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Motivation

■ Reduction of Global Carbon Emissions Required
■ Transportation Sector Responsible for 14 % of CO2 Emissions

■ Transportation in Europe Approx. 25 % of All Emissions
■ Transportation in US Approx. 29 % of All Emissions

→ Goal: Decarbonization and Implementation of a Sustainable Transportation Sector

■ Railway Systems: Greenest and Cleanest Mode of Transport
• Performance Improvements Demanded

■ Focus on Pressurized Air Supply System of Railway Vehicles
• Air Brake System
• Door Control System
• Pantograph Lifting

■ General Requirements
• Compactness
• High Efficiency
• Reliability 
• Redundancy

→ Unique Operating Conditions

[Source: YUJIN]
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Application

→ Ultra Compact 1Φ AC-Supplied VSD System

■ Oil-Free Scroll Compressor 7.5 kW @ 3700 rpm
• Charge Pressure Tank

■ Variable Speed Operation
• Maximum System Performance

■ AC-Operation (Grid) 280…530 Vrms
• Nominal Voltage 400Vrms @ 50Hz
• Tertiary Traction Transformer Winding
• Ensure Unity Power Factor Operation

■ DC-Operation (Battery) 70….110 Vdc
• On-Board Battery
• Startup and Grid Interruption

■ 1Φ AC/DC-to-3Φ AC Converter System
• Wide-Input Voltage Range
• Survive Grid Disturbances and Interruptions
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■ Proposed MPPB Concept 

• Mechanical Energy Storage 𝑱𝐌 ∆ω =
𝑃0

2𝜋 2𝑓G

1

ഥω 𝐽M

→ Electrolytic-Less 1Φ AC-Supplied VSD System

Challenge

■ State-of-the-Art

• Electrical Energy Storage 𝑪𝐃𝐂 ∆𝒗𝐃𝐂=
𝑷𝟎

𝟐𝝅 𝟐𝒇𝐆

𝟏

ഥ𝒗𝑫𝑪 𝑪𝐃𝐂

■ Avoid Electrolytic Capacitors (1 ltr.) → Increased Lifetime
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■ Proposed MPPB Concept 

• Mechanical Energy Storage 𝑱𝐌 ∆ω =
𝑃0

2𝜋 2𝑓G

1

ഥω 𝐽M

→ Electrolytic-Less 1Φ AC-Supplied VSD System

Motor-Integrated Power Pulsation Buffer (MPPB)

■ State-of-the-Art

• Electrical Energy Storage 𝑪𝐃𝐂 ∆𝒗𝐃𝐂=
𝑷𝟎

𝟐𝝅 𝟐𝒇𝐆

𝟏

ഥ𝒗𝑫𝑪 𝑪𝐃𝐂

■ Avoid Electrolytic Capacitors (1 ltr.) → Increased Lifetime
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Outline

Part I: Single-Inverter Topology

Part II: Dual-Inverter Topology
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Part I
Single-Inverter (SI) Topology
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SI – Topology

→ How to Control?

■ Two-Stage Implementation

■ I. PFC Rectifier
• Boost-Type
• Totem-Pole with Unfolder Leg
• Three Interleaved HF Legs

■ Intermediate DC-Link
• Electrolytic-Less
• Nominal:    650Vdc
• Maximum:  800Vdc
→ 1.2 kV SiC MOSFETs

■ II. Three-Phase Inverter
• Two-Level
• Voltage Source Inverter (VSI)



10/31

SI – Control (1)

■ Control Objectives: PFC Operation, DC-Link Voltage and Average Speed Control
• Implemented in Cascaded Fashion
• Based on Grid Power Feedforward and Inner Current Control Loops

→ MPPB Operation: Achieved by High-Level Control Scheme Modifications

■ Proposed MPPB Operation 

• Mechanical Energy Storage 𝑱𝐌 ∆ω =
𝑃0

2𝜋 2𝑓G

1

ഥω 𝐽M

■ Conventional Operation

• Electrical Energy Storage 𝑪𝐃𝐂 ∆𝒗𝐃𝐂=
𝑷𝟎

𝟐𝝅 𝟐𝒇𝐆

𝟏

ഥ𝒗𝑫𝑪 𝑪𝐃𝐂
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SI – Control (2)

■ Control Objectives: PFC Operation, DC-Link Voltage and Average Speed Control
• Implemented in Cascaded Fashion
• Based on Grid Power Feedforward and Inner Current Control Loops

→ Verified by Circuit Simulation for CDC = 60μF - only 8μF/kW → Voltage / Speed Ripple 34Vpkpk / 120 rpmpkpk
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Performance 
Analysis

Source: Siemens
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■ Conventional System (𝑖Md = 0 A)
• Torque-Generating Current

𝒊𝐌𝐪 = 𝑰𝐌𝟎 =
𝟐𝑷𝟎

𝟑𝑽𝐏
~ 𝑻𝐋

■ Electrolytic-Less MPPB (𝑖Md = 0 A)
• Torque-Generating Current

𝒊𝐌𝐪 = 𝑰𝐌𝟎 𝟏 + 𝐜𝐨𝐬 𝟒𝝅𝒇𝐆 𝒕 ~ 𝒕𝐌

■ dq-Transformation with 𝜺 = 𝒑 ഥ𝝎 𝒕

𝒊𝐌𝐚

𝒊𝐌𝐛

𝒊𝐌𝒄

=

𝐜𝐨𝐬 𝜺 𝐬𝐢𝐧 𝜺
𝐜𝐨𝐬 𝜺 − 𝟐𝝅/𝟑 𝐬𝐢𝐧 𝜺 − 𝟐𝝅/𝟑

𝐜𝐨𝐬 𝜺 + 𝟐𝝅/𝟑 𝐬𝐢𝐧 𝜺 + 𝟐𝝅/𝟑
∙

𝒊𝐌𝐝

𝒊𝐌𝐪

■ Superposition:  𝒊𝐌𝐚 = −𝑰𝐌𝟎 𝐬𝐢𝐧 𝒑 ഥ𝝎 𝒕 +
𝟏

𝟐
𝐬𝐢𝐧 𝒑 ഥ𝝎 𝒕 + 𝟒𝝅𝒇𝐆 𝒕 +

𝟏

𝟐
𝐬𝐢𝐧 𝒑 ഥ𝝎 𝒕 − 𝟒𝝅𝒇𝐆 𝒕

SI – Comparative Phase Current Analysis

→ Harmonic Components @ 𝒑 ഥ𝝎, 𝒑 ഥ𝝎 + 𝟒𝝅𝒇𝐆 and 𝒑 ഥ𝝎 − 𝟒𝝅𝒇𝐆

■ Comparison

Source: Siemens
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■ Harmonic Components: 𝒑 ഥ𝝎, 𝒑 ഥ𝝎 + 𝟒𝝅𝒇𝐆 and 𝒑 ഥ𝝎 − 𝟒𝝅𝒇𝐆

• Standing Waves for 𝒑 ഥ𝝎 = 𝟒𝝅𝒇𝐆 (100Hz) and 𝒑 ഥ𝝎 = 𝟐𝝅𝒇𝐆 (50Hz)
• Similar to Startup

• Asymmetric Phase Stresses → Restricted Frequency Ranges

• Total Conduction Losses Remain

SI – Phase Conduction Losses

→ Degree of Freedom: Number of Pole Pairs p
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SI – Performance Analysis: Motor and Inverter

■ M. Motor

• Conventional System 𝑷𝐕𝐌𝟎 = 𝑷𝐕𝐌𝐧𝐥 +
𝟑

𝟐
𝑹𝐬𝑰𝐌𝟎

𝟐

• Electrolytic-Less MPPB 𝑷𝐕𝐌 = 𝑷𝐕𝐌𝐧𝐥 +
𝟗

𝟒
𝑹𝐬𝑰𝐌𝟎

𝟐

• Relative Loss Increase + 25%

■ I. IGBT Inverter

𝑷𝐕𝐈 = 𝟑𝑽𝐟𝑰𝐏𝐇𝐚𝐯𝐠 + 𝟑𝒇𝐈𝐬𝐰𝒌𝟏𝑰𝐏𝐇𝐚𝐯𝐠

• No Additional Losses - High Total Losses

■ II. MOSFET Inverter with dv/dt-Limitation (Miller Capacitor)

𝑷𝐕𝐈 = 𝟑𝑹𝐨𝐧𝑰𝐏𝐇𝐫𝐦𝐬
𝟐 + 𝟑𝒇𝐈𝐬𝐰 𝒌𝟎 + 𝒌𝟏𝑰𝐏𝐇𝐚𝐯𝐠

• Relative Loss Increase + 17%

■ III. MOSFET Inverter with LC-Output-Filter

𝑷𝐕𝐈 = 𝟑𝑹𝐨𝐧𝑰𝐏𝐇𝐫𝐦𝐬
𝟐 + 𝟑𝒇𝐈𝐬𝐰 𝒌𝟎 + 𝒌𝟏𝑰𝐏𝐇𝐚𝐯𝐠 + 𝒌𝟐𝑰𝐏𝐇𝐫𝐦𝐬

𝟐

• Relative Loss Increase  + 25%
• Peak Phase Current + 100%

→ Implement and Verify Hardware Demonstrator

M. I. II. III. 
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Implementation 
and Verification
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SI – Implementation

■ Circuit Schematic

■ Motor Integration in Three Layers

→ Drive System Performance: 0.91 kW/ltr. and 91.4 % @ 7.5 kW - IES2 Compliant 

■ Losses: 703 W ( 91.4 % )

■ Volume: 8.2 ltr. ( 0.91 kW/ltr. )

3 x 48 kHz 60μF (Foil) 24 kHz



18/31

■ Motor-Integrated Electrolytic-Less 1Φ AC-Supplied VSD System
• Time-Domain Waveforms at Nominal Operating Point
• Verification on Motor Test Bench

(Specifically Developed) 

SI – Hardware Demonstrator

→ Demonstrator Matches Expected System Behavior
→ Verify Design Models
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SI – Design Models

■ Loss Model
• Conventional System            600 W (92.6%)
• Electrolytic-Less MPPB         703 W (91.4 %)
• Drive System Efficiency >90% for P0 > 5kW

■ EMI-Model
• CISPR 11 / Class A
• DM-Noise: PFC Rectifier                @ 144kHz
• CM-Noise: Inverter                       @ 168kHz

→ In-Depth Model Verification - 103 W of Additional Losses to Eliminate 1 ltr. of Electrolytic Capacitors
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SI – DC-Link Voltage Ripple

■ LF DC-Link Voltage Fluctuations: 35 V
• Caused by Disturbances

• DC-Link Voltage Ripple matches Simulation

• Increase CDC = 60μF
• Increase fsw = 24kHz

→ Efficiency, Power Density or Cost Penalty

→ Analyze Grid Interruption Sustainability

■ Delay Time Reduction: 23 V
• Improve Controller Bandwidth

■ Feedforward Term: 10 V
• Counteract Motor Magnetization Power
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Current Source
Based System

Shared Drift Region
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SI – Current DC-Link: Topology

■ Monolithic Bidirectional GaN Transistor 

■ Two-Stage Implementation
• Current DC-Link
• 1AC PFC Current Source Rectifier (CSR)
• Three-Phase Current Source Inverter (CSI)

■ Specifications
• 1AC: 230V/50Hz
• Motor: 2.5kW @ 300rad/s

Shared Drift Region

→ How to Control?
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SI – Current DC-Link: Control (1)

■ Control Objectives: PFC Operation, DC-Link Current and Average Speed Control
• Implemented in Cascaded Fashion
• Based on Grid Power Feedforward and Inner Current Control Loops

→ MPPB CSI Operation: Achieved by High-Level Control Scheme Modifications

■ Proposed MPPB CSI Operation 

• Mechanical Energy Storage 𝑱𝐌 ∆ω =
𝑃0

2𝜋 2𝑓G

1

ഥω 𝐽M

■ Conventional CSI Operation

• Electrical Energy Storage 𝑳𝐃𝐂 ∆𝒊𝐃𝐂=
𝑷𝟎

𝟐𝝅 𝟐𝒇𝐆

𝟏

ҧ𝒊𝑫𝑪 𝑳𝐃𝐂
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SI – Current DC-Link: Control (2)

■ Control Objectives: PFC Operation, DC-Link Current and Average Speed Control
• Implemented in Cascaded Fashion
• Based on Grid Power Feedforward and Inner Current Control Loops

→ MPPB Concept Enables CSI for 1AC Supplied Drives: LDC = 1mH - only 0.4 mH/kW          (Conventional Operation Requires Unrealistic 700mH)  



25/31

Part II
Dual-Inverter (DI) Topology
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DI – Topology

→ Investigate Operation to Ensure 𝒑𝟐(𝒕) = 𝟎 𝐖

■ Dual-Inverter Implementation

■ Avoids Boost Stage
• No Boost Inductor
• No HF Bridge-Legs
• Power Buffer Required

■ Apply MPPB Concept
• Electrolytic-Less

■ Implementation Effort
• Diodes
• IGBT Six-Pack Modules
• Film Capacitors
• OEW PMSM
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DI – Operation

■ Ensure 𝒑𝟐 𝒕 = 𝒗𝟐 ∙ 𝒊𝐌 = 𝟎 𝐖 (Space Vector Representation)

■ Case I: 𝑽𝐏 <  𝒗𝟏𝐦𝐚𝐱 𝒕 = 𝟎. 𝟓 |𝒗𝐆 𝒕 |

• Ensure  𝒗𝟐 = 𝟎 𝐕 and 𝒗𝟏 = j 𝑽𝐏

• VSI 2 Provides No Voltage
• Zero d-Current Component

■ Ensure 𝒑𝟐 𝒕 = 𝒗𝟐 ∙ 𝒊𝐌 = 𝟎 𝐖 (Space Vector Representation)

■ Case II: 𝑽𝐏  ≥  𝒗𝟏𝐦𝐚𝐱 𝒕 = 𝟎. 𝟓 |𝒗𝐆 𝒕 |

• Ensure 𝒗𝟐 ⊾ 𝒊𝐌 and 𝒗𝟏 = j 𝑽𝐏 − 𝒗𝟐

→ Select 𝒗𝟏 = 𝒗𝟏𝐦𝐚𝐱 and 𝒗𝟏 ∥ 𝒊𝐌

• VSI 2 Provides Required Voltage Difference but No Active Power
• Non-Zero d-Current Component

→ Performance Analysis
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■ Electrolytic-Less MPPB Implementation
• For V P = 2V0 = 250V
• I PHrms = 24 A

■ Electrolytic-Less MPPB Implementation
• For V P = V0 = 125V
• I PHrms = 41A

DI – Phase Current Stress

■ Implementation With Electrolytic Capacitors
• For V P = V0 = 125V - Grid Voltage Limit
• I PH0rms = 33A

For VGmin = 360Vrms
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DI – Performance Evaluation

→ Semiconductor Loss Reduction up to 30 %   @ V P = 2V 0

■ Degree of Freedom: Motor Voltage VP

■ Influence on
• Secondary DC-Link Voltage V DC2

• Phase Current Stress IPHrms

■ Performance Indices
• Conduction Losses

𝝆𝐚𝐯𝐠 = ෍

𝒌

𝑰𝐃𝐚𝐯𝐠,𝐤 + 𝑰𝐓𝐚𝐯𝐠,𝐤

𝝆𝐫𝐦𝐬= ෍

𝒌

𝑰𝐃𝐫𝐦𝐬,𝐤
𝟐 + 𝑰𝐓𝐫𝐦𝐬,𝐤

𝟐

• Switching Losses 

𝝇 = ෍

𝒌

𝒗𝐓,𝐤 + 𝒊𝐓,𝐤 𝑻𝐆

■ System Specifications
• Mech. Output Power 7.5kW
• Mech. Speed 3700rpm
• Grid Voltage 360…480Vrms
• Grid Frequency 50Hz
• Switching Frequency 16kHz

■ Normalized to State-of-the-Art
(with Electrolytic Capacitor)

• AVG Conduction Losses:    -45% 

• RMS Conduction Losses:    -45% 

• Switching Losses: -15%
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DI – Control

■ Control Objectives: PFC Operation, DC-Link Voltage and Average Speed Control
• Implemented in Cascaded Fashion
• Based on Grid Power Feedforward and Voltage Division

→ Verified by Circuit Simulation for 𝑪𝐃𝐂𝟐 = 𝟓𝟎 𝛍𝐅 - only 𝟔. 𝟕 𝛍𝐅/𝐤𝐖
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Results & Conclusions

Part I: Single-Inverter Topology

■ MPPB Concept
● Elim. Electrolytic Capacitors in 1Φ AC-Supplied VSD Systems
● Performance Analysis: Motor and Inverter

■ Motor-Integrated Hardware Demonstrator
● Achieving 8μF/kW within the DC-Link
● Drive System Perf.: 0.91kW/ltr. and 91.4% @ 7.5kW
● In-Depth Validation

■ Current-Source Based System
● Monolithic Bidirectional GaN Transistor 
● Protection of Motor Winding System 

Part II: Dual-Inverter Topology

■ Dual-Inverter Employing the MPPB Concept
● Low Effort Implementation
● Analysis of Operation and Control Structure
● Semiconductor Loss Reduction of up 30% 



Thank You!

November 9th, 2023
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