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Abstract—A new strategy for indirect matrix converters which
allows an optimal control of source and load currents is pre-
sented in this paper. This method uses the commutation state
of the converter in the subsequent sampling time according to
an optimization algorithm given by a simple cost functional and
the discrete system model. The control goals are regulation of
output current according to an arbitrary reference and also a good
tracking of the source current to its reference which is imposed
to have a sinusoidal waveform with low distortion. Experimental
results support the theoretical development.

Index Terms—AC–AC power conversion, current control, ma-
trix converter, predictive control.

NOMENCLATURE

is Source current [isA isB isC ]T .
vs Source voltage [vsA vsB vsC ]T .
ii Input current [iA iB iC ]T .
vi Input voltage [vA vB vC ]T .
io Load current [ia ib ic]T .
vo Load voltage [va vb vc]T .
i∗s Source current reference [i∗sA i∗sB i∗sC ]T .
i∗o Output current reference [i∗a i∗b i∗c]

T .
Cf Filter capacitor.
Lf Filter inductor.
Rf Filter resistor.
RL Load resistance.
LL Load inductance.

I. INTRODUCTION

THE indirect matrix converter (IMC) [1] has been the
subject to investigation for some time. One of the favor-

able features of an IMC is the absence of a dc-link capaci-
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tor, which allows for the construction of compact converters
capable of operating at adverse atmospheric conditions such
as extreme temperatures and pressures. These features have
been explored extensively and are the main reasons why the
matrix converters family has been investigated for decades [2].
IMC features an easy to implement and more secure com-
mutation technique, the dc-link zero current commutation [3].
Moreover, the conventional IMC has bidirectional power flow
capabilities and can be designed to have small sized reactive
elements in its input filter. These characteristics make the IMC
a suitable technology for high-efficiency converters for specific
applications such as military, aerospace, wind turbine generator
system, external elevators for building construction and skin
pass mill, as reported in [4]–[6], where these advantages make
up for the additional cost of an IMC compared to conventional
converters. IMC uses complex pulse width modulation (PWM)
and space vector modulation (SVM) schemes to achieve the
goal of unity power factor and sinusoidal output current [2],
[7]–[13]. Thanks to technological advances, fast and powerful
microprocessors are used for the control and modulation of
power converters. To deal with the high processing power
needed for these microprocessors, some research has shown the
positive potential of model predictive control (MPC) techniques
in many power electronics applications [14], [15]. This is a
nonlinear control method that takes advantage of the discrete
inherent nature of the commutated power converter. While
there are a few challenges to the predictive control method,
it has been demonstrated as an appealing alternative to power
converter control because its concepts are very intuitive and
easy to understand, and it can be applied to a wide variety
of systems. In addition, it may involve multiple systems, dead
time compensation, and nonlinear constraints, making it an easy
controller to implement, particularly since it is open to modi-
fications and extensions for specific applications, as reviewed
in [16]–[21]. This control scheme has some advantages over
traditional linear controllers and PWM modulators, such as
fast dynamic responses and an easy inclusion of constraints
on the system [22]. Predictive current control (PCC) can be
described as a particular case of MPC which takes into account
the inherent discrete nature of the switching states of the power
converter and the digital implementation [20], [21], [23]–[25].
Most of PCC methods applied in matrix converters take into
consideration the output current regulation and the instanta-
neous reactive power minimization on the input side, obtaining
input currents in phase with their respective phase voltages.
However, this cannot ensure that they present a sinusoidal
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Fig. 1. General topology of the 3 × 3 indirect matrix converter.

waveform, particularly when harmonic distortion is present in
the source voltage. To overcome this issue and enhance the
quality of the source current, in the following pages, this paper
illustrates how the PCC can be applied to an IMC and how both
source and load currents waveforms can be directly controlled.

II. INDIRECT MATRIX CONVERTER MODEL

The IMC topology is shown in Fig. 1. DC-link voltage vdc

is obtained as a function of the rectifier switches and the input
voltages vi as follows:

vdc = [Sr1 − Sr4 Sr3 − Sr6 Sr5 − Sr2]vi (1)

and input currents ii are defined as a function of the rectifier
switches and the dc-link current idc as

ii =

⎡
⎣Sr1 − Sr4

Sr3 − Sr6

Sr5 − Sr2

⎤
⎦ idc. (2)

DC-link current idc is determined as a function of the inverter
switches and the output currents io as

idc = [Si1 Si3 Si5]io (3)

and finally, output voltages are synthesized as a function of the
inverter switches and the dc-link voltage vdc as

vo =

⎡
⎣Si1 − Si4

Si3 − Si6

Si5 − Si2

⎤
⎦ vdc. (4)

These equations correspond to the nine and eight valid
switching states for the rectifier and the inverter stage, re-
spectively, as reported in [3], following the restrictions of no
short circuits in the input and no open lines in the output. A
positive dc-link voltage at any time is also mandatory for a
conventional IMC, so the nine rectifier states reduce to only
three valid states in every sampling time Ts. In addition, the
rectifier includes an LfCf filter on the input side which is
needed to prevent over voltages and to provide filtering of the
high-frequency components of the input currents produced by

the commutations and the inductive nature of the load. The filter
consists of a second-order system described by

dis
dt

=
1

Lf
(vs − vi) −

Rf

Lf
is (5)

dvi

dt
=

1
Cf

(is − ii). (6)

The load model is obtained similarly. Assuming an inductive-
resistive load as shown in Fig. 1, the following equation de-
scribes the behavior of the load:

dio
dt

=
1

LL
vo − RL

LL
io. (7)

Additionally, the impedance model of the input filter is
defined as

Zc =
1

jwsCf
(8)

Zl =Rf + jwsLf (9)

where ws = 2πfs, with fs the source frequency. The load
impedance is represented as

Zo = RL + jwoLL (10)

where wo = 2πfo, with fo the load frequency. Finally, the filter
model in terms of impedance is given as

vs =vi + isZl

is = ii + vi/Zc. (11)

III. PROBLEM ON THE INPUT SIDE

SVM and PWM techniques generate a desired output voltage
with unity power factor [2], [7]–[13], but there is a displacement
angle between the source line current is and input current ii due
to the filter parameters and consequently a displacement angle
between the source voltage and current, requiring additional
controllers to handle this angle [26]. From (8) and (9) and (11),
this displacement angle is given as

δ = arctan (wsCf (Vs − RfIs)) /
(
Is

(
1 − w2

sLfCf

))
(12)

where Vs and Is are the source voltage and current fundamental
amplitudes, respectively. In [26], it has been proposed that
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two power factor compensation methods can be used, each
one considering direct SVM to compensate the displacement
angle δ between source voltage and current with the goal
to obtain a unity power factor from a voltage transfer ratio
greater than or equal to 0.35, but the compensated displacement
angle decreases while the voltage transfer ratio increases, and
additionally, the source current does not present a sinusoidal
waveform. In [27], the authors proposed a modified direct SVM
method to control matrix converters with transfer ratio less than
0.5, allowing to compensate a maximum displacement angle of
π/6 (30◦), but the source currents are not considered in this
work presenting a distorted waveform as well. Predictive tech-
niques that have been proposed in the last years have focused
on the minimization of the instantaneous reactive power on the
input side, but there are no reports of additional works based on
a source current control [3], [20], [21], [24], [28].

In summary, as well this is not a real issue in a predictive
controller, one of the main drawbacks of SVM techniques is the
compensation of nonunitary displacement power factor (DPF)
in the supply side of the system (between is and vs), due
to the LfCf input filter and the dynamic amplitude of io.
As mentioned, recently, solutions based on SVM have been
proposed to solve this drawback, but it requires a more complex
algorithm, and it has a limit in the compensable DPF, which
depends on the modulation index. Today, most of the works
developed on matrix converters with predictive control have
focused on the control of the output side while maintaining
minimum instantaneous reactive power on the input side, but
there are no reports of a source current control with imposed
waveform like the model proposed in this paper. In comparison
to classical methods, by using a predictive algorithm, the con-
troller and modulator merge in only one block, making it easier
to implement than SVM and PWM methods. The proposed pre-
dictive strategy presented in this paper suggests that a control of
the source current with imposed waveform should be performed
rather than an instantaneous reactive power minimization. The
predictive algorithm evaluates at every sampling time Ts all
of the 24 possible states and chooses the one that returns the
minimal value for the cost functional g to be applied in the next
sampling instant. The minimization of g guarantees two goals:
the output currents follow their references with accuracy, and
the converter draws sinusoidal input currents with unity input
DPF according to their references.

IV. PREDICTIVE CURRENT CONTROL FOR THE IMC WITH

IMPOSED SINUSOIDAL SOURCE CURRENTS

To minimize the computational cost, the αβ linear transform
is applied to all three-phase current and voltage vectors, defined
as

[
uα

uβ

]
=

[
2/3 −1/3 −1/3
0

√
3/3 −

√
3/3

] ⎡
⎣ua

ub

uc

⎤
⎦ (13)

where the vector [ua ub uc]T is the three-phase current or
voltage vector, and [uα uβ ]T is the αβ vector.

Fig. 2. Predictive source and output current control scheme with source
current reference.

In [3], a predictive control strategy for an IMC has been
presented, where the approach pursues the selection of the
switching state of the converter that leads the output currents
closet their respective references at the end of the sampling
period, while minimizing the instantaneous reactive power
on the input side. As mentioned before, this strategy cannot
ensure sinusoidal waveform of the source current, particularly
when harmonic distortion is present in the source voltage.
The proposed MPC scheme is represented in Fig. 2, where in
comparison to the before mentioned strategy, the term which
minimizes the reactive power on the input side is replaced by
a direct control of the source current waveforms to force them
to follow a sinusoidal reference independent of the distortion
present on the input side. The method applies the best switching
state of the converter based on a cost function minimization of
the load and source current errors with an arbitrary weighting
factor, but this choice cannot ensure a perfect tracking or zero
error. This method attempts to impose source currents with
sinusoidal waves with an acceptable performance in the IMC,
using the optimum commutation state in each sample time. Due
to the power balance principle (input/output coupling effects) in
matrix converters and under harmonic distortion in the mains,
it is impossible to ensure constant active power in both sides
and they will necessarily affect the converter waveforms. This
effect will be present in matrix converters (direct or indirect),
regardless of the control method being considered. In the pro-
posed control method, the minimization of the source current
error means that the quantities of the load current are damaged.
However, if an adequate tradeoff between source and load
current is selected, the distortion of both currents is reduced.

A. Prediction Model

Since the predictive controller is formulated in discrete time,
it is necessary to derive a discrete time model for the load-
converter system. The input side can be represented by a state
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space model [20], with the state variables is and vi obtained
from (5) and (6) as follows:[

v̇i

i̇s

]
= A

[
vi

is

]
+ B

[
vs

ii

]
(14)

where

A =
[

0 1/Cf

−1/Lf −Rf/Lf

]

B =
[

0 −1/Cf

1/Lf 0

]
. (15)

The discrete time state space model is determined as[
vi(k + 1)
is(k + 1)

]
= Φ

[
vi(k)
is(k)

]
+ Γ

[
vs(k)
ii(k)

]
(16)

with

Φ = eATs , Γ = A−1(Φ − I2×2)B. (17)

The output current prediction can be obtained using a for-
ward Euler approximation in (7) as

io(k + 1) = d1vo(k) + d2io(k) (18)

where, d1 = Ts/LL and d2 = 1 − RLTs/LL are constants de-
pendent on load parameters and the sampling time Ts[20]. Note
that the current is(k + 1) and io(k + 1) depend upon Si(k)
through (2) and (3).

B. Cost Function Definition

The error between the predicted load currents and its refer-
ences can be expressed as follows:

�io(k + 1) = |i∗oα − ioα| +
∣∣i∗oβ − ioβ

∣∣ (19)

where ioα and ioβ denote the load current in αβ coordinates for
k + 1 sample time, and i∗oα and i∗oβ their respective references.
Furthermore, the error between the reference and predicted
value of the source current can be expressed as

�is(k + 1) = |i∗sα − isα| +
∣∣i∗sβ − isβ

∣∣ (20)

where, i∗sα and i∗sβ correspond to the source current references
(see Appendix for additional information) and isα and isβ are
the source current predictions in sample k + 1. Expressions of
(19) and (20) are merged in a single cost function as indicated
in (21) which is evaluated for every switching state, applying
to the converter the switching state that minimizes this quality
function, as has been explained before. Finally, (19) and (20)
are combined into a single so-called quality function as follows:

g = �io(k + 1) + γi�is(k + 1) (21)

where γi is a weighting factor. Noting that g = 0 (for an
arbitrary value of γi) gives perfect tracking of the load and
source currents, then by minimizing g, the optimum value for

TABLE I
EXPERIMENTAL SETUP PARAMETERS

commutation state is guaranteed. In practice, by the appropriate
selection of the weighting factor γi, a given total harmonic
distortion (THD) of the input and output currents is obtained.
The principal method for selection of the weighting factors and
analysis of the performance system effects is presented in [29],
where first it is established in a value equal to zero to prioritize
the control of the output current, and later it is increased slowly
aiming to obtain minimal THD of source and load currents.

V. RESULTS

A laboratory IMC prototype designed and built by Univer-
sidad Tecnica Federico Santa Maria, thanks to the support of
the Power Electronics Systems Laboratory of ETH Zurich,
was used for experimental evaluation. The converter features
insulated gate bipolar transistors (IGBTs) of type IXRH40N120
for the bidirectional switch of the rectifier side and standard
IGBTs with antiparallel diodes IRG4PC30UD for the inverter
stage. Experimental results are presented in this section, by
considering the parameters indicated in Table I. As demon-
strated in [3] and [15], the high calculation power of today’s
existing digital signal processors (DSPs) makes this method
very attractive to control power converters. The control scheme
presented in [3] was implemented in a 160 MIPS fixed point
ADSP21991 DSP board and a sampling time of Ts = 20 μs.
In our experimental results, it has been considered the same
sampling time, and the control scheme was implemented in a
dSPACE 1103. Similar to the setup used in [3], the processor
board is connected to additional boards that include a FPGA
for the commutation sequence generation and the signal con-
ditioning for the measurement of voltages and currents. In
Section V-A, experimental results of the method proposed in [3]
have been presented to compare them with experimental results
of the proposed method which are presented in Section V-B.
However, in this case, it is considered the utilization of a three-
phase variac as the ac source available in our laboratory, which
behaves like a weak ac supply for the system, due to the
inductance associated with the autotransformer connection.

A. Method I: Predictive Current Control With Instantaneous
Reactive Power Minimization

It is known that most industrial application requires unity
power factor in the grid side. For this reason, as reported in
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Fig. 3. Experimental results of current control with instantaneous reactive
power minimization (q∗s = 0); source voltage vsA [V] and current isA [A];
output current ia [A] and its reference i∗a [A].

[3], through the instantaneous reactive power minimization, the
system is forced to work with a unity DPF on the input side.
The cost function considered in this case is

g = �i2o + λq�q2
s (22)

which allows the control of the load current and the mini-
mization of the instantaneous reactive power on the input side.
In (22), λq is a weighting factor, and �qs denotes the error
between the reference and predicted value of the instantaneous
reactive power in k + 1 sampling time, expressed as follows:

�qs = q∗s − (vsαisβ − vsβisα) (23)

with vsα, vsβ , isα, and isβ the source voltages and currents in
αβ coordinates, respectively. The instantaneous reactive power
reference is established as q∗s = 0 to have a unity DPF on the
input side. Fig. 3 (above) shows the measured source current
and voltage of phase A and Fig. 3 (below) shows the reference
and measured output current of phase a. As expected, the
source current fulfils the condition of unity DPF showing an
almost sinusoidal waveform in phase with its respective volt-
age, and, as a consequence, the instantaneous reactive power is
minimized.

This is achieved by considering the value of the weighting
factor equal to λq = 0.003 which has been empirically adjusted
as explained in [29], where first it is established in a value
equal to zero to prioritize the control of the output current, and
later it is increased slowly aiming to obtain unity DPF in the
input currents while maintaining a good behavior on the output
side. In Fig. 3, it is possible to observe a very good tracking
of the load current ia with respect to its reference i∗a. As it
can be observed in Fig. 3, the source current shows a ripple
corresponding to the resonance frequency of the input filter
and the harmonic distortion of the ac supply such as it can be
observed in the spectrum of Fig. 4. This phenomenon is due
to the utilization of a three-phase variac as the ac supply. A
summary of the source current THD is given in Table II.

Fig. 4. Experimental results of current control including instantaneous reac-
tive power minimization. (a) Spectrum of source voltage [pu]. (b) Spectrum of
source current [pu]. (c) Spectrum of output current [pu].

TABLE II
EXPERIMENTAL THD RESULTS OFisA

Fig. 5. Experimental results predictive control with imposed sinusoidal source
(θ = 0) and load currents; source voltage vsA [V] and current isA [A]; output
current ia and its reference i∗a [A].

B. Method II: Predictive Current Control With Imposed
Sinusoidal Source Currents

The proposed strategy is tested using the same parameters
employed in Method I and detailed in Appendix—Table I. As
mentioned before, the algorithm operates with a sample time of
Ts = 20 μs.

The control strategy is evaluated considering the cost func-
tion indicated in (21) and with a weighting factor λi equal
to λi = 20 which has been empirically adjusted as explained
previously. In Fig. 5 is shown the source current isA and its
respective source voltage vsA, where the condition of zero DPF
is fulfilled, which is imposed by the source current reference
i∗sA, being both source voltage and current in phase. Again, the
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Fig. 6. Experimental results predictive control with imposed sinusoidal source
(θ = 0) and load currents. (a) Spectrum of source voltage [pu]. (b) Spectrum
of source current [pu]. (c) Spectrum of output current [pu].

source current is forced to have a sinusoidal waveform with
an amplitude of Is = 2.11 A, independent of the distortion
present in the source voltage or the input filter resonance. For
this reason, the source current isA is almost sinusoidal and
compared to the previous case (Figs. 3 and 4), the harmonic
distortion and filter resonance are mitigated as demonstrated
in Fig. 6(a) and (b). The cost that must be paid is high-
frequency harmonics in both source current and voltage, but
this issue is not considered in this paper. As it can be shown
in Fig. 5, the source voltage is not completely clean because
of the utilization of a three-phase variac as the ac source,
which behaves like a weak ac supply for the system, due to
the inductance associated with the autotransformer connection.
On the output side, the load current ia presents a good behavior
with an almost sinusoidal waveform and 4.5 A of amplitude
according to its reference as shown in Fig. 5. This method
does not involve greater calculations, and it is immune to input
filter resonances. With this idea, sinusoidal source and output
currents can be obtained, realizing a desirable tracking to their
respective references. To demonstrate the effectiveness of the
proposed method and that the DPF can be easily handled, two
tests have been done (Figs. 7 and 8) with a displacement of
θ = 30◦ and θ = −30◦ between source voltage and current
while maintaining the output current control. Again, the source
voltage presents a harmonic distortion due to the ac supply
utilized. Similarly, Figs. 9 and 10 show that the resonance of
the input filter is mitigated. Our experimental results verified
that it is possible to control both source and output currents at
the same time, while keeping almost sinusoidal waveforms on
both sides in spite of distortions or perturbations in the source
voltage. A summary of the experimental THD is presented in
Table II for all the cases presented in this paper. With the
proposed method, it is possible to obtain a reduction of the THD
in the source current with respect to the method proposed in [3].
It is expected that with a clean ac source, the input and output
current THDs can be decreased.

VI. CONCLUSION

This paper has presented a predictive control method for a
conventional IMC where the optimal control algorithm tests all

Fig. 7. Experimental results predictive control with imposed sinusoidal source
(θ = +30) and load currents; source voltage vsA [V] and current isA [A];
output current ia [A] and its reference i∗a [A].

Fig. 8. Experimental results predictive control with imposed sinusoidal source
(θ = −30) and load currents; source voltage [50 V/div] and current [5 A/div];
output current and reference [5 A/div].

Fig. 9. Experimental results predictive control with imposed sinusoidal source
(θ = +30) and load currents. (a) Spectrum of source voltage [pu]. (b) Spec-
trum of source current [pu]. (c) Spectrum of output current [pu].

the 24 valid switching states of the converter at each sampling
time and selects the one that minimizes a cost function. This
function allows simultaneous control of source and output
currents with sinusoidal waveforms, according to their refer-
ences. Predictive control can prevent the need to use complex
modulations techniques, internal cascade loops, and the gate
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Fig. 10. Experimental results predictive control with imposed sinusoidal
source (θ = −30) and load currents. (a) Spectrum of source voltage [pu].
(b) Spectrum of source current [pu]. (c) Spectrum of output current [pu].

drive signals for the power switches are generated directly
by the controller. Our experimental results indicate that the
presented strategy provides good tracking of the source and
output current to their references, making it possible to control
both source and output currents at the same time, while keeping
almost sinusoidal waveforms at both sides in spite of distortions
or perturbations in the source voltage. Better results can be
obtained by considering the use of a clean ac supply. The
authors consider that in the future, deeper research must be done
which must include more advanced aspects such as impedance
variations, parameter adjustments, input filter design, and tran-
sients of the supply voltage and its effects, as well a complete
assessment with respect to SVM in terms of switching losses,
distortion, algorithms complexity, and others.

APPENDIX

A. Source Current Reference

From Fig. 1, the source voltage can be defined as

vsA = Vs sin(wst)

vsB = Vs sin(wst − 2π/3)

vsC = Vs sin(wst + 2π/3). (24)

By using (11), it is possible to define the apparent power
expression on the input side as follows:

Sin = Vi · Ii (25)

with Vi and Ii the instantaneous values of input voltage and
current, respectively.

The real component of (25) corresponds to the input active
power which is given as a function of the input side parameters
as

Pi = Re{Sin} = 3Is

(
1 − 8π2f2

s CfLf

)
(Vs − RfIs) (26)

with Is the fundamental source current amplitude, the value to
be determined.

On the output side, the active power Pout is given as

Pout = 3RLI∗2o (27)

with Io the amplitude of the output current reference.
The relationship between the efficiency of the converter η,

the input, and output active power is given as follows:

Piη = Po (28)

which can be formulated in terms of the input and output
variables of the converter and load current reference as

Is

(
1 − 8π2f2

s CfLf

)
(Vs − RfIs)η = RLI∗2o . (29)

Equation (29) can be expressed as
(
λVsIs − λRfI2

s

)
η = RLI∗2o (30)

by considering λ = 1 − 8π2f2
s CfLf . From (30), we can obtain

a quadratic expression given as

−λRfI2
s + λVsIs −

RLI∗2o

η
= 0. (31)

Hence, from (31), it is possible to determine the fundamental
source current amplitude as

Is =
−λVs ±

√
(λVs)2 − 4λRfRLI∗2o /η

−2λRf
. (32)

The source current amplitude is obtained as a function of the
efficiency, the input filter parameters, the fundamental source
voltage, and the amplitude of the output current reference. In
addition, it is necessary to implement a phase-locked-loop to
obtain the phase of the fundamental source voltage to generate
the sinusoidal reference. Finally, the resulting source current
reference is defined as

i∗sA = Is sin(wst + θ)
i∗sB = Is sin(wst − 2π/3 + θ)
i∗sC = Is sin(wst + 2π/3 + θ) (33)

where θ is the parameter that allows a variable power factor,
and it is considered equal to zero to obtain unity power factor.

B. Parameters and THD Information

The parameters of the experimental setup are indicated in
Table I and the experimental THD information in Table II,
respectively.
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