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Abstract—This paper presents a review of the most popular
control and modulation strategies studied for matrix converters
(MCs) in the last decade. The purpose of most of these methods
is to generate sinusoidal current on the input and output sides.
These methods are compared considering theoretical complexity
and performance. This paper concludes that the control strategy
has a significant impact on the resonance of the MC input filter.

Index Terms—AC–AC conversion, control strategies, matrix
converter (MC), modulation schemes.

I. INTRODUCTION

A MATRIX CONVERTER (MC) consists of an array of
bidirectional switches, which are used to directly connect

the power supply to the load without using any dc-link or large
energy storage elements [1].

The most important characteristics of MCs are as follows [2],
[3]: 1) a simple and compact power circuit; 2) generation of
load voltage with arbitrary amplitude and frequency; 3) sinu-
soidal input and output currents; 4) operation with unity power
factor; and 5) regeneration capability. These highly attractive
characteristics are the reason for the tremendous interest in this
topology.

The intensive research on MCs starts with the work of
Venturini and Alesina in 1980 [2]. They provided the rigorous
mathematical background and introduced the name “matrix
converter,” elegantly describing how the low-frequency behav-
iors of the voltages and currents are generated at the load and
the input. One of the biggest difficulties in the operation of this
converter was the commutation of the bidirectional switches
[4]. This problem has been solved by introducing intelligent
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Fig. 1. DMC topology.

and soft commutation techniques, giving new momentum to
research in this area.

After almost three decades of intensive research, the de-
velopment of this converter is reaching industrial application.
In effect, at least one big manufacturer of power converters
(Yaskawa) is now offering a complete line of standard units
for up to several megawatts and medium voltage using cas-
cade connection. These units have rated power (voltages) of
9–114 kVA (200 and 400 V) for low-voltage MC and
200–6.000 kVA (3.3 and 6.6 kV) for medium voltage [1]. Years
of continuous effort have been dedicated to the development of
different modulation and control strategies that can be applied
to MCs [4]–[11].

This paper presents the most relevant control strategies for
MCs and gives an assessment of them in terms of performance
and complexity.

II. POWER CIRCUIT AND WORKING

PRINCIPLE OF THE DMC

A direct MC (DMC) is a single-stage converter with m × n
bidirectional power switches that connects an m-phase voltage
source to an n-phase load [2], [12]. The DMC of 3 × 3
switches, shown in Fig. 1, is the most important from a practical
point of view because it connects a three-phase source to a
three-phase load, typically a motor

Sij(t) =
{

1, switch on
0, switch off.

(1)
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Fig. 2. Summary of modulation and control methods for MCs.

The power filter (Rf , Lf , Cf ) located at the input of the
converter mitigates the high-frequency components of the MC
input currents, generating almost sinusoidal source currents
and avoiding the generation of overvoltages. Overvoltages are
caused by the fast commutation of input currents due to the
presence of the short-circuit reactance of any real power sup-
ply. The inductance of the input filter Lf and capacitor Cf

provide series resonance for any harmonic coming from the
three-phase mains and parallel resonance for current harmonics
generated in currents iA, iB , and iC through the operation of
the switches. When the frequency of these harmonics is close
to the resonance frequency of the filter, strong oscillations will
appear. The design of the input filter is an important issue in the
operation of the DMC. Design guidelines for the filter can be
found in [13]–[15].

The switching function of a single switch is defined as
follows.

Due to the presence of capacitors at the input of the DMC,
only one switch on each column can be closed. Furthermore,
the inductive nature of the load makes it impossible to interrupt
the load current suddenly, and therefore, at least one switch of
each column must be closed.

In order to develop a modulation strategy for the MC, it
is necessary to develop a mathematical model, which can be
derived directly from Fig. 1, as follows:

vo =T(Sij)vi (2)

ii =T(Sij)Tio (3)

where vo = [va vb vc]T is the output voltage vector, vi =
[vA vB vC ]T is the input voltage vector, ii = [iA iB iC ]T is
the input current vector, io = [ia ib ic]T is the output current
vector, and T(Sij) is the instantaneous transfer matrix of the
DMC as a function of the switches Sij [12], which is defined as

T(Sij) =

⎡
⎣ SAa SBa SCa

SAb SBb SCb

SAc SBc SCc

⎤
⎦ . (4)

Equations (2) and (3) are the basis of all modulation methods,
which consist of selecting appropriate combinations of open
and closed switches to generate the desired output voltages.

III. GENERAL CLASSIFICATION OF CONTROL

AND MODULATION METHODS

The most relevant control and modulation methods devel-
oped up to now, for the MC, are shown in Fig. 2. The first
and highly relevant method is called the direct transfer function
approach also known as the Venturini method. Here, the output
voltage is obtained by the product of the input voltage and the
transfer matrix representing the converter. Another strategy is
the scalar method developed by Roy, which consists of using
the instantaneous voltage ratio of specific input phase voltages
to generate the active and zero states of the converter’s switches.
A very important solution for the control of MCs comes from
the use of pulsewidth modulation (PWM) techniques previously
developed for voltage source inverters. The simplest approach
is to use carrier-based PWM techniques. A very elegant and
powerful solution currently in use is to apply space-vector
modulation (SVM) in MCs. An alternative solution is direct
torque and flux control, which has also been proposed for the
speed control of an ac machine driven by this converter. More
modern techniques, such as predictive control, have recently
been proposed for the current and torque control of ac machines
using MCs. In the following pages, a description and a compar-
ison of these technologies will be presented.

IV. SCALAR TECHNIQUES

A. Direct Method: Venturini

Modulation is the procedure used to generate the appro-
priate firing pulses to each of the nine bidirectional switches
(Sij). This method was proposed by Venturini in [2] and has
been used since, as reported in [3], [4], [12], and [16]–[19].
In this case, the objective of the modulation is to generate
variable frequency and variable amplitude sinusoidal output
voltages (vjN ) from the fixed-frequency and fixed-amplitude
input voltages (Vi). Here, the instantaneous input voltages are
used to synthesize a signal whose low-frequency component is
the desired output voltage.

If tij is defined as the time during which switch Sij is on and
Ts as the sampling interval, we can express the aforementioned
synthesis principle as

vjN =
tAjvA + tBjvB + tCjvC

Ts
(5)
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where vjN is the low-frequency component (mean value cal-
culated over one sampling interval) of the jth output phase
and changes in each sampling interval. With this strategy, a
high-frequency switched output voltage is generated, but a
fundamental component has the desired waveform.

Obviously, Ts = tAj + tBj + tCj ∀j, with j = a, b, c, and
therefore, the following duty cycles can be defined:

mAj(t)=
tAj

Ts
mBj(t)=

tBj

Ts
mBj(t)=

tBj

Ts
. (6)

Extending (5) to each output phase and using (6), the follow-
ing equation can be derived:

vo(t) = M(t)vi(t) (7)

where vo(t) is the low-frequency output voltage vector, vi(t)
is the instantaneous input voltage vector, and M(t) is the low-
frequency transfer matrix of the converter, defined as

M(t) =

⎡
⎣ mAa(t) mBa(t) mCa(t)

mAb(t) mBb(t) mCb(t)
mAc(t) mBc(t) mCc(t)

⎤
⎦ . (8)

Following an analogous procedure for the input current, it
can be easily shown that:

ii(t) = MT(t)io(t) (9)

where ii(t) is the low-frequency-component input current
vector, io(t) is the instantaneous output current vector, and
MT(t) is the transpose of M(t). Equations (7) and (9) are
the basis of the Venturini modulation method, leading to the
conclusion that the low-frequency components of the output
voltages are synthesized with the instantaneous values of the
input voltages and that the low-frequency components of the
input currents are synthesized with the instantaneous values
of the output currents. Suppose that the input voltages vi are
given by

vi(t) =

⎡
⎣ Vi cos(wit)

Vi cos(wit − 2π/3)
Vi cos(wit + 2π/3)

⎤
⎦ (10)

and that, due to the low-pass characteristic of the load, the
output currents io are sinusoidal and can be expressed as

io(t) =

⎡
⎣ Io cos(wot + φo)

Io cos(wot − 2π/3 + φo)
Io cos(wot + 2π/3 + φo)

⎤
⎦ (11)

with wi = 2πfi and wo = 2πfo, where fi and fo correspond to
the source and load frequencies, respectively. Vi corresponds to
the input voltage amplitude, and Io corresponds to the output
current amplitude. Furthermore, suppose that the desired input
current vector ii is given by

ii(t) =

⎡
⎣ Ii cos(wit + φi)

Ii cos(wit + φi − 2π/3)
Ii cos(wit + φi + 2π/3)

⎤
⎦ (12)

with Ii as the input current amplitude. Also, suppose
that the desired output voltage vo can be expressed as

Fig. 3. Direct method: Venturini, typical waveforms. (a) Output voltage vaN

[in per unit (p.u.)], (bold line) its reference and (b) output current ia (in p.u.).

follows:

vo(t) =

⎡
⎣ qVi cos(wot)

qVi cos(wot − 2π/3)
qVi cos(wot + 2π/3)

⎤
⎦ (13)

and that the following active power balance equation must be
satisfied

Po =
3qViIo cos(φo)

2
=

3ViIi cos(φi)
2

= Pi (14)

where Po and Pi are the output and input active powers, respec-
tively, φi is the input displacement angle, and q is the voltage
gain of the MC. With the previous definitions, the modulation
problem is reduced to finding a low-frequency transfer matrix
M(t) such that (7) and (9) are satisfied. The explicit form of the
matrix M(t) can be obtained from [2] and [12], and it can be
reduced to the following expression:

mij(t) =
1
3

(
1 + 2viN (t)vjN/V 2

i

)
(15)

where i = A,B,C and j = a, b, c.
An important aspect of the solution presented is that the

voltage gain of the converter cannot exceed q = 0.5 due to
the working principle (mean value) and the input voltage
waveforms. To increase the gain voltage to q =

√
3/2 = 0.866,

Venturini proposed the injection of a third harmonic, resulting
in the following expression:

mij(t) =
1
3

(
1 +

2viN (t)vjN

V 2
i

+
4q

3
√

3
ζ

)
(16)

with ζ = sin(wit + βi) sin(3wit) for i = A,B,C, j = a, b, c,
and βi = 0, (2π/3), (4π/3). The same gain voltage q =

√
3/2

can be obtained by using the line-to-line voltages in the modu-
lation. Typical waveforms of the output voltage and current are
shown in Fig. 3.

B. Roy’s Method

The scalar method, which was proposed in 1987 by Roy
and April in [5], consists of using the instantaneous voltage
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ratio of specific input phase voltages to generate the active
and zero states of the converter’s switches. The value of any
instantaneous output phase voltage (j = a, b, c) is expressed as
follows:

vjN =
1
Ts

(tKvK + tLvL + tMvM ) (17)

tK + tL + tM =Ts (18)

according to two rules, where the subscript M is assigned to
the input voltage which has a different polarity to the other two
inputs. The subscript L is assigned to the smallest of the other
two input voltage magnitudes, and subscript K is assigned to
the third input voltage. Equations (17) and (18) are similar to
the ones proposed by Venturini, as mentioned in the previous
section. In this case, the switching patterns depend only on the
scalar comparison of input phase voltages and the instantaneous
value of the desired output voltage. So, the duty cycles are given
as indicated in

mLj = (vjN−vM )vL

1.5V 2
i

mKj = (vjN−vM )vK

1.5V 2
i

mMj = 1 − (mLj + mKj)

⎫⎪⎬
⎪⎭ (19)

for j = a, b, c, respectively. As with the previously presented
basic solution for the modulation problem, the voltage transfer
ratio is limited to q ≤ 0.5, in order to yield positive values for
times tK , tL, and tM . By modifying the switching time of the
basic scalar control law, it is possible to add the third harmonic
to obtain an overall voltage transfer ratio of q =

√
3/2. So, the

modulation duty cycles for the scalar method can be represented
by [5]

mij =
1
3

(
1 +

2vivj

V 2
i

+
2
3
ζ

)
(20)

for i = A,B,C, j = a, b, c, and βk = 0, (2π/3), (4π/3).
Equations (16) and (20) are equal when the output voltage

is maximum (q =
√

3/2). The difference between the methods
is that the term q is used in the Venturini method and is
fixed at its maximum value in the scalar method. The effect
on the output voltage is negligible, except at low switching
frequencies, where the Venturini method is superior.

C. Current Phase Displacement Control for Venturini
and Roy Methods

According to [5] and [12], by intentionally shifting or delay-
ing the timing sequence with respect to the zero crossing of the
associated input phase voltage, it is possible to shift current ii
relative to vi (i = A,B,C), therefore altering the input power
displacement factor.

Let us define the following fictitious phase voltages at the
input part of the MC as

v′
A = Vi sin(wit + Δφ)

v′
B = Vi sin

(
wit + Δφ − 2π

3

)
v′

C = Vi sin
(
wit + Δφ + 2π

3

)
⎫⎬
⎭ (21)

where Δφ is the displacement factor angle between the mea-
sured input voltage vector vi and the input current vector ii.

For Venturini’s method, the solution of the new m′
ij is

given by

m′
ij(t) =

1
3

(
1 +

2v′
iN (t)vjN

V 2
i

+
4q

3
√

3
ζ

)
(22)

for i = A,B,C.
For Roy’s method, let us now assign M , K, and L to A′, B′,

and C ′ according to the rules mentioned before. Then

m′
Lj = (vjN−v′

M)v′
L

1.5V 2
i

m′
Kj = (vjN−v′

M)v′
K

1.5V 2
i

m′
Mj = 1 −

(
m′

Lj + m′
Kj

)

⎫⎪⎪⎬
⎪⎪⎭

(23)

for j = a, b, c, respectively. Of course, the desired output volt-
age vjN is still expressed by (13) or (17), for Venturini or Roy
methods, respectively.

It follows that the input currents ii will be in phase with
their respective fictitious voltages. However, they will be dis-
placed by an angle Δφ according to the real voltage vi. So,
the input power displacement factor is totally controllable by
proper adjustment of the timing sequence, regardless of the load
characteristic.

In both methods, a reduction of the voltage transfer ratio
is observed as the power displacement factor is reduced, as
indicated in [5].

V. PWM METHODS

A. Carrier-Based Modulation Method

Many control strategies based on PWM methods which allow
for output voltage regulation while maintaining unity power
factor on the input side have been applied to different kinds of
MCs, as has been reported in [6] and [20]–[35]. For simplicity,
we will discuss a carrier-based modulation method applied to a
three-phase-to-single-phase MC, which can be easily extended
to a three-phase-to-three-phase or multilevel converter. The
technique is based on a sinusoidal PWM (SPWM), which is
a well-known shaping technique in power electronics where a
high-frequency triangular carrier signal vtri is compared with
a sinusoidal reference signal vo, as shown in Fig. 4 [6], [22].
In this method, the switching pulses are generated by using a
logical table as a function of the input voltages and the desired
levels on the output side. The different input voltage states are
identified by considering variables xA, xB , and xC , which are
generated according Table I. If the conditions given in Table I
are not satisfied, the logic variable take the value 0. The gate
pulse pattern generation of the MC is given according to a
switching state selector generated by the following equation:

N = 16xA + 8xB + 4xC + 2L1 + L0 (24)

where L0 and L1 are the output voltage levels (L0 is selected
if the level of the output voltage reference is less than or equal
to zero, and L1 is selected if the output voltage level is above
zero). Generally, PWM methods can work with a variable input
power factor, as demonstrated in [35], where it is possible to
synthesize the sinusoidal input currents with a desired power
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Fig. 4. Unipolar SPWM method and desired output level voltage.

TABLE I
PWM METHOD: INPUT VOLTAGE STATES

Fig. 5. Carrier-based method, typical waveforms. (a) Line-to-line output
voltage vab (in p.u.) and (b) output current ia (in p.u.).

factor by changing the slope of the carrier and using the offset
voltages. However, the PWM method presented in this paper
is restricted in its operation with unity power factor, due to its
simplicity. Typical waveforms of output voltage and current are
shown in Fig. 5. More details about this method can be found
in [6] and [22].

B. SVM Method

This method has been proposed in [7], [8], [36], and [37].
The space-vector approach is based on the instantaneous space-
vector representation of input and output voltages and currents.
Among the 27 possible switching configurations available in
three-phase MCs, only 21 are useful in the SVM algorithm. The
first 18 switching configurations determine an output voltage
vector and an input current vector, having fixed directions
(Fig. 6). The magnitude of these vectors depends upon the
instantaneous values of the input voltages and output line

Fig. 6. Available DMC vectors for SVM. (a) Voltage vectors. (b) Current
vectors.

currents, respectively. The last three switching configurations
determine zero input current and output voltage vectors. The
SVM algorithm for MCs has the inherent capability to achieve
full control of both the output voltage vector and the instan-
taneous input current displacement angle [7], [8], [36]–[57].
The two-stage SVM method [54] is a variation of the classic
SVM technique which has some important features such as
overmodulation, but this method is no longer used.

At any given sampling instant, the output voltage vector and
the input current displacement angle are known as reference
quantities. The input line-to-neutral voltage vector is imposed
by the source voltages and is recognized by its measurements.
Then, the control of the input side can be achieved, controlling
the phase angle of the input current vector. Both input current
and output voltage vectors are synthesized by considering the
duty cycles. The duty cycles are calculated based on the phase
of output voltage and input current vector references such as in
the following (Fig. 6) [37]:

δ1 = − 1Kv+Ki+1 2m√
3

cos
(
φ′

o − π
2

)
cos

(
φ′

i − π
2

)
cos(Δφ)

(25)

δ2 = − 1Kv+Ki
2m√

3

cos
(
φ′

o − π
2

)
cos

(
φ′

i + π
6

)
cos(Δφ)

(26)

δ3 = − 1Kv+Ki
2m√

3

cos
(
φ′

o + π
6

)
cos

(
φ′

i − π
2

)
cos(Δφ)

(27)

δ4 = − 1Kv+Ki+1 2m√
3

cos
(
φ′

o + π
6

)
cos

(
φ′

i + π
6

)
cos(Δφ)

(28)

where m is the modulation index; Δφ is the displacement angle
between the measured input voltage vector vi and the input
current reference vector i∗i ; Kv and Ki are the voltage and
current sectors, respectively; and

φ′
o = φo − (Kv − 1)

π

6
φ′

i = φi − (Ki − 1)
π

6
. (29)

If the sign of any duty cycle is negative, then the name of
the switching state to apply must have a negative sign. The duty
cycle δ0 of the zero vector is such that the total duty cycle must
be equivalent to the unit at a fixed sampling frequency, i.e.,

δ0 = 1 − δ1 − δ2 − δ3 − δ4. (30)

Assuming a displacement power factor of one on the input
side of the DMC, i.e., Δφ = 0, the maximum modulation index
is m =

√
3/2.
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Fig. 7. DTC scheme.

VI. DTC

Today, direct torque control (DTC) is established as a high-
performance torque and flux control method for ac machines
fed by voltage source inverters [9], [58].

This method is based on the torque equation of the machine
which is expressed as a function of the angle between the stator
and rotor flux vectors in the following way:

Te = kT (ψrαψsβ − ψrβψsα) (31)

with kT = (3/2)p(Lm/LrLs − L2
m), (where Lr, Ls, and Lm

are the self-inductance and mutual inductance, respectively).
The method is also based on the fact that changes in the voltage
delivered by the inverter directly affect the behavior of the
machine’s stator flux, as shown by

ψs(k + 1) = ψs(k) + Tsvs(k + 1) − RsTsis(k). (32)

In [59], the authors proposed that DTC controls an ac
machine by using an MC. As shown in Fig. 7, this method
uses a nonlinear hysteresis comparator to control the torque,
which delivers the control variable cT . An additional hysteresis
controller is used to create another closed loop to control the
flux, which delivers the variable cψ . A third loop is used to
control the power factor of the input current by controlling
the displacement factor Δφ with another nonlinear controller,
which delivers variable cϕ. These variables cT , cψ , and cϕ, in
conjunction with the position of the stator flux, reveal which
direction to select the gate drive pulses in the lookup table for
the bidirectional switches of the MC.

Although lookup tables for DTC using a voltage source in-
verter are well known and published in several papers and text-
books, the application of this method in an MC has additional
complexity. In effect, the selection of a single switching state
for the MC is not based exclusively on the information of torque
error and flux error. Rather, the designer must know a priori
what additional effect this switching state will have on the
behavior of the input power factor. To obtain this information is
complex [60].

Fig. 8. PCC scheme.

The results of this method generally show very good perfor-
mance dynamics in the control of the machine. However, the
input filter of the MC presents higher resonances. To improve
the general drive performance, the use of DTC in MCs is a
subject of intensive study today. Some works are focused on
improving the behavior of the input filter [60]–[64].

VII. PREDICTIVE CONTROL

A. PCC

Owing to advances in processors, predictive control schemes
have recently emerged as feasible approaches [65]. A predictive
current control (PCC) scheme is shown in Fig. 8. It shows the
converter’s switching state selection that leads the controlled
variables closest to their respective references at the end of
the sampling period. This strategy uses the converter and load
models to predict the future behavior of load currents and
reactive power. A simple but functional time-continuous model
of the load side can be expressed as

dio
dt

=
1

LL
vo − RL

LL
io. (33)

The state variable model of the ac-input side is given from
Fig. 1 as follows:

dis
dt

=
1

Lf
(vs − vi − Rf is) (34)

dvi

dt
=

1
Cf

(is − ii). (35)

Given the first-order nature of the load model, a first-order
discrete approximation allows the future load current to be
predicted as

io(k + 1) =
Tsvo(k + 1) + LLio(k)

LL + RLTs
(36)

where Ts corresponds to the sampling time. On the input side,
the equations represent a second-order model. As such, an exact
discrete state model is best used to obtain the supply current
in the sampling instant k + 1, in order to predict the future
reactive power. So, the general expression to predict the line
input current is

is(k + 1) = c1vs(k) + c2vi(k) + c3is(k) + c4ii(k) (37)
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Fig. 9. PCC without power factor correction A = 0. (a) Output current (in
amperes). (b) Reactive power (in kvar). (c) Input current (in amperes) and input
voltage (V/30).

where ci (i = 1, 2, 3, 4) values are calculated such that the
discrete model provides the exact values of the continuous
system. Two main conditions must be fulfilled for the converter
to operate properly: First, the line side of the converter must
minimize the instantaneous reactive power, and second, the load
current must follow the reference with good accuracy. Both
requirements can be merged into a single quality function g as
follows:

g = �io(k + 1) + A�qs(k + 1) (38)

where

�io(k+1)=|i∗oα−ioα(k+1)|+|i∗oβ−ioβ(k+1)| (39)
�qs(k+1)=|vsα(k+1)isβ(k+1)−vsβ(k+1)isα(k+1)|.

(40)

The first term considers the comparison between the refer-
ence load currents and the predicted ones. The second term
corresponds to the predicted input reactive power. Both are
expressed in α–β components.

The control method operates as follows: At each sampling
time, all 27 possible switching states are used to calculate the
predicted values of the load and input current, allowing the
evaluation of function g in (38). After that, the valid switching
state that produces the minimum value of g is selected for
the next modulation period. Fig. 9 shows the behavior of the
DMC when the quality function has a value of A = 0, for
the weighting factor. The load current ia is sinusoidal, and the
reactive power has high values. In this case, the input current
presents very high distortion, which is originated by a strong
resonance of the input filter. Fig. 10 shows the behavior of
the DMC when a control of the input power factor is being
considered. This is achieved by increasing the value of the
weighting factor A = 1. It can be observed that the load current
ia is sinusoidal and that the input reactive power is zero. This
new control strategy practically eliminates the resonance of the
input filter. The improvement in the quality of the input current
is remarkable.

Different techniques for MCs have been proposed under the
name of PCC, as reported in [10] and [66]–[78]. In [67], a

Fig. 10. PCC with power factor correction A = 1. (a) Output current (in
amperes). (b) Reactive power (in kvar). (c) Input current (in amperes) and input
voltage (V/30).

Fig. 11. PTC scheme.

PCC for an induction machine (IM) fed by an MC is developed
by considering a classic stage that handles speed, flux, and
torque control. It does this by means of field-oriented control,
which generates the reference currents for the predictive stage.
A similar idea is presented in [70] to control a permanent-
magnet synchronous machine. Using this scheme, it is also
feasible to control other variables within an electrical system,
for example, minimizing common-mode voltage, reported in
[68], or increasing efficiency and reducing switching losses,
as presented in [69]. Recently, this idea has been extended to
indirect MCs, as reported in [73], [74], and [76].

B. PTC

A diagram of the predictive torque control (PTC) strategy is
shown in Fig. 11. This control method has been introduced in
[11] and [79]–[85]. Similar to the previously explained method,
PTC consists of choosing, at fixed sampling intervals, one of
the 27 feasible switching states of the DMC. The selection of
the switching state for the following time interval is performed
using a quality function minimization technique. This quality
function g represents the evaluation criteria in order to select
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the best switching state for the next sampling interval. For
the computation of g, the input current vector is, the electric
torque Te, and the stator flux ψs in the next sampling interval
are predicted, assuming the application of each valid switching
state, by means of a mathematical model of the input filter and
the IM. A PI controller is used to generate the reference torque
T ∗

e to the predictive algorithm. A mathematical discrete-time
model is derived to predict the behavior of the system under
a given switching state, based on the well-known dynamic
equations for an IM [11], [79]–[81]. The stator and rotor voltage
equations in fixed stator coordinates for a squirrel-cage IM can
be presented as

vo = Rsio +
dψs

dt
(41)

vr = Rrir +
dψr

dt
− jpωψr = 0 (42)

where Rs and Rr are the stator and rotor resistances, ψs and ψr

are the stator and rotor fluxes, ω is the mechanical rotor speed,
and p is the number of pole pairs of the IM.

The stator and rotor fluxes are related to the stator and rotor
currents by

ψs = Lsio + Lmir (43)

ψr = Lmio + Lrir (44)

where Ls, Lr, and Lm are the self-inductance and mutual
inductance, respectively. Finally, the electric torque produced
by the machine can be obtained by

Te =
3
2
pξIm{ψ̄rψs} =

3
2
pξ(ψrαψsβ − ψrβψsα) (45)

where ξ = Lm/LrLs − L2
m, ψ̄r is the complex conjugate of

vector ψr, and the subscripts α and β represent the real and
imaginary components of the associated vector. Equations (41)
and (42) can be rewritten, solving the stator and rotor currents
in terms of the stator and rotor fluxes from (43) and (44), as

dψs

dt
=

−RsLr

LrLs − L2
m

ψs +
RsLm

LrLs − L2
m

ψr + vo (46)

dψr

dt
=

RrLm

LrLs − L2
m

ψs −
RrLs

LrLs − L2
m

ψr − jpωψr. (47)

The next step is to define a discrete-time model based on
these continuous-time equations. Using a forward Euler ap-
proximation [11], the following discrete equations are com-
puted from (46) and (47):

ψs(k + 1) = (1 − χLr)ψs(k) + χLmψr(k) + vo(k) (48)

ψr(k + 1) = λLmψs(k) + (1 − λLs)ψr(k) − jpω(k)ψr(k)

(49)

where χ = TsRs/LrLs − L2
m, λ = TsRr/LrLs − L2

m, and
Ts is the sampling period.

If a certain voltage vector vo(k) is applied from the DMC,
then (45), (48), and (49) are used by the proposed method
to predict the stator flux and the electric torque produced by
the IM during the next sampling interval. The quality function
represents the evaluation criteria to decide which switching
state is the best to apply. The function is composed of the
absolute error of the predicted torque, the absolute error of the
predicted flux magnitude, and the absolute error of the predicted
reactive input power, resulting in

g = �Te(k + 1) + λψ�ψ(k + 1) + λq�qs(k + 1) (50)

where λQ and λψ are the weighting factors that handle the
relation between reactive input power, torque, and flux condi-
tions. This quality function must be calculated for each of the
27 feasible switching states. The state that generates the opti-
mum value (in this case, a minimum) will be chosen and applied
during the next sampling period. In that sense, the technique
assigns costs to the objectives reflected in g, weighted by λT ,
λψ, and λq, and then chooses the switching state that presents
the lowest cost. Typical waveforms without and with input
factor correction are shown in Figs. 12 and 13, respectively.
Both cases present good behavior on the output side. Input
currents, on the other hand, present significant differences.
Implementing the method with λq = 0, the input current shows
high distortion and phase shift with its phase voltage. Using the
added term to control the input factor and considering λq > 0,
the input current is close to sinusoidal, as shown in Fig. 13.

VIII. ASSESSMENT OF THE METHODS

The performance of all methods can be compared consider-
ing the following figures of merit:

1) theoretical complexity;
2) quality of load current;
3) dynamic response;
4) sampling frequency;
5) switching frequency,
6) resonance of input filter.
Table II presents a comparison of these methods. In terms

of complexity, although carrier-based methods involve many
equations, with respect to the other techniques, they are very
simple to implement for generating gate drive pulses for bidi-
rectional power switches [29]. Predictive technique [10], [65] is
very simple in comparison to SVM [7], [37] and DTC methods,
which are complex. In DTC, the engineer must know the effect
of any switching state on the behavior of torque, flux, and
the input power factor of the MC, which is a complex task
[59], [60]. All the methods deliver a high-quality current to
the load. The main difference is that some methods work with
fixed switching frequency and other strategies, such as DTC
and PTC, work with variable switching frequency. It can also
be observed that some methods operate with low sampling and
switching frequency while others require higher frequencies.
All methods have good dynamic behavior, which is acceptable
for all main practical applications.

The resonance of the input filter is a key issue in the operation
of MCs. An important observation, not previously highlighted,
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Fig. 12. Predictive control torque without power factor correction λq = 0.
(a) Speed (in radians per second). (b) Electrical torque (in newton meters).
(c) Output current (in amperes). (d) Stator flux (in webers). (e) Reactive power
(in kvar). (f) Input current (in amperes) and input voltage (V/30). (g) Zoom of
input current isA and input voltage vsA.

is that a control or modulation method has a very significant
influence on the behavior of the input filter [74], [86]. In
effect, methods working with fixed switching frequency, like
Venturini, Roy, and SVM, have a reduced resonance in the input
filter. Carrier-based methods that do not take care of the quality
of the input current originate strong resonances in the input
filter. This behavior can be drastically improved taking into con-
sideration the input current. DTC has very strong resonances in
the input filter, while predictive techniques have mixed results.
The introduction of the control of the reactive power in the qual-
ity function introduces an important reduction of the resonance
in predictive methods [10], [67], [73], [76], [78], [80], [84].

Other techniques that have been applied to MCs are fuzzy
control [87], [88], neural networks [89], [90], genetic algo-
rithms [91], [92], etc. In addition, new topologies of ac–ac
converters such as sparse and z-source converters for specific
applications have been proposed, as well as a study from the
manufacturer’s perspective, as reported in [93]–[100].

Fig. 13. Predictive control torque with power factor correction λq = 1.
(a) Speed (in radians per second). (b) Electrical torque (in newton meters).
(c) Output current (in amperes). (d) Stator flux (in webers). (e) Reactive power
(in kvar). (f) Input current (in amperes) and input voltage (V/30). (g) Zoom of
input current isA and input voltage vsA.

IX. COMMENTS AND CONCLUSION

The area of MCs has shown continuous development in
recent years in terms of new topologies, new control methods,
and applications. This paper has presented a number of control
methods that are highly investigated today, which, in principle,
exhibit good performance [17], [27], [54]. These methods
have different theoretical principles and different degrees of
complexity.

With the results reported in this paper, predictive control
appears as the most promising alternative due to its simplicity
and flexibility to include additional aspects in the control.
However, with the results reported to date in the literature,
it is not possible to establish which method is the best.
The authors consider that deeper research must be done in the
future to clarify the advantages of each method or to select the
best alternative. This comparison must include more advanced



RODRIGUEZ et al.: REVIEW OF CONTROL AND MODULATION METHODS FOR MATRIX CONVERTERS 67

TABLE II
COMPARISON BETWEEN CONTROL AND MODULATION METHODS FOR MCs

aspects such as detailed evaluation of losses, system integration,
electromagnetic compatibility, etc.
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