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Abstract—This paper presents the implementation of a predic-
tive control scheme for an indirect matrix converter. The control
scheme selects the switching state that minimizes the reactive
power and the error in the output currents according to their ref-
erence values. This is accomplished by using a prediction horizon
of one sample time and a very intuitive control law. Experimental
results with a 6.8-kVA indirect matrix converter prototype are
provided in order to validate the proposed control scheme. The
converter uses standard digital signal processor operating at a
sampling frequency of 20 μs. It is shown that the idea of con-
trolling this converter topology with a predictive approach can be
implemented simply and input currents with unity power factor
and a total harmonic distortion lower than 5% can be obtained.

Index Terms—AC motor drives, current control, predictive
control.

I. INTRODUCTION

MATRIX converters feature several advantages compared
with standard two-level converters, such as a bidirec-

tional power flow and the reduced size of the reactive compo-
nents [1]. Different kinds of converters without dc link have
been presented in the technical literature. They are classified
into three main groups: 1) the cycloconverters in the high-power
range; 2) the standard matrix converters; and 3) indirect matrix
converters [2], all of them in the low-power range, as it is shown
in Fig. 1. The conventional indirect matrix converter is similar
to a back-to-back inverter but includes bidirectional switches in
the rectifier and has no dc-link capacitor, as shown in Fig. 2.
References to this topology can be traced back to 20 years ago,
when the concept was first introduced using a converter with
gate turnoff (GTO) thyristors [3].

Over the last few years, research on indirect matrix convert-
ers has benefited from advances in semiconductor technologies,
which have mainly contributed toward enhancing efficiency.
Compared with the standard matrix converter, this topology can
use a simpler modulation scheme and does not need an addi-
tional overvoltage protection system. Conversely, the current
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path from input to output produces higher power losses. This
can be partly mitigated by the use of semiconductors such as
reverse blocking insulated-gate bipolar transistors (RB-IGBTs)
[4], which have already been used in conventional matrix
converters [5], [6]. Additionally, some studies have focused
on sparse matrix topologies, which can improve power density
by reducing the number of semiconductors at the expense of
functionality. This is the case of the sparse matrix [7], [8],
the very sparse matrix [9], and the ultrasparse matrix converter
[10], which feature 15, 12, and 9 switches, respectively.

Indirect matrix converters use complex pulsewidth modula-
tion (PWM) schemes to achieve the goal of unity power factor
and sinusoidal output current. However, since power converters
have a discrete nature, the application of predictive control
constitutes a promising and better suited approach as compared
with standard schemes that use mean values of the variables
[11]. Furthermore, predictive control utilizes a very intuitive
control law that can easily deal with multivariable cases and the
treatment of constraints and compensate for the dead time [12].

Early practical applications of predictive control can be
found in the 1980s for the case of two-level inverters [13].
Nowadays, it is possible to find applications in machine con-
trol [14], [15], active rectifiers [16], [17], matrix converters
[18], [19], and even multilevel converters [20], [21]. Among
the broad family of predictive control methods, those with a
prediction horizon of one sample time are particularly attractive
due to the simplicity of implementation. More advanced control
techniques with a prediction horizon greater than one have
been proposed for simple converter topologies such as dc–dc
converters and two-level inverters [22], [23]. These types of
schemes offer some advantages in terms of faster dynamics
and reduced harmonic distortion at the expense of an increased
calculation burden. In order to solve this problem, some meth-
ods have been proposed to move part of the calculations’
effort offline [23]. Unfortunately, matrix converters operate at
a very fast sampling rate and feature a high number of possible
switching states.

This paper presents an application of predictive control in
indirect matrix converters. The switching state is selected by
minimizing a quality function that considers the instantaneous
reactive power in the input, the current error in the output, and
the generation of a positive voltage in the dc link. Feasibility,
implementation details, and advantages and disadvantages are
also discussed. Due to the limited capacity of the controller,
the use of a prediction horizon of one sample time will be a
design criterion. This paper is organized in the following man-
ner. Section II presents the converter topology. In Sections III
and IV, the control scheme is explained in detail. Section V
describes the commutation sequence for the rectifier and the

0278-0046/$25.00 © 2009 IEEE



1848 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 56, NO. 6, JUNE 2009

Fig. 1. Classification of power converters.

Fig. 2. Simplified scheme of the indirect matrix converter.

inverter. Section VI describes the selection of the weight factors
for the predictive controller. Finally, the experimental setup and
results are explained, showing the feasibility of the proposed
method in Section VII.

II. POWER CIRCUIT OF THE INDIRECT

MATRIX CONVERTER

The indirect matrix converter consists of an array of power
semiconductors that is very similar to the ac/dc/ac back-to-
back converter, as shown in Fig. 2. The converter synthesizes
a positive voltage in the dc link by selecting a switching state in
the rectifier that connects one phase to point P and the other
phase to point N . Additionally, the rectifier includes an LC
filter in the input which is needed to provide a path for the phase
current which is momentarily not connected to the dc link.
It should be noted that the indirect matrix converter topology
includes as many switches as the standard matrix converter, but
the former features an extra freedom degree that alleviates the
complexity of the commutation sequence.

An indirect matrix converter with RB-IGBTs is considered in
this paper. The conduction losses of this kind of semiconductor
are lower than a bidirectional switch consisting of a standard
IGBT and a diode connected in series [7], [8].

III. PREDICTIVE CONTROL METHOD

In the following, it will be assumed that the three phase
quantities of the converter are symmetrical and, hence, can be

represented by the well-known 2-D space vector. For example,
the phase current components isu, isv, and isw will be described
by the complex space vector

is = isα + j · isβ (1)

which is defined as

isα = 1
3 (2isu − isv − isw)

isβ = 1√
3
(isv − isw)

}
. (2)

This space vector is referred to a stationary reference frame that
will be denoted as an αβ reference frame.

Predictive control aims to select the converter switching state
that leads the controlled variables closest to their respective
references at the end of the sampling period. In order to
meet this requirement, the load current and input voltages are
measured, and predicted values of the input and output currents
are generated for each possible switching state.

Three main conditions must be fulfilled for the converter
to properly operate. First, the line side of the rectifier must
deliver active power. Second, the load current must follow the
reference with high accuracy, and third, the dc-link voltage
must be positive. This last condition differentiates the proposed
control law from the method presented in [18]. The first condi-
tion is accomplished by minimizing the predicted value of the
instantaneous reactive power

qk+1 =
∣∣∣uk+1

sα · ik+1
sβ − uk+1

sβ · ik+1
sα

∣∣∣ . (3)
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On the other hand, the second condition requires a minimum
error between the predicted load currents and its references

Δik+1
l =

∣∣i∗lα − ik+1
lα

∣∣ +
∣∣∣i∗lβ − ik+1

lβ

∣∣∣ (4)

where ilα and ilβ denote the load current in αβ coordinates and
i∗lα and i∗lβ denote their respective references.

The third condition necessary for the operation of the rectifier
is to discard those states that produce negative dc-link voltages.
In order to fulfill this condition, the following function is
defined:

hk+1 =
{

0, uk+1
dc > 0

M, uk+1
dc ≤ 0

(5)

where M is the maximum positive number that can be gener-
ated by the arithmetic unit of the controller. Equations (3)–(5)
are merged into a single so-called quality function

gk+1 = qk+1 + A · Δik+1
l + hk+1. (6)

The control method operates as follows. At each sampling
time, all possible switching states are used to calculate (6).
The switching state that produces the minimum value of g is
selected to be applied for one sampling period.

IV. CALCULATION OF PREDICTED VALUES

A mathematical model of the input filter and the load pro-
vides the basis for the prediction of the values of the input
and output currents, which are needed for evaluating the quality
function.

The line side of the rectifier consists of a second-order system
described by

Lf

dis

dt
=us − ue − Rf · is (7)

Cf

due

dt
= is − ie (8)

where Lf comprises the mains and filter inductances and Rf

represents the mains and filter damping resistances. The pre-
diction of the input current and capacitor voltages are computed
from a first-order difference equation, as is described in [18]

ik+1
s = c1i · uk

s + c2i · uk
e + c3i · iks + c4i · ike (9)

uk+1
s = c1u · uk

s + c2u · uk
e + c3u · iks + c4u · ike . (10)

The real coefficients c1, c2, c3, and c4 are defined so that the
obtained values for the predicted currents correspond to those
of the continuous-time system after one sampling time. They
can be calculated by representing (7) and (8) by a state-space
system with state variables is and ue[

u̇e

i̇s

]
=

[
0 1/Cf

−1/Lf Rf

] [
ue

is

]

+
[

0 −1/Cf

1/Lf 0

] [
us

ie

]
(11)

and expressing the system in its discrete form as

[
ue

k+1

is
k+1

]
= Φ

[
ue

k

is
k

]
+ Γ

[
us

k

ie
k

]
(12)

where

Φ = eA·Ts Γ = A−1(Φ − I)B (13)

with

A =
[

0 1/Cf

−1/Lf Rf

]
B =

[
0 −1/Cf

1/Lf 0

]
. (14)

The load model is obtained similarly. Assuming an
inductive–resistive load as shown in Fig. 2, after representing
the three-phase system in α−β coordinates, the following
equation describes the behavior of the load:

Ll

dil

dt
= ul − Rl · il (15)

which is discretized as follows:

ik+1
l = d1u

k
l + d2i

k
l (16)

where d1 and d2 depend on L1, R1, and the sample time.

V. DEAD-TIME COMPENSATION

The previously explained method does not deal with the dead
time generated by the calculations. In fact, the inverter and
the rectifier can generate eight and nine valid switching states,
respectively, which, altogether, produce 72 possible switching
combinations that must be taken into account in the quality
function g. A simplification is possible if h is a priori evaluated
using each of the nine possible rectifier states and the present
voltage values of the capacitor filter. In this way, three of
the nine possible rectifier states are selected beforehand, and
just 24 switching combinations have to be taken into account
for the evaluation of g. The dead time associated to these
calculations cannot be neglected if a standard low-cost digital
signal processor (DSP) controller is used.

A simple way to consider the dead time is by calculating
the quality function at the end of the next sampling period,
i.e., gk+2. Thus, the selected switching state can be applied at
tk+1, and a period of time equivalent to one sampling period
is available for calculations. The aforementioned compensation
requires the calculation of uk+1

s , uk+1
e , ik+1

s , and ik+1
l in order

to have the basis for the calculation of gk+2. These terms are
obtained out of (9), (10), (16), and the current switching state
Sk. Considering that the change in the input voltage is small
in one sampling time, uk+1

s will be considered equal to uk
s .

A block diagram of the control scheme and the sequence of
events for the dead-time compensation are shown in Fig. 3(a)
and (b), respectively.
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Fig. 3. Predictive controller. (a) Block diagram. (b) Time diagram of the algorithm.

VI. COMMUTATION SEQUENCE OF THE

POWER SEMICONDUCTORS

The converter requires a commutation sequence that allows
a safe change of the rectifier switching state. Basically, this
problem can be addressed by synchronizing the state changes
in the rectifier with the application of a zero-voltage space
vector in the inverter stage. Under this condition, no current
circulates through the dc link, and the rectifier state can be
changed without help of auxiliary commutation circuits [3].

An exact determination of the switching frequency with the
proposed scheme is not possible, considering the nondetermin-
istic generation of switching pulses. In order to estimate the
mean switching frequency of the switches of the inverter, the
following assumptions were considered.

1) The rectifier stage changes at each sampling time.
2) If the inverter stage changes between two active vectors,

i.e., those inverter stages that deliver to load a voltage
different than zero, one extra switching in one phase is
needed to provide the safe commutation of the rectifier.
This is the case in the time instant tk+3 in Fig. 4(a).

3) If the inverter stage has a zero space vector state or the last
state was a zero vector, no extra switchings are necessary
for the safe commutation of the rectifier. This is the case
in the time instants tk+1ytk+2.

The characteristic curve shown in Fig. 4(b) depicts the mean
switching frequency f̄igbt_o of one of the IGBTs of the inverter
stage, obtained by counting the number of switching transitions
in several periods of the fundamental frequency. Other switches
present the same behavior, which is why the curve correspond-
ing to one semiconductor is shown. It can be observed that the
mean switching frequency is lower than the sampling frequency
and it decreases at a higher load current.

VII. SELECTION OF THE WEIGHT FACTORS

The weighting factor A of the quality function (6) decides if
the priority will be given to the control of the power factor or

Fig. 4. Switching behavior of the inverter stage. (a) Commutation sequence
of the inverter and extra switching transitions. (b) Mean switching frequency of
one of the IGBTs of the inverter stage for a sampling time of 20 μs.

to the control of the output currents. This factor was adjusted
empirically based on [24]. First, A is set to a high value in
order to prioritize the control of the output current. As such, the
inverter can control the output currents while the input currents
will be highly distorted. After that, factor A is slowly decreased,
thereby lending more importance to the control of the reactive
power. The output currents will not follow the reference if the
factor A is too low, as shown in Fig. 5(a). Therefore, A is
selected as the minimum value such that the output current
has no noticeable deviations with respect to the reference, as
it is shown in Fig. 5(b). There is no specific design criterion
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Fig. 5. Selection of the factor A. (a) Output current A = 0.15, 95% of the
maximum output current. (b) Output current A = 0.45, 95% of the maximum
output current. (c) Factor A versus the load current.

to define the maximum allowable error in the output current,
except that the maximum discrepancy must be below 5% of the
maximum value of the reference. Since the adjustment of the
parameter A depends on the operating point, different values
are obtained using this empiric method, as shown in Fig. 5(c).

VIII. RESULTS

A conventional indirect matrix converter, built by the Power
Electronics Systems Laboratory of the Eidgenössische Technis-
che Hochschule (ETH) Zürich, was used for the experimental
evaluation. The converter features reverse blocking IGBTs of
type IXRH40N120 for the bidirectional switch, standard IGBTs
with antiparallel diodes of type FII50-12E for the inverter
stage. A picture of the converter is shown in Fig. 6. The
control scheme was implemented in a 160-MIPS fixed-point
ADSP21991 DSP board which is also shown in Fig. 6. The
processor board is connected to additional stacked boards that
include a field-programmable gate array for the commutation
sequence generation and the signal conditioning for the mea-
surement of voltages and currents. The input filter is integrated
in the converter board, as well as the current and voltage
transducers. The original setup includes filter parameters of
Lf = 130 μH and Cf = 10 μF. In this case, however, the ca-
pacity of the filter was increased to Cf = 40 μF to improve the
stability of the input current control.

The sampling period of the control algorithm was set at Ts =
20 μs. It should be noted that the dead time necessary for a safe
switching transition of the rectifier is approximately 10% of the
aforementioned sampling period. Despite the fact that this dead

Fig. 6. Photograph of the indirect matrix converter.

Fig. 7. Voltages and currents of the converter. (a) Input voltage usU and input
current isU. (b) Output current with its reference.

time could be considered high for a low-power converter, better
results can be expected from future generations of IGBTs.

Fig. 7 shows the measured input current and voltage and
output currents of phase U according to the parameters of the
Appendix. As expected, the input current fulfils the condition
of unitary power factor and presents an approximated total
harmonic distortion (THD) of 3.5%. As it is shown in Fig. 7,
the input current shows a ripple corresponding to the resonance
frequency of the input filter. On the other hand, the output
currents follow the reference accurately, with a THD lower than
1%. For the THD calculations, harmonics up to the sampling
frequency were considered.

It is not possible to directly compare the predictive control
scheme’s performance with other methods that use a constant
switching frequency. Results in [9] for a PWM-based control
scheme operating at 25 kHz indicate that the proposed method
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performs similarly in terms of harmonic distortion. Better re-
sults can be expected by optimizing the input filter and adding
active damping.

It must be acknowledged that the main advantage of the pro-
posed control method is the simplicity in the implementation,
since the controller does not need a complex modulation unit.
This can reduce the overall cost of the complete system. The
method also presents drawbacks as the quality function (6) is
explicitly solved for each switching state. This can be a problem
if a slow controller is used, as a higher sampling time could
increase the harmonic distortion in the currents.

IX. CONCLUSION

As a result of the advances in power semiconductors and
processors, indirect matrix converter and predictive control
schemes have recently emerged as feasible approaches. This
paper takes advantage of these advances and proposes a predic-
tive control scheme for an indirect matrix converter. The control
scheme uses the predicted values of the input and output cur-
rents to evaluate the best suited converter state considering the
output current error, the input power factor, and the generation
of a positive dc-link voltage. Experimental results at a sampling
time of Ts = 20 μs show that the unity power factor is obtained
with input currents with THD of 3.5%. The output current
follows the reference very accurately. The main advantage of
the method is that, with a very simple control approach, results
comparable with other PWM-based schemes can be obtained.

APPENDIX

The parameters of the input filter and the load are as follows.

Mains Filter: Load:
Lf = 130 μH R1 = 20 Ω
Cf = 40 μF L1 = 10 mH
Rf = 0.2 Ω
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