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An extension of the partial element equivalent circuit (PEEC) method for magnetic materials modeling in the frequency domain ap-
plied on toroidal magnetic inductors with rectangular cross section is presented in this paper. The extension is performed by coupling
the PEEC method and the boundary element method (BEM). The influence of magnetic material is modeled by distributions of “ficti-
tious magnetic currents and charges” existing on the surface of a magnetic body. To verify the developed 3-D PEEC model, calculated
and measured impedances are compared for two winding arrangements employing a ferrite T38 core. A good agreement between the
PEEC simulation and measurements is presented up to the first resonant frequency. The described PEEC modeling approach enables
3-D electromagnetic simulations with much less computational effort than given for existing finite element method (FEM) simulators.

Index Terms—Boundary element method (BEM), fictitious magnetic currents and charges, partial element equivalent circuit (PEEC),
toroidal magnetic inductors.

I. INTRODUCTION

A S ELECTRONIC devices must comply with electromag-
netic compatibility (EMC) standards, a comprehensive

knowledge of their high-frequency electromagnetic behavior is
of great importance. Accordingly, there is a need for virtual pro-
totyping and a fast EM simulator applicable for various electro-
magnetic interference (EMI) problems. EMI simulation is based
on accurate modeling of all parasitic EM coupling effects, and
the partial element electric circuit (PEEC) method has shown to
be a convenient modeling approach.

The PEEC approach is a well-suitable method for numerical
simulation of the EM field problems coupled to electrical
circuits such as EMI filters, power converters, printed circuit
boards (PCBs), etc. The PEEC method is based on the integral
formulation of Maxwell’s equations and their interpretation in
terms of partial circuit elements both in time and frequency
domain. So far, several extensions were added to the standard
PEEC method, e.g., modeling in the presence of dielectrics and
a PEEC solver for nonorthogonal geometries [1]. However,
PEEC models of magnetic components (transformers, induc-
tors, etc.) are missing as there is a difficulty to apply the PEEC
approach in the presence of nonlinear and nonhomogenously
magnetized materials. Therefore, an extension to the standard
PEEC method is presented in this paper on the example of a
toroidal inductor with rectangular cross section. Due to their
geometrical characteristics and magnetic properties, toroidal
inductors are frequently used, and considerable effort is made
to accurately model their behavior in a wide frequency range.

PEEC modeling in the presence of magnetic materials has
been investigated recently in several publications [2]–[6]. The
PEEC approach for linear magnetic materials was solved in
[2]–[4] by replacing a magnetized object with an equivalent dis-
tribution of magnetic currents and then writing the correlation
matrices between induced electric and fictitious magnetic cur-
rents. However, PEEC modeling of magnetic components was
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not considered. A PEEC-based modeling method of common
mode (CM) inductors assuming that the direction of stray field
is not significantly influenced by the ferromagnetic core was
proposed in [5]. This approach does not take into account the
3-D structure of the coil, and it is not applicable for an ar-
bitrary-shaped magnetic geometry. By the hybrid FEM-PEEC
coupled method in [6], the problem of a complex FEM mesh
is not fully avoided, but is lessened in the way that the mesh
around conductors is relaxed.

II. MAGNETIC CURRENT AND CHARGE APPROACH

The EM influence of a magnetized object is fully described
by the magnetization vector defined within the magnetic
volume. influences the magnetic field produced by sur-
rounding field sources, and the introduced change can be
modeled by the magnetic vector potential or the magnetic
scalar potential [7]. Using magnetic potentials, it can be
shown that the influence of magnetization in the volume
on the total magnetic field at any point in space is equivalent
to the influence of a volume and surface “fictitious magnetic
current” and “fictitious magnetic charge”
distribution in free-space existing within the volume
and/or onto its surface

(1)

(2)

(3)

(4)

The currents and are bounded fictitious volume and
surface currents known as “Amperian” currents that influence
the magnetic field, but do not generate a voltage drop along
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the magnetic volume or its surface. The magnetic charges
contribute to the total magnetic field with . The typically
used magnetic cores—i.e., powder, ferrite, iron, and amorphous
cores—are characterized by their effective relative perme-
ability (the permeability of a homogeneous core with the
same characteristics as the actual composite core material).
Accordingly, magnetic cores are assumed to be linear and
homogeneous isotropic magnetic circuits so that the first terms
of (1) and (3) are zero, i.e., the magnetic volume does not have
to be discretized.

A. Magnetic Core Properties

A linear magnetic core is described by the permeability
or magnetic susceptibility . As the real behavior
of magnetic materials varies with frequency and magnetic
field , is not constant, but defined as a function of these
variables: . Core manufacturers typically provide
either the effective relative permeability or the complex per-
meability and , i.e., versus frequency charac-
teristics. In conventional complex permeability measurements,
the real and imaginary components are recalculated from
the measured total impedance assuming that the inductor
can be represented by a series resistance and a series induc-
tance . Accordingly, the real part describes an increase of
inductance compared to an air-core inductor, whereas the imag-
inary part defines the losses and the phase shift between the
magnetic field and the flux within core. As the winding arrange-
ment and the dielectric core properties can also take influence
on the total impedance of an inductor, the accuracy of complex
permeability curves extracted from the total impedance can be
disputable. For higher frequencies, more accurate specification
of the permeability curves is required.

In the first modeling stage, the permeability dependency
is used. Further investigation of the nonlinear behavior

of core material described by hysteresis character-
istic will be conducted in future research. In the applications
where dc-bias changes in time, i.e., the operating point moves
along the curve, the permeability varies in time and

needs to be considered. Modeling of nonlinear
core characteristics in the frequency domain becomes difficult,
and a time-domain model appears more convenient, but then
the modeling problem of core losses defined by arises.

B. Magnetic Core Surface Currents and Charges

The physical interpretation of virtual magnetic currents and
charges can be obtained from (2) and (4): Virtual magnetic
charges are equal to the component of magnetization vector
normal to the surface , i.e., the stray field, while the magnetic
field lines tangential to the main magnetic path of the core can
be modeled only by means of the virtual magnetic currents.
A toroidal coil with its windings equally distributed over the
entire core surface has a very low magnetic stray field, and the
magnetic field lines are almost tangential to the magnetic path.
This means that, in an ideal case, no magnetic charge exists.
Therefore, with only the magnetic charge approach, the flux
lines and inductance enhancement due to the presence of the
magnetic core cannot be modeled.

The magnetic surface currents have two components in
- and -directions, respectively (Fig. 1). The surface currents

Fig. 1. � surface magnetic currents and the coil on the toroidal mag-
netic inductor:� form rectangular loops, while coil currents form a spiral
around the core; mesh is defined by magnetic surface panels and magnetic cur-
rent loops (arrow).

produce the axial flux within the core, whereas the sur-
face currents originate from the field lines going out of the
core. It can be shown that the amplitude of currents is a
few orders higher than the amplitude of currents for prac-
tical magnetic cores so that does not have significant in-
fluence on the calculation of magnetic field within the core. Ac-
cordingly, the increase of the main magnetic flux density within
the coil has to be described by means of the magnetic surface
currents , and the external effects, like the stray field, are
modeled by means of fictitious magnetic charges in this paper.

Altogether, the magnetic core can be modeled by meshing
the core surface into panels carrying the currents
and charges . As a result, the number of
unknowns is increased by .

III. PEEC MODELING OF INDUCTORS

The geometry of interest is a coil wound around a toroidal
magnetic core with a rectangular cross section. The coil with

turns is modeled by cylindrical volume subcells, where
a turn is approximated as a PEEC volume cell consisting of
four connected cylindrical volume subcells. Thus, in the case
of a winding with turns, the number of electrically equiv-
alent PEEC nodes is equal to . PEEC modeling
of the magnetic core is based on introducing magnetic surface
cells carrying the surface currents and the charges

. The coil and the magnetic currents are
descriptively presented in Fig. 1.

A. Boundary Element Equations

The correlation between the electric currents and the mag-
netic surface quantities, currents, and charges is derived from
the boundary conditions of Maxwell’s equations. According to
Maxwell’s EM theory, the continuity of the tangential compo-
nent and the normal component have to be satisfied at
the interface between two different media. If the magnetic field
is derived from the magnetic vector potential, the continuity of

is automatically enforced by the definition of and the
continuity of has to be set. For magnetic scalar potential, the
opposite conditions are applied respectively. Using both mag-
netic virtual quantities, the boundary equations concerning
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and for the th magnetic panel are given
by [8]

(5)

(6)

where is the unit vector pointing outwards normal to the
th magnetic panel, and and are the magnetic

induction and the magnetic field strength at the th magnetic
panel produced by the coil and other magnetic panels .

The influence of the th magnetic panel to itself (a singu-
larity calculation problem) is defined by the coefficient .
As the mesh size has an obvious influence on the final results and
the calculated singularity (the term ) in (5) does
not depend on the panel size, a calculation error arises, and a
modification of the coefficients is performed by enforcing
the cancellation of the permeability-free terms according to [9].
The , , and matrices provide the additional set of equa-
tions needed for solving the PEEC modeling problem extended
by unknowns . The and matrix elements
are defined by (7)–(10), which are derived from (1) and (3) ob-
serving the magnetic surface panels carrying fictitious constant
currents and charges

(7)

(8)

(9)

(10)

where is the observation point lying on the th magnetic
panel, and is the tangential unit vector (either or

, see Fig. 1) on the th magnetic panel carrying the fictitious
surface current , i.e., . The matrix
entries of are derived from the Biot–Savart law considering
the coil as source of magnetic field. To accelerate the matrix el-
ements calculation of , , and , a filament approach [10] is
applied using analytical formulas for the magnetic field of a cur-
rent carrying arc-conductor and the electric field of uniformly
charged circular arc.

Fig. 2. PEEC equivalent circuit for a magnetic inductor.

B. Coupling PEEC and Boundary Element Methods

Through replacing the core with magnetic surface currents
and charges, it is possible to modify the electric field integral
equations (EFIE), keeping the structure of the PEEC equations
suitable for a circuit description. If the th electric PEEC
volume cell, i.e., th turn , is observed, the
ordinary PEEC EFIE can be rewritten as

(11)

The EFIE is extended by the matrices and
consisting of additional partial elements defining the mutual
coupling of the fictitious surface magnetic currents and
charges with the winding currents

. The elements of the matrix are calculated
according to the formula for mutual inductance between two
current filaments [10], while the elements of are calcu-
lated according to the approach presented in [11].

The standard PEEC system matrix [2] is extended and
takes the form of (12), where ,

, , and
is an connectivity matrix. The coefficients of

potential matrix contain the turn–turn winding capacitance.
An illustration of the used PEEC basic cells for modeling the
toroidal inductor is presented in Fig. 2

(12)

IV. PEEC SIMULATION AND COMPARISON TO MEASUREMENTS

To verify the proposed PEEC model of a toroidal magnetic
inductor, the impedance measurements for several different
winding arrangements and core materials were performed
using an Agilent 4294A impedance analyzer in the frequency
range from 40 Hz up to 110 MHz. The input parameters of the
PEEC simulation are the winding arrangements (number of
turns, uniform/nonuniform winding, distance between core and
winding), the core dimensions (height, inner and outer diam-
eter), and the core magnetic properties (complex permeability
or the effective relative permeability curves). The performance
of the PEEC simulation is illustrated on the example of two
EPCOS ferrite T38 inductors with 3 and 20 turns, respectively
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TABLE I
INFORMATION ABOUT THE SELECTED MAGNETIC INDUCTORS

U—uniform/NU—nonuniform winding arrangement along core.

(see Table I). The simulation time for the impedance charac-
teristics in 200 frequency steps is approximately 2 min (on a
standard PC) depending on the mesh size and the number of
turns.

A. Simulation Parameters and Mesh

The critical input parameter for the PEEC simulation is the
permeability characteristics of the core material. For ferrites
characterized by higher relative permittivity ,
the manufacturers measure permeability characteristics on
small ring cores, e.g., R10, to avoid dimensional effects [12].
Accordingly, the permeability curves from datasheets do not
correctly describe the intrinsic permeability of cores with dif-
ferent dimensions. The second problem is a material variation
from core to core, i.e., data provided by manufacturers could
deviate from the actual behavior by 20%–30%, and the perme-
ability characteristics can only be statistically determined by
measuring several cores with the same dimensions. In addition,
the winding arrangement can significantly alter permeability
measurement results at higher frequencies, so special care must
be taken concerning the number of turns and the winding ar-
rangement. Namely, the standard inductance measurements do
not provide information only about the permeability properties
of the material, but contain the influence of winding and/or
dimensional effects at higher frequencies.

B. PEEC Simulation Results

The mesh of the magnetic surface is defined by the discretiza-
tion in -, -, and -directions, respectively, , , and

(Fig. 1). Analyzing the terms in (11), we observed that the
calculation of impedance is primarily determined by the mag-
netic currents , which in turn do not produce a significant
influence on the field outside when is sufficiently high.

An inductor with three turns exhibiting low influence of wind-
ings is used for the complex permeability measurements, and a
20-turns inductor with identical core is used for the model verifi-
cation. From the measured permeability characteristics in Fig. 3
(left), it can be seen that the real permeability decreases and
becomes negative for MHz. This implies that the in-
ductor with only three turns becomes capacitive in the low-loss
frequency range, which can be ascribed to high core permit-
tivity, . The simulation results of the 20-turns in-
ductor are presented in Fig. 3 (right). The simulation results
comply with the measurements in the frequency range up to .
Above , the simulation does not match the measurements as
the input permeability curves do not provide accurate informa-
tion about the intrinsic magnetic properties of the core. Hence,
to achieve better simulation results at higher frequencies, both

Fig. 3. (left) Measured complex permeability for EPCOS ferrite T38 R 34
ring core (see Table I). Real part (dashed line) and imaginary part (solid line).
(right) Comparison of the impedance of the PEEC modeled inductor with the
measurement (Ferrite T38 R 34—20 turns).

complex permeability and permittivity measurements need to be
performed [13]. Further steps will be to include the core permit-
tivity as a simulation parameter (turn-to-core capacitance).
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