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Abstract: Full-order small-signal modelling and dynamic analysis of zero-voltage-switching (ZVS) phase-shift
bidirectional DC –DC converters is studied. A general modelling method is proposed to develop the discrete-
time average model. This full-order model takes into account the leakage inductance current and the resonant
transition intervals in order to realise ZVS. Both the leakage inductance current and the resonant transition
intervals are the key to accurately predict the dynamic behaviour of the converter. A control-to-output-voltage
transfer function is derived for the dual active bridge DC – DC converter, which is taken as an example to
illustrate the modelling procedure. Experimental results confirm that the new model correctly predicts the
small-signal frequency response up to one-third of the switching frequency and is more accurate than the
previously presented models.
1 Introduction
In recent years, the class of phase-shift bidirectional
DC–DC converter has received a lot of attention and is a
possible interface between diverse energy sources, energy
storage elements and loads in hybrid electric vehicles and
battery charging and discharging systems. This is due to
the attractive features, such as low device and component
stresses compared with resonant converters, low switching
losses by the virtue of zero-voltage switching (ZVS) and
the bidirectional power flow capability. This class of
converter, where the power flow is controlled by a proper
phase shift between the AC voltages imposed by the
bridges, includes the dual active bridge (DAB) DC–DC
converter introduced in [1]. The DAB converter then has
been investigated in [2, 3] in order to expand the soft-
switching operating range and further extended to a three-
port converter in [4, 5]. Later some topology variations
having a boost-half-bridge cell are proposed in [6, 7].

In the literature, most of the research performed for the
DAB converter and its topology variations has focused on
circuit topologies and steady-state analysis [8, 9]. Little
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work has been done in the area of dynamic modelling of
the phase-shift bidirectional DC–DC converters. Two
analytical methods have been studied in the past years. A
simple approximate way for the DAB converter, which first
was proposed in [10] and later was adopted also in [3, 11],
is to derive the control-to-output-current small-signal
transfer function from the steady-state output current since
the converter acts, in the static operation, as a current
source. More recently, in [12–14], the time-scale
separation method presented in [15] is applied to achieve
the small-signal models of some topologies having a boost-
half-bridge cell, but is not applicable to all phase-shift
bidirectional DC–DC converters, for example, the DAB
converter. Furthermore, in these two reduced-order models,
the leakage inductance current does not appear as a state
variable since it varies quickly with time. The resonant
transition intervals (where the resonant capacitors – the
output capacitors of MOSFETs and the snubber capacitors
if they are necessary – resonate with the leakage
inductance, realising the ZVS) are simply ignored and the
converters are modelled as if they are hard-switching
converters. This results in the reduced-order averaging
models with low frequency gain deviations in the
IET Power Electron., 2010, Vol. 3, Iss. 3, pp. 400–410
doi: 10.1049/iet-pel.2008.0208



IE
do

www.ietdl.org
magnitude response and large discrepancies both in the
magnitude and particularly in the phase characteristic at
high frequencies.

The goal of the work presented here is to develop a general
approach to achieving full-order models for the phase-shift
bidirectional converters to enable the dynamics to be
studied. This method retains the fast-changing leakage
inductance current as a state variable in the full-order
models and captures the effects of the resonant transition
intervals on the converter dynamics. This results in the
derived full-order models having improved accuracy over
reduced-order models and this method is applicable to the
entire class of converters including the DAB converter.
The modelling procedure, briefly discussed in Section 2, is
basically based on a general discrete-time modelling
method stated in [16, 17], which has been previously
applied to resonant converters. Although the leakage
inductance current in the phase-shift bidirectional
converters is essentially an alternating current and does not
meet the ‘small ripple’ requirement for the conventional
state-space averaging method, it can be involved as a state
variable in the discrete-time modelling, leading to full-
order models for the phase-shift bidirectional converters.
The discrete-time modelling method only takes account of
the small-signal behaviour of the converter at one time
instant in each sampling cycle, and nothing between these
instants. It is the small signal of the average value that is of
great interest, not of a particular time instant. Therefore
the small signal of the discrete-time half-cycle-average
(HCA) value is used to develop the proposed model. A
similar averaging concept is found in [18, 19] where small-
signal characteristics of resonant converters are analysed
and a discrete-time simulation method is discussed,
respectively.

The remaining part of the paper illustrates the
development of a full-order model for the DAB DC–DC
converter as an example. Section 3 explains the basic
operation of the DAB converter with the inclusion of the
resonant transition intervals. The state-space mathematical
model and the approximations made to simplify the
analysis are developed, and the discrete-time response of
the HCA value of an output variable is derived and
compared with the detailed circuit simulation in Section 4
to verify the accuracy of the modelling. The discrete-time
large-signal model is then linearised to reveal the small-
signal characteristics of the converter in Section 5. A 1 kW
prototype has been built. The output voltage frequency
response has been measured and compared with the
predicted result to validate the developed model in Section 6.

2 Transfer function determination
A switching converter is a non-linear, time-variant circuit.
The feedback controller, which can be implemented either
analog or digitally to enhance stability and dynamics
performance, is mainly designed in the continuous-time
T Power Electron., 2010, Vol. 3, Iss. 3, pp. 400–410
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domain because the design methods for the continuous-
time system are well-developed and familiar to the circuit
designer. Therefore it is important to know the frequency
response of the output signal due to the perturbations in
the control signal and/or source inputs, that is, to know the
transfer function of the converter Gvs(s)

Gvs(s) =
Dv′

2(s)

Df12(s)
(1)

This illustrates the relationship between the Laplace
transform of the perturbation in the continuous-time
control signal Df12(t) to the Laplace transform of the
perturbation in the continuous-time output voltage Dv′

2(t)
for the phase-shift bidirectional converters if the output
voltage is the control object. The corresponding small
signal system is shown in Fig. 1.

It is difficult to build a full-order small-signal model for
the phase-shift controlled converters using the conventional
state-space averaging technique since the AC current of the
leakage inductance, whose average value over one switching
cycle is always zero, cannot be a state variable in the model
derived by using the state-space averaging method.

An exact continuous-time analytical model in [20, 21],
which matches the measured result from a frequency
response analyser exactly at all frequencies, has been
developed based on the small-signal frequency response
theory. This approach would be mathematically too
complicated if applied to phase-shift bidirectional converters.

Viewing that a pulse-width modulator is basically a small-
signal sampler and the phase-shift angle perturbations act as a
string of impulses Df12[n], the discrete-time modelling
method is a natural way to describe the periodic operation
and control of the converter. Using the general discrete-
time modelling method stated in [16, 17], a pulse transfer
function Gvd(z)

Gvd(z) = Dv′
2(z)

Df12(z)
(2)

which relates the samples of the perturbation in the control
signal Df12[n] to the samples of the perturbation in the
output voltage Dv′

2[n] in the z-domain, can be determined.

Clearly, the discrete-time modelling method only takes
account of the small-signal behaviour of the converter at

Figure 1 Small signal system for the phase-shift
bidirectional DC–DC converters
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one time instant in each sampling cycle and nothing between
these instants. The different positions of this time instant in
the switching cycle, that is, the different small-signal
behaviours involved in the modelling due to the existence
of the ripple in the voltage/current waveforms, lead to
differences in the prediction of the frequency response and
this has been verified in [22]. Furthermore, it is the small
signal of the average value that is of great interest, not of a
particular time instant. Therefore the small signal of the
discrete-time HCA value of the output voltage Dv′

2avg[n],
which is explained in detail in Section 4.4, is used to
develop a new pulse transfer function Gvavgd(z)

Gvavgd(z) =
Dv′

2avg(z)

Df12(z)
(3)

for the phase-shift bidirectional DC–DC converters.

The pulse transfer function Gvavgd(z) can be transformed
from z-domain to s-domain by substituting esTs for z,
resulting in G∗

vavgd(s), which approximates to Gvs(s)

Gvs(s) ≃ G∗
vavgd(s) =

Dv′∗
2avg(s)

Df∗
12(s)

= Gvavgd(z)|z=esTs (4)

where Ts denotes the half switching cycle since the state
variables are sampled every half switching cycle due to the
symmetric operation of the phase-shift bidirectional
converters, Dv′∗

2avg(s) and Df∗
12(s) are the Laplace

transforms of the sampled small signals of the average
output voltage and the phase shift angle, respectively.

In the following, the DAB DC–DC converter is selected
as an example to illustrate the above modelling procedure step
by step.

3 Converter description
The DAB DC–DC converter consists of two full-bridge
cells, for example, the low-voltage (LV) cell connecting to
an LV battery E1 whose magnitude is V1 and the high-
voltage (HV) cell interfacing a RC load, as illustrated in
Fig. 2. The midpoints of the two full-bridge cells are

Figure 2 DAB DC–DC converter with voltage-mode control
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connected with an intermediary circuit, composed of an
ideal transformer T1 with 1:n2 turn ratios, an inductor Ls, a
capacitor Cs and a resistor Rs. Ls is the leakage inductance
of the transformer (possibly additional series inductor if it
is necessary). Rs can be considered as a collective resistor,
which represents the sum of the on-resistors of switches,
the transformer winding resistors and all contact resistors.
The DC-blocking capacitor Cs and the magnetising
inductor are chosen relatively large and so their effect can
be neglected.

The 50% duty-ratio gate signals are applied to all switches.
The power flow is controlled by a proper phase shift, f12,
between the AC voltages imposed by the bridges on both
sides of the intermediary circuit. The transformer leakage
inductance Ls acts as an interface and the main energy
transfer element. The control range of f12 is from 2p/2 to
p/2.

To achieve soft-switching, a small resonant transition
interval between two gate signals is necessary to allow the
output capacitors (possibly additional snubber capacitors) of
the off-state MOSFETs to be discharged by the leakage
inductance current and the devices to be turned on under
zero voltage condition after their body diodes conduct.
This resonant transition interval in the HV cell is included
in the following modelling since it has a large influence on
the low-frequency gain in the magnitude response, which is
discussed in Section 6. Therefore the MOSFET in the HV
cell is modelled here as an ideal switch in parallel with its
body diode and its output capacitor Cb. Although the
MOSFET in the LV cell also has an output capacitor, the
energy in this output capacitor is much less than that in
the HV cell. Therefore the resonant transition time for the
LV cell is negligible and the MOSFET in the LV cell is
considered to have the instantaneous turn-on and turn-off.

Fig. 3a shows the idealised primary-referred waveforms of
the terminal voltages of the intermediary circuit u1 and u2,
the leakage inductance current i1, the output current i2 and
the output voltage v2 in the steady-state operation during
one switching cycle T ′

s , where u2 = u′2/n2, v2 = v′
2/n2,

i2 = n2i′2 and T ′
s = 2Ts. Owing to the symmetric operation

of the DAB converter over a complete switching cycle, only
the positive half switching cycle of u1 is briefly explained
here, in which the converter goes through three switch
states with the primary-referred equivalent circuit of each
switch state shown in Figs. 3b–d. Cb = n2

2C ′
b, Co = n2

2C ′
o

and RL = R′
L/n2

2 are the primary-referred output capacitor
of the MOSFET in the HV cell, the output filter capacitor
and the load resistor, respectively.

3.1 Switch state

1. Ta = [t0, t1]: At t0, S2 and S3 are gated to turn off and S1

and S4 are turned on, the terminal voltage of the intermediary
circuit u1 increases from −V1 to V1 immediately. Owing to
the conduction of S6 and S7, the output voltage v2 is
IET Power Electron., 2010, Vol. 3, Iss. 3, pp. 400–410
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applied to the other side of the intermediary circuit with
inverse polarity. The output capacitors of the off-state
MOSFETs S5 and S8 are in parallel with the RC load and
their voltage are clamped to the output voltage v2.

2. Tb = [t1, t2]: S6 and S7 are turned off at t1. The output
capacitors of S5–S8 and the leakage inductance Ls begin to
resonant, making the voltages across output capacitors of S5

and S8 fall from v2 and voltages across output capacitors of

Figure 3 Idealised primary-referred waveforms and
primary-referred equivalent circuits

a Idealised primary-referred waveforms of the terminal voltages
of the intermediary circuit u1 and u2, the leakage inductance
current i1, the output current i2 and the output voltage v2 in
the steady-state operation during one switching cycle Ts

′ ¼ 2Ts

b–d Primary-referred equivalent circuits for three switch states
T Power Electron., 2010, Vol. 3, Iss. 3, pp. 400–410
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S6 and S7 rise from zero. The interval ends when the
output capacitor voltages of S5 and S8 decrease to zero and
their body diodes are forward biased. The output current i2

in this interval is zero and the RC load is separated from
the rest of the power stage.

3. Tc = [t2, t0 + Ts]: S5 and S8 are gated on at zero voltage.
The output voltage v2 is equal to the terminal voltage of the
intermediary circuit u2. The output capacitors of S6 and S7

are in parallel with the RC load and their voltages are equal
to the output voltage v2.

4 Large-signal discrete-time
description
This section develops the large-signal discrete-time
description for the DAB DC–DC converter. Considering
only the linear time-invariant elements in the converter, we
first write the continuous-time state-space mathematical
model that describes the converter in each of the switch
states for the half switching cycle. Suitable approximations
are made in order to find the closed-form expressions for
the state variables. This then leads to a discrete-time model
that describes the evolution of the state variables from the
beginning of one half switching cycle to the end of the
same half cycle. The HCA is also introduced in order to
reduce the difference in the predicted frequency response
caused by the different sampling positions in the discrete-
time modelling. The developed large-signal discrete-time
model is also verified by the simulation results.

4.1 State-space mathematical model

The state variables of the converter are chosen to be the
leakage inductance current i1(t), the output voltage v2(t)
and the terminal voltage of the intermediary circuit u2(t).
u2(t), which in the interval a is equal to −v2(t) and in the
interval c is v2(t), represents the output capacitor voltages
of the MOSFETs in the HV cell in the interval b. The
state vector x(t) = i1(t) v2(t) u2(t)

[ ]T
is denoted by

xa(t) for the interval a, by xb(t) for the interval b and by
xc(t) for the interval c to distinguish the solutions in three
switch states. Referring the primary-referred equivalent
circuits in Figs. 3b–d, the converter can be described by
the following state-space description

ẋa(t) = A1xa(t) + b1V1 t [ Ta

ẋb(t) = A2xb(t) + b2V1 t [ Tb

ẋc(t) = A3xc(t) + b3V1 t [ Tc

(5)

where

A1 =
−1/ts 1/Ls 0
−1/Ct −1/tt 0
1/Ct 1/tt 0

⎡
⎣

⎤
⎦
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A2 =
−1/ts 0 −1/Ls

0 −1/to 0
1/Cb 0 0

⎡
⎣

⎤
⎦

A3 =
−1/ts −1/Ls 0
1/Ct −1/tt 0
1/Ct −1/tt 0

⎡
⎣

⎤
⎦

b1 = b2 = b3 = 1/Ls 0 0
[ ]T

Ct = (Co + 2Cb)

tt = RLCt

to = RLCo

ts =
Ls

Rs

The exact solutions of these state-space equations (5) are

xa(t) =
i1a(e

M1t , eM2t)

v2a(e
M1t , eM2t)

−v2a(e
M1t , eM2t)

⎡
⎢⎣

⎤
⎥⎦ =

i1a(t)

v2a(t)

−v2a(t)

⎡
⎢⎣

⎤
⎥⎦ t [ Ta

xb(t) =
i1b(eM3t , eM4t)

v2b(eM5t)

u2b(eM3t , eM4t)

⎡
⎢⎣

⎤
⎥⎦ =

i1b(t)

v2b(t)

u2b(t)

⎡
⎢⎣

⎤
⎥⎦ t [ Tb

xc(t) =
i1c(e

M1t , eM2t)

v2c(e
M1t , eM2t)

v2c(e
M1t , eM2t)

⎡
⎢⎣

⎤
⎥⎦ =

i1c(t)

v2c(t)

v2c(t)

⎡
⎢⎣

⎤
⎥⎦ t [ Tc

(6)

with

M1 =
−(tt + ts +

























(tt − ts)

2 − 4ttt
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s /tL

√
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2ttts

M2 =
−(tt + ts −
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√
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√
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2ts

M4 = −(1 −













1 − 4vot

2
s

√
)

2ts

M5 = −1

to

tL = Ls

RL

vo = 1

LsCb

The state vector x(t) is continuous across the instants t1 and
t2 since the inductor currents and capacitor voltages cannot
4
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change instantaneously, and so

xa(t1) = xb(t1)

xb(t2) = xc(t2)
(7)

Moreover, due to the odd symmetry of the leakage
inductance current i1(t) and the even symmetry of the
output voltage v2(t) as shown in Fig. 3a, we have

i1a(t0) = −i1c(t0 + Ts)

v2a(t0) = v2c(t0 + Ts)
(8)

By inserting (7) and (8) into (6), the initial condition x(t0)
can be determined; however, it is usually complicated and
may only be calculated numerically. Therefore an
approximation of the exponential function of time, which is
involved in state vector expression (6), is necessary if a
closed-form solution is sought.

4.2 Approximation

The exponential function of time eat can be expressed in
terms of an infinite convergent series as

eat =
∑1

n=0

(at)n

n!
= 1 + a

1!
t + a2

2!
t2 + · · · + an

n!
tn + · · · (9)

where a is the coefficient and t is the independent variable.

The state vector x(t) can be approximated by replacing the
exponential term with the n-order series and the resulting
n-order polynomial function is denoted by x(n)(t). The
higher-order terms in the exponential expansion are
included, the closer the approximation is to the ideal
function, however this also increases the complexity of
the state vector expression and also the model of the
converter. So there is a trade-off between complexity and
accuracy. Recognising this, we determine the included
highest term in the exponential expansion according to
the limited allowed deviation from the ideal function, that
is, the deviation should be smaller than 5% of the
variation of the polynomial function value over the whole
interval.

As an example, consider the state vector xa(t) for the
interval a. The leakage inductance current i1a(t) can be
simplified to i1a(n)(t) by neglecting the terms higher than
n-order in the exponential expansion as given below

i1a(t) ≃ i1a(t)
∣∣∣

eM1 t=1+M1
1!

t+
M2

1
2!

t2+···+
Mn

1
n!

tn

eM2 t=1+M2
1!

t+
M2

2
2!

t2+···+
Mn

2
n!

tn

= i1a(n)(t) (10)

By comparing the first-order approximation i1a(1)(t) and ideal
function i1a(t) [cf. Fig. 4a], we can find that the first-order
approximation i1a(1)(t) is accurate enough to represent the
ideal function i1a(t). Although the output voltage v2a(t)
IET Power Electron., 2010, Vol. 3, Iss. 3, pp. 400–410
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contains the same exponential terms, eM1t and eM2t , Fig. 4b
shows that first-order approximation v2a(1)(t) deviates
largely from the ideal function. Therefore the second-order
term in the series of eM1t and eM2t should be retained when
the replacement is implemented.

In a summary, the state vector (6) can be approximated by
the polynomial functions with small deviation from the ideal
functions as

xa(t) =
i1a(t)

v2a(t)

−v2a(t)

⎡
⎢⎣

⎤
⎥⎦ ≃

i1a(1)(t)

v2a(2)(t)

−v2a(2)(t)

⎡
⎢⎣

⎤
⎥⎦ t [ Ta

Figure 4 Comparison results of the ideal state variable
instantaneous waveforms with their first- and/or second-
order approximations

The components and operating parameters are given in Table 1 as
for Model (d)
Power Electron., 2010, Vol. 3, Iss. 3, pp. 400–410
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xb(t) =
i1b(t)

v2b(t)

u2b(t)

⎡
⎢⎣

⎤
⎥⎦ ≃

i1b(2)(t)

v2b(1)(t)

u2b(2)(t)

⎡
⎢⎣

⎤
⎥⎦ t [ Tb

xc(t) =
i1c(t)

v2c(t)

v2c(t)

⎡
⎢⎣

⎤
⎥⎦ ≃

i1c(1)(t)

v2c(2)(t)

v2c(2)(t)

⎡
⎢⎣

⎤
⎥⎦ t [ Tc

(11)

4.3 Discretisation

As stated in [16, 17], the discrete-time modelling method
only describes the small-signal behaviour of the converter at
one time instant in each sampling cycle and nothing
between these instants. Moreover, the different positions of
this time instant result in differences in the prediction of
the frequency response. The above differences can be
minimised with the concept of HCA in Section 4.4.
Therefore the converter waveforms can be sampled at any
position in the whole sampling cycle. Here, it is the half
switching cycle due to the symmetric operation of the
DAB converter.

One switching cycle includes two sampling cycles, the
positive half switching cycle of u1, which is indicated as an
odd k sampling cycle, and the negative half switching cycle
of u1, which is indicated as an even k sampling cycle. Let
x(k) represent the state vector at the beginning of the kth
sampling period

x(k) = i1(k) v2(k) u2(k)
[ ]T

(12)

where t is replaced by kTs, k is an integer.

When k is odd, the terminal voltage of the intermediary
circuit u2(t) is equal to the inverse of the output voltage
v2(t), that is, u2(k) = −v2(k) since a pair of diagonal
switches conducts in the interval a [cf. Fig. 3b]. Similarly,
u2(k) = v2(k) when k is even. The terminal voltage u2(k)
can be removed from the state vector x(k), which now is

x(k) = i1(k) v2(k)
[ ]T

(13)

The input voltage V1 is considered as a constant since we
are interested only in the control-to-output response. At
the time instant t2, which is the end of the interval b, the
response for the terminal voltage u2(t) and the output
voltage v2(t) can be expressed as functions of the state
variables x(k), the control input f12(k) at the beginning of
the period and the time duration Tb(k) of the interval b in
the period

u2(t2) = fu2b(x(k), f12(k), Tb(k))

v2(t2) = fv2b(x(k), f12(k), Tb(k))
(14)

The time instant t2 is also the starting point of the interval
c, in which u2(t) = v2(t) due to the conduction of another
405
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pair of diagonal switches. Therefore

u2(t2) = v2(t2) (15)

Substituting (14) into (15), the time duration Tb(k) of
the interval b can be determined and is expressed as a
function of the state variables x(k) and the control input
f12(k)

Tb(k) = ftb(x(k), f12(k)) (16)

Combining (16) and the approximated state vector
expression (11), the state vector at the end of the kth half
switching period x(k + 1) when k is odd can be expressed
as a function of the initial conditions x(k) and f12(k)

x(k + 1) = f ′
i (x(k), f12(k))

f ′
v (x(k), f12(k))

[ ]
(17)

The leakage inductance current i1(k + 1) at the end of the
kth half switching cycle has different sign when compared
with i1(k) at the beginning of the same half switching cycle
due to its odd symmetry. Substituting i1(k) = −i1(k) into
(17) when k is odd or i1(k + 1) = −i1(k + 1) into a similar
group of the difference equations describing the second half
switching cycle when k is even, a general discrete state
vector equation, which can be updated every half switching
cycle, is obtained

x(k + 1) = fi (x(k), f12(k))
fv(x(k), f12(k))

[ ]
= fi (k)

fv(k)

[ ]
(18)

4.4 Averaging over half switching cycle

In the DAB DC–DC converter, the leakage inductance
current is purely AC and has a relatively large ripple. This
leads to differences in the predicted frequency response
obtained by the discrete-time modelling method with
different sampling time instants. Considering this, we
introduce a new sample v2avg(k + 1) to minimise this
difference, which represents the averaged value of the
output voltage and is defined as below

v2avg(k + 1) = 1

Ts

∫(k+1)Ts

kTs

v2(t)dt

= fvavg(x(k), f12(k)) = fvavg(k) (19)

This new sample v2avg(k + 1), which is expressed as the
function fvavg(k) in terms of the initial value of the state
vector x(k) and control signal f12(k), is used instead of
v2(k + 1) to develop the large-signal discrete-time model.

4.5 Large-signal discrete-time model
verification

To verify the accuracy of the developed model, which can be
easily implemented in a mathematical software, for example,
6
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in MAPLE, a detailed switching model of the DAB
DC–DC converter is built in Simplorer, a PSpice-like
simulation software. The converter’s dynamic response to a
perturbation in the control input, which is a sinusoidal
signal with 1/10 switching frequency and 5% steady-state
value as the amplitude, is carried out in the above two
models, respectively. The perturbation in the control input
Df12, the calculation and simulation results of the leakage
inductance current i1 and the output voltage v2 are shown
in Fig. 5, where the solid lines and broken line represent
the instantaneous simulation results and the averaged value
of the output voltage from the detailed switching model,
and the squares and rhombuses mark the conventional
discrete samples and the discrete average samples based on
the developed model. The similarity between the discrete
average samples v2avg(k) and the averaged value of the
simulated output voltage v2avg(t) in the shape, frequency
and magnitude confirms the validity of the developed large-
signal model.

5 Perturbation about a steady
state
A switching converter with appropriate control operates in a
cyclic steady state. It is important to know the dynamic
response of the converter about this steady state to a small
perturbation in the control signal in order to design a

Figure 5 Comparison of the calculated converter dynamic
response using the developed model and the simulated
waveforms of the detailed switching model for the DAB
DC–DC converter to a perturbation in the control input

Solid lines and broken line represent the instantaneous simulation
results and the averaged value of the output voltage of the
detailed switching model. Squares and rhombuses mark the
conventional discrete samples and the discrete average samples
from the developed model, respectively. The components and
operating parameters are given in Table 1 as for simulation
IET Power Electron., 2010, Vol. 3, Iss. 3, pp. 400–410
doi: 10.1049/iet-pel.2008.0208



IET
do

www.ietdl.org
feedback controller to improve stability and performance of
the entire system.

Our starting point is the large-signal discrete-time model
in (13), (18) and (19) for the DAB converter developed in
the last section. When a small perturbation occurs in the
control signal, the state vector and the output variable
deviate from their steady-state values, that is

f12(k) = F12(k) + Df12(k)

x(k) = X (k) + Dx(k)

v2avg(k) = V2avg(k) + Dv2avg(k)

x(k + 1) = X (k + 1) + Dx(k + 1)

v2avg(k + 1) = V2avg(k + 1) + Dv2avg(k + 1)

(20)

where the capital letters refer to steady states and the terms
involving D represent small signal variations.

Substituting (20) into (18) and (19), applying a Talyor
series expansion around the steady state and neglecting
second and higher-order terms, we obtain

Dx(k + 1) = ADx(k) + BDf12(k)

Dv2avg(k + 1) = CDx(k) + EDf12(k)
(21)

with

A =

∂fi (k)

i1(k)

∂fi (k)

v2(k)

∂fv(k)

i1(k)

∂fv(k)

v2(k)

⎡
⎢⎢⎣

⎤
⎥⎥⎦

B =

∂fi (k)

f12(k)

∂fv(k)

f12(k)

⎡
⎢⎢⎣

⎤
⎥⎥⎦

C =
∂fvavg(k)

i1(k)

∂fvavg(k)

v2(k)

[ ]

E =
∂fvavg(k)

f12(k)

[ ]

Using z-transformation on (21), the control-to-output-
voltage small-signal transfer function can be written as

G∗
vavgd(s) =

Dv′∗
2avg(s)

Df∗
12(s)

=
Dv′

2avg(z)

Df12(z)

∣∣∣∣∣
z=esTs

=
n2Dv2avg(z)

Df12(z)

∣∣∣∣
z=esTs

= n2(C(zI − A)−1B + E)|z=esTs (22)

where I is the identity matrix.
Power Electron., 2010, Vol. 3, Iss. 3, pp. 400–410
i: 10.1049/iet-pel.2008.0208
6 Simulation and experimental
results
The experimental setup for measuring the loop frequency
response shown in Fig. 6 has been built and experimentally
tested to verify the proposed dynamic model. The
prototype is designed for a power transfer of 1 kW, a
switching frequency of 100 kHz, an LV of 14 V and a
nominal HV of 280 V. The electrical parameters for the
power stage of the prototype are given in Table 1. The
switching devices are implemented with power MOSFETs
and two IRF2804S MOSFETs are connected in parallel to
form a high current switching device for the LV side. The
planar transformer comprises a ELP 64/10/50 ferrite core
from EPCOS, a single-turn copper foil winding on the LV
side and a 20-turn Litz wire winding for the HV side.
Additionally, the series bulky inductor is also needed since
the leakage inductance of the transformer is so small that
it is different to precisely digitally control the needed
phase shift angle for transferring required power. The
DC-blocking capacitor is chosen to be relatively large in
order to compensate any DC current generated by the two
full-bridge cells.

The film/ceramic capacitors, acting as output filter
capacitors in the RC load, are placed near to the outputs of
the full-bridge cells in order to absorb the high-frequency
AC ripple currents generated by the full-bridge cells
effectively. No current sensor is inserted between the devices
and the filter capacitors. Therefore the control-to-output-
current frequency response is obtained by the detailed
switching model simulation in Simplorer, as shown in Fig. 7.

Besides, the control-to-output-voltage response in the
frequency domain is measured and illustrated in Fig. 8. A
perturbation in the phase displacement Df12 (cf. Fig. 6) is
generated by Venable Model 350 frequency response
analyser and sampled by the A/D converter in the Analog
Devices ADSP-21992 160 MHz DSP. The phase-shift
value f12, including the sampled perturbation Df12 and
the steady-state value F12, is sent from the DSP to the

Figure 6 Experimental setup for measuring the loop
frequency response
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Table 1 Components and operating parameters for analytical models, simulation and experimental setup

Parameter Models (a) and (b) Models (c) and (d) and simulation Experimental converter

V1 14 V 14 V 14 V

S1 –S4 IRF2804S∗2

Ls 0.16 mH 0.16 mH 0.16 mHa

Cs 6.4 mFb

Rs 2.5 mV 2.5 mV

n2 20 20 20

S5 –S8 IXFX64N60P

C′
b 876 pFc 390 pFd

R′
L 82 V 82 V 82 V

C′
o 2.82 mF 2.82 mF 2.82 mF

f12
e 830 nsf 720 ns 720 ns

Ts
g 5 ms 5 ms 5 ms

aLeakage inductance of the transformer T1 and a 36 mH additional inductor in series with the secondary winding of the
transformer T1
b16 mF multilayer ceramic capacitor in series with the secondary winding of the transformer T1
cOutput capacitor of the MOSFET in the HV cell and the snubber capacitor
dSnubber capacitor
ePhase shift angle expressed in seconds can be transformed into radians, for example, 830 ns ∗ p/Ts ¼ 0.166p
fHalf of the resonant transition time is added
gSampling time, which is the half switching cycle time
Lattice ispMACH4512V CPLD to generate the 100 kHz
gate signals. There is one switching cycle delay from the
perturbation generated by frequency response analyser to
the perturbation in the gate signals. This delay effect,
which creates the additional phase shift in the phase
response at high frequencies, has been removed from the
experimental results.

For comparison, the corresponding frequency responses
predicted by four different models with the components
and operating parameters given in Table 1 are also shown
in Figs. 7 and 8:

† Model (a), the model derived from the steady-state
current, which is presented in [10];

† Model (b), the model derived based on the proposed
discrete-time HCA modelling method, but with the
resonant transition intervals neglected;

† Model (c), the model derived based on the conventional
discrete-time modelling method without averaging over
half switching cycle, with the resonant transition intervals
included;

† Model (d), the developed model with the transfer function
given by (22), that is, the model based on the proposed
8
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discrete-time HCA modelling method and the resonant
transition intervals are considered.

In all of the models, a 2.5 mV resistor Rs in the series with
the leakage inductance represents the conduction losses of the
converter, which slightly reduces the gain in the magnitude
response.

In Models (a) and (b), the resonant transition intervals
indicated as interval b in Fig. 3 are neglected, that is, the
converter goes through only interval a and c over a half
switching cycle. The time durations of interval a and c in
Models (a) and (b) are both increased by half of the
resonant transition time compared with that in Models (c)
and (d). The time duration of the phase shift stage
indicated as interval a in Model (a) and (b) f12 ab is the
sum of half of the resonant transition time tt and f12 cd in
Models (c) and (d), that is, for an example operating point
with the electrical parameters given in Table 1

f12 ab = f12 cd +
tt

2

= 720 ns + 220 ns

2

= 720 ns + 110 ns

= 830 ns (23)
IET Power Electron., 2010, Vol. 3, Iss. 3, pp. 400–410
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This results in the DC gain predicted by Model (b) is
higher than that by Model (d), although the same
methodology is used in deriving Models (b) and (d).

The leakage inductance current is purely AC in the DAB
converter and has a large current swing, and therefore the
control-to-output frequency response of all discrete models
depends significantly on the sampling position. In this
paper, the sampling position is chosen to be at time instant
t0, which is at the beginning of interval a. However, in
Model (c), a peak detector is applied to the output current
in order to better measure the frequency response. Even
with the use of the peak detector there is still a large
deviation in the predicted response compared with the
simulation and experimental results, and can be seen
especially in the low-frequency gain of the control-to-
output-current magnitude response (cf. Fig. 7). After the
proposed HCA concept is adopted in Model (d), this
deviation is dramatically reduced.

As can be seen, the proposed model gives the most
accurate response compared with the experimental results,

Figure 7 Control-to-output-current frequency responses of
the DAB DC–DC converter predicted by Models (a)–(d)

Dots represent the detailed switching model simulation results
obtained using Simplorer
T Power Electron., 2010, Vol. 3, Iss. 3, pp. 400–410
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that is, the response of the new model shown by the solid
line curves is almost identical to the experimentally
measured response represented by the rhombuses in the
frequency range up to nearly one-third of the switching
frequency. The improvement of the new model over the
other models is obvious, especially in the low-frequency
gain of the magnitude response and particularly in the
phase characteristics at high frequencies.

7 Conclusion
A general modelling approach for the class of phase-shift
bidirectional DC–DC converter is presented in this paper.
The method, based on the discrete-time modelling
method, the HCA concept and z-transform, captures the
effects of the fast-changing leakage inductance current and
the resonant transition intervals in order to realise ZVS on
the converter dynamics. The proposed model is compared
with the previous methods using the DAB DC–DC

Figure 8 Control-to-output-voltage frequency responses of
the DAB DC–DC converter predicted by Models (a)–(d)

Dots and rhombuses represent the detailed switching model
simulation results obtained using Simplorer and the measured
results obtained using Venable Model 350 frequency response
analyser, respectively
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converter as an example. It is found that the new model
provides the most accurate frequency response, up to one-
third of the switching frequency, when compared with an
experimental converter.
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