window and perpendicular to it are distinguished and
calculated separately via 2D models. The varying lengths of the winding turns within the winding stack
are considered so that the innermost turn is the shortest.

Measurement Setup

The inductor loss measurement setup shown in Fig. 7 was used in order to experimentally verify the
PEEC-based approach. The setup consists of a full bridge converter and a calorimeter containing the
inductor Ltest under test, and a resistor Rcal for the loss calibration. The calorimeter is further equipped
with a fan to achieve a homogeneous air temperature inside the box as well as various temperature sensors
for measuring the ambient, the core and the winding temperatures, Tamb, Tc and Twind, respectively. A
two-step measurement approach is applied for each operating point.
In a first step, the full bridge converter is used to excite Ltest with a rectangular voltage waveform,
leading to a triangular current. Eventually, this will heat up the calorimeter to the steady-state ambient
temperature Tamb,ss, which depends on the operating point.
In a second step, the full bridge is turned off while turning on the calibration circuit. The inductor
losses can now be estimated by adjusting Pcal = IcalVcal so as to keep the calorimeter ambient temperature
constant at Tamb,ss. Ideally, this requires Pcal = PLtest .
As the setup of the calorimeter remains unchanged between step (i) and (ii), the losses of the fan and the
temperature sensors are not relevant. The DC values Ical and Vcal are measured with high-precision equip-
ment, while ÎFB and V̂FB are measured with standard oscilloscope probes. A DC blocking capacitor in
series to Ltest was not required as the measured DC component of iFB was negligible in all measurements.

GeckoMAGNETICS Simulation vs. Measurements

The measurements were performed for three operating points, as specified in Table III. The comparison
between the corresponding measurements and the results from GeckoMAGNETICS is summarized in



Table III: Specifications of three measured operating points (OP) and comparison between measurements and
GeckoMAGNETICS simulations of total inductor losses.

OP Specifications GeckoMAGNETICS Measurements Rel. Err.
OP fFB [kHz] V̂FB [V] ÎFB [A] Pwind [W] Pcore [W] Ptot [W] Ptot [W] [%]
1 5 25.87 10.73 3.785 0.284 4.069 4.328 -5.98
2 15 50.73 7.13 3.492 0.395 3.887 3.783 2.73
3 30 69.84 4.94 2.60 0.371 2.939 2.565 15.96

Table III. As the calorimetric measurement method does not allow distinguishing between core and
winding losses, the employed inductor is therefore designed for the purpose to verifiy the proposed
winding loss model. In particular, according to the simulation results of the analysed inductor example,
the winding losses contribute the dominating loss component for all measured operating points. The
core loss measurement errors have a low impact on the total inductor losses, see Fig. 8. The maximum
difference between the measurements and the GeckoMAGNETICS modeling results of less than 16 %.
The error source for the 16 % error at 30 kHz is difficult to detect. Possible reasons could be modeling
issues of the 2D geometry simplification, the simplified GeckoMAGNETICS thermal model that assumes
homogeneous temperatures of the core and the winding, the accuracy of the loss-map approach for the
calculation of core losses using EPCOS N87 ferrite material datasheets properties, and/or the precision
of the calorimetric measurement setup defined by reaching the steady-state Tamb,ss level.
The simulation time for an operating point is of the order of several seconds. Accordingly, the presented
verification shows that GeckoMAGNETICS, with the implemented 2D PEEC-based modeling approach,
can be used for the efficient calculation of foil winding losses, and hence, for an overall design of gapped
E-core inductors built with foil windings with an acceptable engineering accuracy.
The screenshots of the GeckoMAGNETICS results are presented in Fig. 8 showing the non-uniform loss
distribution across the foils due the air gaps and the shares of loss components, respectively.

AC conductor 
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Core losses

Proximity 
effect losses

3.785 W

0.284 W

Figure 8: GeckoMAGNETICS simulation results for the first operating point (OP1): Visualization of the non-
uniform loss distribution across the foils due the air gap and the origin of total loss distribution.

Summary and Conclusion

This paper presents a new 2D approach for the fast and accurate calculation of foil winding losses taking
into account the skin and proximity effects and the influence of the air gap fringing field. The proposed
PEEC-based approach was compared and validated with 2D FEM simulations; a good level of accuracy
was achieved with a fast computation time. The developed approach was implemented in the software
GeckoMAGNETICS which enables the calculation of the total inductor losses, i.e. including both core
and winding losses. Additionally, the simulation result of a gapped E-core foil winding inductor was
successfully verified by measurements using a calorimetric measurement setup. This new 2D approach



thus allows optimizing complete inductor designs with foil windings towards minimum losses and/or
minimum inductor volumes in an efficient and accurate way.
The comparison between experimental results and simulations in this paper revealed that the E-core air
gap reluctance calculation has to be revised in the case of the foil windings. Specifically, the effective
cross-sectional area of the air gap calculated by using the Schwarz-Christoffel transformation leads to an
increased inductance value Lcalc in comparison to the measured inductance, Lmeas, e.g., Lcalc = 138µH
and Lmeas ≈ 120µH. This can be explained by the electromagnetic effect of foils acting as a shield to the
air gap fringing field.
In future research, the calculation accuracy and speed of the new 2D approach could be further im-
proved by an adaptive PEEC meshing. Furthermore, considering capacitive effects would be necessary
to generate valid high frequency inductor models.
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